Ajit Narayanan: A word game to communicate in any language

114,745 views ・ 2014-03-10

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Senzos Osijek Recezent: Ivan Stamenković
00:12
I work with children with autism.
0
12721
2670
¶ Radim s autističnom djecom.
00:15
Specifically, I make technologies
1
15391
1914
Točnije, stvaram tehnologije
00:17
to help them communicate.
2
17305
2171
koje im pomažu komunicirati.
00:19
Now, many of the problems that children
3
19476
1539
Mnogi problemi s kojima se autistična
00:21
with autism face, they have a common source,
4
21015
3763
djeca suočavaju imaju zajednički izvor,
00:24
and that source is that they find it difficult
5
24778
2094
a taj izvor jest da im je teško
00:26
to understand abstraction, symbolism.
6
26872
5260
razumjeti apstrakciju, simbolizam.
00:32
And because of this, they have a lot of difficulty with language.
7
32132
4652
Zbog toga imaju mnogo problema s jezikom.
00:36
Let me tell you a little bit about why this is.
8
36784
3015
Sada ću vam reći nešto o razlogu zašto.
00:39
You see that this is a picture of a bowl of soup.
9
39799
3934
Vidite, ovo je slika zdjele s juhom.
00:43
All of us can see it. All of us understand this.
10
43733
2485
Svi možemo to vidjeti. Svi možemo to razumjeti.
00:46
These are two other pictures of soup,
11
46218
2312
Ovo su druge dvije slike juhe,
00:48
but you can see that these are more abstract
12
48530
2067
ali možete vidjeti da su više apstraktne.
00:50
These are not quite as concrete.
13
50597
1856
Ove nisu jednako konkretne.
00:52
And when you get to language,
14
52453
2174
A kada stignete do jezika,
00:54
you see that it becomes a word
15
54627
1868
vidite da to postaje riječ
00:56
whose look, the way it looks and the way it sounds,
16
56495
3261
čija pojava, način na koji izgleda i način na koji zvuči
00:59
has absolutely nothing to do with what it started with,
17
59756
2912
nema apsolutno ništa s onim čime je počela
01:02
or what it represents, which is the bowl of soup.
18
62668
2830
ili s onim što predstavlja, a to je zdjela juhe.
01:05
So it's essentially a completely abstract,
19
65498
2900
To je zapravo potpuno apstraktna,
01:08
a completely arbitrary representation of something
20
68398
2576
potpuno proizvoljna predodžba nečega
01:10
which is in the real world,
21
70974
1163
što je u stvarnom svijetu,
01:12
and this is something that children with autism
22
72137
1791
a to je nešto s čime autistična djeca
01:13
have an incredible amount of difficulty with.
23
73928
3164
imaju velikih problema.
01:17
Now that's why most of the people that work with children with autism --
24
77092
2751
Zbog toga većina ljudi koji rade s autističnom djecom -
01:19
speech therapists, educators --
25
79843
1878
logopedi, nastavnici -
01:21
what they do is, they try to help children with autism
26
81721
2633
ono što rade je da pokušavaju pomoći autističnoj djeci
01:24
communicate not with words, but with pictures.
27
84354
3229
komunicirati, ne s riječima, već sa slikama.
01:27
So if a child with autism wanted to say,
28
87583
1930
Tako da ako bi autistično dijete htjelo reći,
01:29
"I want soup," that child would pick
29
89513
2458
„Hoću juhu, “ to dijete bi izabralo
01:31
three different pictures, "I," "want," and "soup,"
30
91971
2260
tri različite slike, „Ja, “ „htjeti, “ i „juha, “
01:34
and they would put these together,
31
94231
1609
i stavili bi ih zajedno,
01:35
and then the therapist or the parent would
32
95840
1867
i tada bi terapeut ili roditelj
01:37
understand that this is what the kid wants to say.
33
97707
1887
razumio da je to ono što dijete želi reći.
01:39
And this has been incredibly effective;
34
99594
1778
I to je bilo nevjerojatno učinkovito;
01:41
for the last 30, 40 years
35
101372
2141
zadnjih 30, 40 godina
01:43
people have been doing this.
36
103513
1613
ljudi su to radili.
01:45
In fact, a few years back,
37
105126
1349
Zapravo, prije nekoliko godina,
01:46
I developed an app for the iPad
38
106475
2675
razvio sam aplikaciju za iPad
01:49
which does exactly this. It's called Avaz,
39
109150
2255
koja radi upravo to. Zove se Avaz,
01:51
and the way it works is that kids select
40
111405
2279
i način na koji radi je da djeca izaberu
01:53
different pictures.
41
113684
1321
različite slike.
01:55
These pictures are sequenced together to form sentences,
42
115005
2570
Te slike se poredaju zajedno kako bi formirale rečenice,
01:57
and these sentences are spoken out.
43
117575
1719
i te rečenice se izgovaraju.
01:59
So Avaz is essentially converting pictures,
44
119294
3025
Tako Avaz zapravo pretvara slike,
02:02
it's a translator, it converts pictures into speech.
