Ajit Narayanan: A word game to communicate in any language

115,717 views ・ 2014-03-10

TED


請雙擊下方英文字幕播放視頻。

譯者: Marssi Draw 審譯者: Willy Feng
00:12
I work with children with autism.
0
12721
2670
我服務有自閉症的孩子。
00:15
Specifically, I make technologies
1
15391
1914
更確切來說,我發明科技
00:17
to help them communicate.
2
17305
2171
幫助他們溝通。
00:19
Now, many of the problems that children
3
19476
1539
許多自閉症孩童面臨的問題
00:21
with autism face, they have a common source,
4
21015
3763
出自於同樣的因素,
00:24
and that source is that they find it difficult
5
24778
2094
那就是他們很難
00:26
to understand abstraction, symbolism.
6
26872
5260
了解抽象概念與象徵性的符號。
00:32
And because of this, they have a lot of difficulty with language.
7
32132
4652
因此,他們在面對語言時 會有很大的困難。
00:36
Let me tell you a little bit about why this is.
8
36784
3015
讓我告訴你一些原因。
00:39
You see that this is a picture of a bowl of soup.
9
39799
3934
你可以看到這張圖片是一碗湯。
00:43
All of us can see it. All of us understand this.
10
43733
2485
我們每個人都看得見,也都了解這是什麼。
00:46
These are two other pictures of soup,
11
46218
2312
這是另外兩張湯的圖片,
00:48
but you can see that these are more abstract
12
48530
2067
但是你會發現它們比較抽象,
00:50
These are not quite as concrete.
13
50597
1856
不太具體。
00:52
And when you get to language,
14
52453
2174
當你使用語言時,
00:54
you see that it becomes a word
15
54627
1868
會發現那個字詞
00:56
whose look, the way it looks and the way it sounds,
16
56495
3261
看起來、聽起來
00:59
has absolutely nothing to do with what it started with,
17
59756
2912
和它以什麼開頭
01:02
or what it represents, which is the bowl of soup.
18
62668
2830
或是和它代表的意義「那碗湯」完全無關。
01:05
So it's essentially a completely abstract,
19
65498
2900
因此,基本上那是一個完全抽象、
01:08
a completely arbitrary representation of something
20
68398
2576
存在真實世界中某種事物的
01:10
which is in the real world,
21
70974
1163
一種任意的表述,
01:12
and this is something that children with autism
22
72137
1791
自閉症的孩子在這方面
01:13
have an incredible amount of difficulty with.
23
73928
3164
有很大的困難。
01:17
Now that's why most of the people that work with children with autism --
24
77092
2751
那就是為什麼許多 協助自閉症孩童的人們
01:19
speech therapists, educators --
25
79843
1878
——語言治療師、教育人士——
01:21
what they do is, they try to help children with autism
26
81721
2633
他們協助自閉症孩童
01:24
communicate not with words, but with pictures.
27
84354
3229
不是用文字溝通,而是用圖片溝通。
01:27
So if a child with autism wanted to say,
28
87583
1930
因此如果有個自閉症孩童想說:「我想喝湯。