45
122319
3960
to je prevoditelj, pretvara slike u govor.
02:06
Now, this was very effective.
46
126279
1718
I sad, to je bilo jako učinkovito.
02:07
There are thousands of children using this,
47
127997
1384
Na tisuće djece koriste ovo,
02:09
you know, all over the world,
48
129381
1430
znate, u cijelom svijetu,
02:10
and I started thinking about
49
130811
2175
i počeo sam razmišljati o tome
02:12
what it does and what it doesn't do.
50
132986
2654
što radi, a što ne radi.
02:15
And I realized something interesting:
51
135640
1684
I shvatio sam nešto zanimljivo:
02:17
Avaz helps children with autism learn words.
52
137324
4203
Avaz pomaže autističnoj djeci naučiti riječi.
02:21
What it doesn't help them do is to learn
53
141527
2405
Ono što im ne pomaže naučiti jesu
02:23
word patterns.
54
143932
2748
obrasci riječi.
02:26
Let me explain this in a little more detail.
55
146680
2472
Dopustite mi da ovo objasnim malo detaljnije.
02:29
Take this sentence: "I want soup tonight."
56
149152
3057
Pogledajte ovu rečenicu: „Večeras hoću juhu.“
02:32
Now it's not just the words here that convey the meaning.
57
152209
4080
Nisu samo riječi te koje ovdje prenose značenje.
02:36
It's also the way in which these words are arranged,
58
156289
3140
To je također i način na koji su ove riječi poslagane,
02:39
the way these words are modified and arranged.
59
159429
2515
način na koji su ove riječi promijenjene i poslagane.
02:41
And that's why a sentence like "I want soup tonight"
60
161959
2306
I zbog toga rečenica kao što je „Hoću juhu večeras“
02:44
is different from a sentence like
61
164265
1984
je drukčija od rečenice kao što je
02:46
"Soup want I tonight," which is completely meaningless.
62
166249
3312
„Juha htjeti ja večeras, “ koja je potpuno beznačajna.
02:49
So there is another hidden abstraction here
63
169561
2619
Tako je ovdje još jedna skrivena apstrakcija
02:52
which children with autism find a lot of difficulty coping with,
64
172180
3557
s kojom se autistična djeca teško nose,
02:55
and that's the fact that you can modify words
65
175737
2840
a to je činjenica da možete mijenjati riječi
02:58
and you can arrange them to have
66
178577
2101
i poslagati ih tako da imaju
03:00
different meanings, to convey different ideas.
67
180678
2895
različita značenja, da prenose različite ideje.
03:03
Now, this is what we call grammar.
68
183573
3459
I sad, to je ono što nazivamo gramatika.
03:07
And grammar is incredibly powerful,
69
187032
2036
A gramatika je nevjerojatno snažna,
03:09
because grammar is this one component of language
70
189068
3157
jer je gramatika ta jedna komponenta jezika
03:12
which takes this finite vocabulary that all of us have
71
192225
3489
koja uzima ograničeni vokabular riječi koji svi imamo
03:15
and allows us to convey an infinite amount of information,
72
195714
4531
i dopušta nam prenositi beskonačno mnogo informacija,
03:20
an infinite amount of ideas.
73
200245
2134
beskonačno mnogo ideja.
03:22
It's the way in which you can put things together
74
202379
2002
To je način na koji možete složiti stvari
03:24
in order to convey anything you want to.
75
204381
2168
kako bi prenijeli sve što želite.
03:26
And so after I developed Avaz,
76
206549
2127
I tako nakon što sam razvio Avaz,
03:28
I worried for a very long time
77
208676
1568
brinuo sam se dugo vremena
03:30
about how I could give grammar to children with autism.
78
210244
3910
o tome kako mogu dati gramatiku autističnoj djeci.
03:34
The solution came to me from a very interesting perspective.
79
214154
2275
Rješenje mi je došlo iz jedne jako zanimljive perspektive.
03:36
I happened to chance upon a child with autism
80
216429
3449
Igrom slučaja naišao sam na autistično dijete
03:39
conversing with her mom,
81
219878
2109
koje je razgovaralo sa svojom mamom,
03:41
and this is what happened.
82
221987
2094
i dogodilo se ovo.
03:44
Completely out of the blue, very spontaneously,
83
224081
2186
Potpuno iznenadno, vrlo spontano,
03:46
the child got up and said, "Eat."
84
226267
2463
dijete se ustalo i reklo, „Jesti. “
03:48
Now what was interesting was
85
228730
1770
I ono što je bilo zanimljivo jest
03:50
the way in which the mom was trying to tease out
86
230500
4244
način na koji je mama pokušala izvući
03:54
the meaning of what the child wanted to say
87
234744
2213
značenje onoga što je dijete htjelo reći
03:56
by talking to her in questions.
88
236957
2260
tako što joj je pričala u pitanjima.
03:59
So she asked, "Eat what? Do you want to eat ice cream?
89
239217
2593
Tako ju je pitala, „Jesti što? Želiš li jesti sladoled?
04:01
You want to eat? Somebody else wants to eat?
90
241810
2112
Ti želiš jesti? Netko drugi želi jesti?
04:03
You want to eat cream now? You want to eat ice cream in the evening?"
91
243922
3313
Želiš sad jesti sladoled? Želiš jesti sladoled navečer?“
04:07
And then it struck me that
92
247235
1514
Sinulo mi je da
04:08
what the mother had done was something incredible.
93
248749
2028
to što je majka napravila je bilo nešto nevjerojatno.
04:10
She had been able to get that child to communicate
94
250777
1994
Uspjela je navesti to dijete da joj prenese
04:12
an idea to her without grammar.
95
252771
4138
neku ideju bez gramatike.
04:16
And it struck me that maybe this is what
96
256909
2696
I sinulo mi je da možda je to ono
04:19
I was looking for.
97
259605
1385
što sam tražio.
04:20
Instead of arranging words in an order, in sequence,
98
260990
4142
Umjesto slaganja riječ u poredak, u slijed,
04:25
as a sentence, you arrange them
99
265132
2172
kao rečenicu, slažete ih
04:27
in this map, where they're all linked together
100
267304
3811
u ovu mapu, gdje su zajedno povezane
04:31
not by placing them one after the other
101
271115
2143
ne sa redanjem jedne iza druge
04:33
but in questions, in question-answer pairs.
102
273258
3284
nego sa pitanjima, u parovima pitanje-odgovor.
04:36
And so if you do this, then what you're conveying
103
276542
2358
I ako to tako napravite, ono što prenosite
04:38
is not a sentence in English,
104
278900
1986
nije rečenica na engleskom,
04:40
but what you're conveying is really a meaning,
105
280886
2966
već ono što prenosite je zapravo značenje,
04:43
the meaning of a sentence in English.
106
283852
1511
značenje rečenice na engleskom.
04:45
Now, meaning is really the underbelly, in some sense, of language.
107
285363
2932
Značenje je na neki način zapravo podzemlje jezika.
04:48
It's what comes after thought but before language.
108
288295
3821
Ono dolazi poslije misli ali prije jezika.
04:52
And the idea was that this particular representation
109
292116
2503
I ideja je bila da ovaj osobit prikaz
04:54
might convey meaning in its raw form.
110
294619
3261
bi mogao prenijeti značenje u svome sirovom obliku.
04:57
So I was very excited by this, you know,
111
297880
1771
Zato sam bio jako uzbuđen zbog toga, znate,
04:59
hopping around all over the place,
112
299651
1493
skakutajući okolo i naokolo
05:01
trying to figure out if I can convert
113
301144
1771
pokušavajući odgonetnuti mogu li pretvoriti
05:02
all possible sentences that I hear into this.
114
302915
2524
sve moguće rečenice koje čujem u ovo.
05:05
And I found that this is not enough.
115
305439
1773
I shvatio sam da to nije dovoljno.
05:07
Why is this not enough?
116
307212
1385
Zašto to nije dovoljno?
05:08
This is not enough because if you wanted to convey
117
308597
1711
Nije dovoljno zato što ako biste htjeli prenijeti
05:10
something like negation,
118
310308
2250
nešto kao što je negacija,
05:12
you want to say, "I don't want soup,"
119
312558
1736
želite reći, „Neću juhu, “
05:14
then you can't do that by asking a question.
120
314294
2220
tada to ne možete napraviti postavljanjem pitanja.
05:16
You do that by changing the word "want."
121
316514
2285
To ćete napraviti mijenjanjem riječi „htjeti“.
05:18
Again, if you wanted to say,
122
318799
1637
Ili ako biste htjeli reći,
05:20
"I wanted soup yesterday,"
123
320436
1980
„Htio sam juhu jučer, “
05:22
you do that by converting the word "want" into "wanted."
124
322416
2737
to ćete napraviti pretvaranjem riječi „htjeti“ u „htio“.
05:25
It's a past tense.
125
325153
1666
To je prošlo vrijeme.
05:26
So this is a flourish which I added
126
326819
2103
To je ukras koji sam dodao
05:28
to make the system complete.
127
328922
1576
kako bih upotpunio sustav.
05:30
This is a map of words joined together
128
330498
1977
Ovo je mapa riječi pridruženih zajedno
05:32
as questions and answers,
129
332475
1656
kao pitanja i odgovori,
05:34
and with these filters applied on top of them
130
334131
2264
i sa ovim filtrima nadodanim na njih
05:36
in order to modify them to represent
131
336395
1817
kako bi ih promijenili da predstavljaju
05:38
certain nuances.
132
338212
1709
određene nijanse.
05:39
Let me show you this with a different example.
133
339921
1951
Sada ću vam to pokazati na drukčijem primjeru.
05:41
Let's take this sentence:
134
341872
1254
Uzmimo ovu rečenicu:
05:43
"I told the carpenter I could not pay him."
135
343126
1980
„Rekao sam stolaru da mu nisam mogao platiti.“
05:45
It's a fairly complicated sentence.
136
345106
1792
To je poprilično složena rečenica.
05:46
The way that this particular system works,
137
346898
1893
Način na koji ovaj radi jest da
05:48
you can start with any part of this sentence.
138
348791
2578
možete početi s bilo kojim dijelom ove rečenice.
05:51
I'm going to start with the word "tell."
139
351369
1698
Počet ću sa riječju „govoriti“.
05:53
So this is the word "tell."
140
353067
1462
Dakle ovo je riječ „govoriti“.
05:54
Now this happened in the past,
141
354529
1600
Budući da se ovo dogodilo u prošlosti,
05:56
so I'm going to make that "told."
142
356129
2223
pa ću promijeniti to u „govorio“.
05:58
Now, what I'm going to do is,
143
358352
1708
Sad, ono što ću napraviti jest da
06:00
I'm going to ask questions.
144
360060
1756
ću postavljati pitanja.
06:01
So, who told? I told.
145
361816
2364
Dakle, tko je rekao? Ja sam rekao.
06:04
I told whom? I told the carpenter.
146
364180
1927
Rekao sam kome? Rekao sam stolaru.
06:06
Now we start with a different part of the sentence.
147
366107
1751
Sada počinjemo s drukčijim dijelom rečenice.
06:07
We start with the word "pay,"
148
367858
1867
Počinjemo s riječju „platiti“
06:09
and we add the ability filter to it to make it "can pay."
149
369725
4577
i dodamo filtar mogućnosti kako bismo ju promijenili u „mogu platiti“.
06:14
Then we make it "can't pay,"
150
374302
2101
Potom ju promijenimo u „ne mogu platiti“,
06:16
and we can make it "couldn't pay"
151
376403
1599
i možemo ju promijeniti u „nisam mogao platiti“
06:18
by making it the past tense.
152
378002
1663
stavljajući ju u prošlo vrijeme.
06:19
So who couldn't pay? I couldn't pay.
153
379665
1923
Tko nije mogao platiti? Ja nisam mogao platiti.
06:21
Couldn't pay whom? I couldn't pay the carpenter.
154
381588
2676
Kome nisam mogao platiti? Nisam mogao platiti stolaru.
06:24
And then you join these two together
155
384264
1731
I potom spojite to dvoje zajedno
06:25
by asking this question:
156
385995
1350
postavljanjem ovog pitanja:
06:27
What did I tell the carpenter?
157
387345
1737
Što sam rekao stolaru?
06:29
I told the carpenter I could not pay him.
158
389082
4049
Rekao sam stolaru da mu nisam mogao platiti.
06:33
Now think about this. This is
159
393131
1937
Sada razmislite o tome. To je
06:35
—(Applause)—
160
395068
3542
—(Pljesak)—
06:38
this is a representation of this sentence
161
398610
3672
to je prikaz ove rečenice
06:42
without language.
162
402282
2435
bez jezika.
06:44
And there are two or three interesting things about this.
163
404717
2192
I postoje dvije ili tri zanimljive stvari oko toga.
06:46
First of all, I could have started anywhere.
164
406909
3131
Prvo, mogao sam početi bilo gdje.
06:50
I didn't have to start with the word "tell."
165
410040
2243
Nisam morao početi s riječju „govoriti“ .
06:52
I could have started anywhere in the sentence,
166
412283
1416
Mogao sam početi bilo gdje u rečenici
06:53
and I could have made this entire thing.
167
413699
1507
I napraviti cijelu tu stvar.
06:55
The second thing is, if I wasn't an English speaker,
168
415206
2776
Druga stvar je da, da nisam govornik engleskog jezika,
06:57
if I was speaking in some other language,
169
417982
2175
da govorim neki drugi jezik,
07:00
this map would actually hold true in any language.
170
420157
3156
ova bi mapa zapravo bila točna u bilo kojem jeziku.
07:03
So long as the questions are standardized,
171
423313
1990
Dokle god su pitanja standardizirana,
07:05
the map is actually independent of language.
172
425303
4287
mapa je zapravo neovisna o jeziku.
07:09
So I call this FreeSpeech,
173
429590
2115
Zato ovo nazivam FreeSpeech (SlobodniGovor)
07:11
and I was playing with this for many, many months.
174
431705
2935
i igrao sam se s time mnogo, mnogo mjeseci.
07:14
I was trying out so many different combinations of this.
175
434640
2726
Isprobavao sam toliko mnogo različitih kombinacija toga.
07:17
And then I noticed something very interesting about FreeSpeech.
176
437366
2289
I tada sam primijetio nešto vrlo zanimljivo o FreeSpeechu.
07:19
I was trying to convert language,
177
439655
3243
Pokušavao sam pretvoriti jezik,
07:22
convert sentences in English into sentences in FreeSpeech,
178
442898
2384
pretvoriti rečenice na engleskom u FreeSpeech rečenice,
07:25
and vice versa, and back and forth.
179
445282
1752
i obrnuto.
07:27
And I realized that this particular configuration,
180
447034
2255
I shvatio sam da mi je ova osobita konfiguracija,
07:29
this particular way of representing language,
181
449289
2026
ovaj osobit način prikazivanja jezika,
07:31
it allowed me to actually create very concise rules
182
451315
4395
dopustio da zapravo stvorim vrlo jezgrovita pravila
07:35
that go between FreeSpeech on one side
183
455710
2734
koja idu između FreeSpeecha s jedne strane
07:38
and English on the other.
184
458444
1488
i engleskog jezika s druge.
07:39
So I could actually write this set of rules
185
459932
2180
Tako da sam zapravo mogao napisati skup pravila
07:42
that translates from this particular representation into English.
186
462112
3395
koji prevodi ovaj osobit prikaz na engleski.
07:45
And so I developed this thing.
187
465507
1831
I tako sam razvio ovu stvar.
07:47
I developed this thing called the FreeSpeech Engine
188
467338
2232
Razvio sam stvar zvanu FreeSpeech Motor
07:49
which takes any FreeSpeech sentence as the input
189
469570
2561
koja uzima bilo koju FreeSpeech rečenicu kao unos
07:52
and gives out perfectly grammatical English text.
190
472131
3930
i izbacuje savršeno gramatički engleski tekst.
07:56
And by putting these two pieces together,
191
476061
1605
I spajajući ta dva dijela zajedno,
07:57
the representation and the engine,
192
477666
1881
taj prikaz i taj motor,
07:59
I was able to create an app, a technology for children with autism,
193
479547
3796
Mogao sam stvoriti aplikaciju, tehnologiju za autističnu djecu,
08:03
that not only gives them words
194
483343
2499
koja im ne daje samo riječi
08:05
but also gives them grammar.
195
485842
3941
već i gramatiku.
08:09
So I tried this out with kids with autism,
196
489783
2360
Tako sam isprobao ovo s autističnom djecom,
08:12
and I found that there was an incredible amount of identification.
197
492143
5013
i vidio sam da je tu postojala velika količina poistovjećenosti
08:17
They were able to create sentences in FreeSpeech
198
497156
2720
Mogli su stvoriti rečenice u FreeSpeechu
08:19
which were much more complicated but much more effective
199
499876
2558
koje su bile mnogo složenije i mnogo djelotvornije
08:22
than equivalent sentences in English,
200
502434
2899
nego odgovarajuće rečenice na engleskom,
08:25
and I started thinking about
201
505333
1682
i počeo sam razmišljati o tome
08:27
why that might be the case.
202
507015
1969
zašto je to tako.
08:28
And I had an idea, and I want to talk to you about this idea next.
203
508984
4287
I dobio sam ideju, i sada želim s vama razgovarati o njoj.
08:33
In about 1997, about 15 years back,
204
513271
3142
Negdje oko 1997. , oko prije 15 godina,
08:36
there were a group of scientists that were trying
205
516413
2011
bila je jedna grupa znanstvenika koji su pokušavali
08:38
to understand how the brain processes language,
206
518424
2389
razumjeti kako mozak obrađuje jezik,
08:40
and they found something very interesting.
207
520813
1779
i otkrili su nešto vrlo zanimljivo.
08:42
They found that when you learn a language
208
522592
1872
Otkrili su da kad učite jezik
08:44
as a child, as a two-year-old,
209
524464
2912
kao dijete, kao jedan dvogodišnjak,
08:47
you learn it with a certain part of your brain,
210
527376
2366
učite ga sa određenim dijelom svoga mozga,
08:49
and when you learn a language as an adult --
211
529742
1600
a kad učite jezik kao odrastao čovjek –
08:51
for example, if I wanted to learn Japanese right now —
212
531342
3911
naprimjer, ako bih sada htio naučiti japanski –
08:55
a completely different part of my brain is used.
213
535253
2707
koristit će se potpuno drugi dio moga mozga.
08:57
Now I don't know why that's the case,
214
537960
1831
I sad, ne znam zašto je to slučaj,
08:59
but my guess is that that's because
215
539791
1991
ali moja pretpostavka je da je to zbog toga što
09:01
when you learn a language as an adult,
216
541782
2437
kada učite jezik kao odrastao čovjek,
09:04
you almost invariably learn it
217
544219
1616
gotovo neizbježno ga učite
09:05
through your native language, or through your first language.
218
545835
4266
kroz svoj materinji jezik, kroz svoj prvi jezik.
09:10
So what's interesting about FreeSpeech
219
550101
3252
Pa ono što je zanimljivo za FreeSpeech
09:13
is that when you create a sentence
220
553353
1802
jest da kada stvarate neku rečenicu
09:15
or when you create language,
221
555155
1695
ili kada stvarate jezik,
09:16
a child with autism creates language with FreeSpeech,
222
556850
3070
autistično dijete stvara jezik sa FreeSpeechom,
09:19
they're not using this support language,
223
559920
1833
ono ne koristi ovaj potporni jezik,
09:21
they're not using this bridge language.
224
561753
2211
ne koriste ovaj premosni jezik.
09:23
They're directly constructing the sentence.
225
563964
2657
Direktno sastavljaju rečenicu.
09:26
And so this gave me this idea.
226
566621
2193
I to mi je dalo ovu ideju
09:28
Is it possible to use FreeSpeech
227
568814
2024
Je li moguće koristiti FreeSpeech
09:30
not for children with autism
228
570838
2510
ne za autističnu djecu
09:33
but to teach language to people without disabilities?
229
573348
6262
već za učenje jezika ljudi bez poteškoća u razvoju?
09:39
And so I tried a number of experiments.
230
579610
1978
I tako sam isprobao nekoliko pokusa.
09:41
The first thing I did was I built a jigsaw puzzle
231
581588
2948
Prvu stvar koju sam napravio je bila da sam napravio slagalicu
09:44
in which these questions and answers
232
584536
1970
u kojoj su ova pitanja i odgovori
09:46
are coded in the form of shapes,
233
586506
1835
kodirana u obliku oblika,
09:48
in the form of colors,
234
588341
1138
u obliku boja,
09:49
and you have people putting these together
235
589479
1849
i imate ljude koji ih spajaju
09:51
and trying to understand how this works.
236
591328
1773
i pokušavaju razumjeti kako to radi.
09:53
And I built an app out of it, a game out of it,
237
593101
2376
I napravio sam aplikaciju od toga, igricu od toga,
09:55
in which children can play with words
238
595477
2661
u kojoj se djeca mogu igrati riječima
09:58
and with a reinforcement,
239
598138
1704
i sa potkrjepljenjem,
09:59
a sound reinforcement of visual structures,
240
599842
2585
zvučnim potkrjepljenjem slikovnih struktura
10:02
they're able to learn language.
241
602427
2013
mogu naučiti jezik.
10:04
And this, this has a lot of potential, a lot of promise,
242
604440
2736
I ovo, ovo ima mnogo mogućnosti, mnogo obećava.
10:07
and the government of India recently
243
607176
1975
nedavno je indijska vlada
10:09
licensed this technology from us,
244
609151
1404
licencirala ovu tehnologiju od nas,
10:10
and they're going to try it out with millions of different children
245
610555
2074
i isprobat će je sa milijunima različite djece
10:12
trying to teach them English.
246
612629
2605
pokušavajući naučiti ih engleski.
10:15
And the dream, the hope, the vision, really,
247
615234
2614
I san, nada, vizija, zapravo,
10:17
is that when they learn English this way,
248
617848
3082
je da kada uče engleski na ovaj način,
10:20
they learn it with the same proficiency
249
620930
2643
uče ga sa jednakom spretnošću
10:23
as their mother tongue.
250
623573
3718
kao i svoj materinji jezik.
10:27
All right, let's talk about something else.
251
627291
3816
Dobro, razgovarajmo sada o nečem drugom.
10:31
Let's talk about speech.
252
631107
1997
Razgovarajmo o govoru.
10:33
This is speech.
253
633104
1271
Ovo je govor.
10:34
So speech is the primary mode of communication
254
634375
1962
Govor je osnovni način komunikacije
10:36
delivered between all of us.
255
636337
1613
između svih nas.
10:37
Now what's interesting about speech is that
256
637950
1855
Ono što je zanimljivo kod govora jest da
10:39
speech is one-dimensional.
257
639805
1245
je govor jednodimenzionalan.
10:41
Why is it one-dimensional?
258
641050
1359
Zašto je jednodimenzionalan?
10:42
It's one-dimensional because it's sound.
259
642409
1568
Jednodimenzionalan je zato što je zvuk.
10:43
It's also one-dimensional because
260
643977
1539
Također je jednodimenzionalan zato što
10:45
our mouths are built that way.
261
645516
1205
su naša usta tako građena.
10:46
Our mouths are built to create one-dimensional sound.
262
646721
3512
Naša usta su građena tako da stvaraju jednodimenzionalni zvuk.
10:50
But if you think about the brain,
263
650233
2866
Ali ako razmišljate o mozgu,
10:53
the thoughts that we have in our heads
264
653099
1764
misli koje imamo u našim glavama
10:54
are not one-dimensional.
265
654863
2102
nisu jednodimenzionalne.
10:56
I mean, we have these rich,
266
656965
1459
Hoću reći, imamo te bogate,
10:58
complicated, multi-dimensional ideas.
267
658424
3028
složene, višedimenzionalne ideje.
11:01
Now, it seems to me that language
268
661452
1690
Sad, meni se čini da jezik
11:03
is really the brain's invention
269
663142
2332
je zapravo izum mozga
11:05
to convert this rich, multi-dimensional thought
270
665474
3096
kojim pretvara te bogatu, višedimenzionalnu misao
11:08
on one hand
271
668570
1587
s jedne strane
11:10
into speech on the other hand.
272
670157
1923
u govor s druge strane.
11:12
Now what's interesting is that
273
672080
1762
Ono što je zanimljivo jest da
11:13
we do a lot of work in information nowadays,
274
673842
2568
mi u današnje vrijeme radimo mnogo posla u informacijama,
11:16
and almost all of that is done in the language domain.
275
676410
3079
a gotovo sve to se radi u domeni jezika.
11:19
Take Google, for example.
276
679489
1939
Uzmite naprimjer Google.
11:21
Google trawls all these countless billions of websites,
277
681428
2677
Google iskopava bezbroj milijardi svih tih web stranica,
11:24
all of which are in English, and when you want to use Google,
278
684105
2725
koje su sve na engleskom, i kad želite koristiti Google,
11:26
you go into Google search, and you type in English,
279
686830
2450
idete na Google pretraživanje, i tipkate na engleskom,
11:29
and it matches the English with the English.
280
689280
4163
i on sparuje engleski sa engleskim.
11:33
What if we could do this in FreeSpeech instead?
281
693443
3583
Što ako bismo to mogli napraviti u FreeSpeechu?
11:37
I have a suspicion that if we did this,
282
697026
2301
Imam sumnju da ako bismo to napravili,
11:39
we'd find that algorithms like searching,
283
699327
2068
otkrili bismo da algoritmi kao pretraživanje,
11:41
like retrieval, all of these things,
284
701395
2325
kao dohvaćanje, sve te stvari,
11:43
are much simpler and also more effective,
285
703720
3075
su mnogo jednostavniji i također mnogo učinkovitiji,
11:46
because they don't process the data structure of speech.
286
706795
4417
jer oni ne obrađuju podatkovnu strukturu govora.
11:51
Instead they're processing the data structure of thought.
287
711212
5976
Umjesto toga obrađuju podatkovnu strukturu misli.
11:57
The data structure of thought.
288
717188
2808
Podatkovna struktura misli.
11:59
That's a provocative idea.
289
719996
2076
To je provokativna ideja.
12:02
But let's look at this in a little more detail.
290
722072
2142
Ali pogledajmo to malo detaljnije.
12:04
So this is the FreeSpeech ecosystem.
291
724214
2366
Dakle, ovo je FreeSpeech ekosustav.
12:06
We have the Free Speech representation on one side,
292
726580
2884
Imamo Free Speech prikaz s jedne strane
12:09
and we have the FreeSpeech Engine, which generates English.
293
729464
2228
i imamo FreeSpeech motor, koji stvara engleski.
12:11
Now if you think about it,
294
731694
1725
Sada ako razmislite o tome,
12:13
FreeSpeech, I told you, is completely language-independent.
295
733419
2544
FreeSpeech, kao što sam vam rekao, je potpuno neovisan o jeziku.
12:15
It doesn't have any specific information in it
296
735963
2087
Nema nikakve specifične informacije u sebi
12:18
which is about English.
297
738050
1228
koja je o engleskom jeziku.
12:19
So everything that this system knows about English
298
739278
2800
Sve što taj sustav zna o engleskom
12:22
is actually encoded into the engine.
299
742078
4620
je kodirano u programu.
12:26
That's a pretty interesting concept in itself.
300
746698
2237
To je vrlo zanimljiv koncept sam po sebi.
12:28
You've encoded an entire human language
301
748935
3604
Kodirali ste cijeli ljudski jezik
12:32
into a software program.
302
752539
2645
u jedan program.
12:35
But if you look at what's inside the engine,
303
755184
2531
Ali ako pogledate što je unutar programa,
12:37
it's actually not very complicated.
304
757715
2358
zapravo to nije tako složeno.
12:40
It's not very complicated code.
305
760073
2105
To nije jako složen kod.
12:42
And what's more interesting is the fact that
306
762178
2672
I ono što je još zanimljivije je činjenica
12:44
the vast majority of the code in that engine
307
764850
2203
da velika većina koda u programu
12:47
is not really English-specific.
308
767053
2412
nije zapravo specifična za engleski.
12:49
And that gives this interesting idea.
309
769465
1895
I iz toga proizlazi ova zanimljiva ideja.
12:51
It might be very easy for us to actually
310
771360
2038
Moglo bi nam biti vrlo lako zapravo
12:53
create these engines in many, many different languages,
311
773398
3826
stvoriti takve programe u mnogo, mnogo različitih jezika,
12:57
in Hindi, in French, in German, in Swahili.
312
777224
6354
na hindskom, francuskom, njemačkom, swahiliju.
13:03
And that gives another interesting idea.
313
783578
2799
A iz toga proizlazi još jedna zanimljiva ideja.
13:06
For example, supposing I was a writer,
314
786377
2654
Naprimjer, recimo da sam pisac,
13:09
say, for a newspaper or for a magazine.
315
789031
2122
ne znam, za neke novine ili časopis.
13:11
I could create content in one language, FreeSpeech,
316
791153
5011
Mogao bih stvoriti sadržaj na jednom jeziku, FreeSpeechu,
13:16
and the person who's consuming that content,
317
796164
2056
a osoba koja konzumira taj sadržaj,
13:18
the person who's reading that particular information
318
798220
3061
osoba koja čita te informacije
13:21
could choose any engine,
319
801281
2495
mogla bi odabrati bilo koji program,
13:23
and they could read it in their own mother tongue,
320
803776
2736
i pročitati to na svojem materinjem jeziku,
13:26
in their native language.
321
806512
3939
na svojem vlastitom jeziku.
13:30
I mean, this is an incredibly attractive idea,
322
810451
2722
Hoću reći, to je vrlo privlačna ideja,
13:33
especially for India.
323
813173
1999
posebno za Indiju.
13:35
We have so many different languages.
324
815172
1690
Imamo toliko mnogo različitih jezika.
13:36
There's a song about India, and there's a description
325
816862
2142
Ima jedna pjesma o Indiji, i postoji opis
13:39
of the country as, it says,
326
819004
2344
zemlje koji kaže,
13:41
(in Sanskrit).
327
821348
2360
(na sanskrtskom)
13:43
That means "ever-smiling speaker
328
823708
2773
To znači „vječno nasmijan govornik
13:46
of beautiful languages."
329
826481
4519
prekrasnih jezika.“
13:51
Language is beautiful.
330
831000
1964
Jezik je prekrasan.
13:52
I think it's the most beautiful of human creations.
331
832964
2454
Mislim da je to najljepša od svih ljudskih tvorevina.
13:55
I think it's the loveliest thing that our brains have invented.
332
835418
3978
Mislim da je to najdivnija stvar koju su naši mozgovi izmislili.
13:59
It entertains, it educates, it enlightens,
333
839396
3584
Zabavlja, obrazuje, prosvjetljuje,
14:02
but what I like the most about language
334
842980
2044
ali ono što mi se najviše sviđa kod jezika
14:05
is that it empowers.
335
845024
1500
jest da osnažuje.
14:06
I want to leave you with this.
336
846524
1838
Htio bih završiti s ovim.
14:08
This is a photograph of my collaborators,
337
848362
2385
Ovo je fotografija mojih suradnika,
14:10
my earliest collaborators
338
850747
997
mojih najranijih suradnika
14:11
when I started working on language
339
851744
1462
kada sam počeo raditi na jeziku
14:13
and autism and various other things.
340
853206
1502
i autizmu i drugim stvarima.
14:14
The girl's name is Pavna,
341
854708
1417
Ime djevojčice je Pavna,
14:16
and that's her mother, Kalpana.
342
856125
1902
I to je njezina majka, Kalpana.
14:18
And Pavna's an entrepreneur,
343
858027
2138
I Pavna je poduzetnica,
14:20
but her story is much more remarkable than mine,
344
860165
2371
ali njezina priča je mnogo vrjednija pažnje no moja,
14:22
because Pavna is about 23.
345
862536
2400
jer Pavna ima oko 23 godine.
14:24
She has quadriplegic cerebral palsy,
346
864936
2552
Ima kvadriplegičnu cerebralnu paralizu,
14:27
so ever since she was born,
347
867488
1640
od vremena kad se rodila,
14:29
she could neither move nor talk.
348
869128
3600
nije se mogla micati ni govorit.
14:32
And everything that she's accomplished so far,
349
872728
2403
I sve što je dosad postigla,
14:35
finishing school, going to college,
350
875131
2227
završavanje škole, odlazak na fakultet,
14:37
starting a company,
351
877358
1416
osnivanje tvrtke,
14:38
collaborating with me to develop Avaz,
352
878774
2140
suradnja sa mnom u razvijanju Avaza,
14:40
all of these things she's done
353
880914
1892
sve te stvari je postigla
14:42
with nothing more than moving her eyes.
354
882806
5523
s ništa više od micanja očiju.
14:48
Daniel Webster said this:
355
888329
2689
Daniel Webster je rekao ovo:
14:51
He said, "If all of my possessions were taken
356
891018
2940
Rekao je, „Kad bi mi sve što imam bilo oduzeto
14:53
from me with one exception,
357
893958
2988
s jednom iznimkom,
14:56
I would choose to keep the power of communication,
358
896946
2981
odabrao bih zadržati moć komunikacije,
14:59
for with it, I would regain all the rest."
359
899927
3903
jer bi s njom ponovno stekao sve ostalo.“
15:03
And that's why, of all of these incredible applications of FreeSpeech,
360
903830
5116
I zbog toga, od svih ovih nevjerojatnih primjena FreeSpeecha,
15:08
the one that's closest to my heart
361
908946
2080
ona koja mi je najbliža srcu
15:11
still remains the ability for this
362
911026
2068
još uvijek ostaje njegova mogućnost
15:13
to empower children with disabilities
363
913094
2380
da omogući djeci s poteškoćama
15:15
to be able to communicate,
364
915474
1773
sposobnost komunikacije,
15:17
the power of communication,
365
917247
1789
snagu komunikacije,
15:19
to get back all the rest.
366
919036
2240
kako bi dobila nazad sve ostalo.
15:21
Thank you.
367
921276
1397
Hvala.
15:22
(Applause)
368
922673
1332
(Pljesak)
15:24
Thank you. (Applause)
369
924005
4199
Hvala. (Pljesak)
15:28
Thank you. Thank you. Thank you. (Applause)
370
928204
5323
Hvala. Hvala. Hvala. (Pljesak)
15:33
Thank you. Thank you. Thank you. (Applause)
371
933527
4000
Hvala. Hvala. Hvala. (Pljesak)
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7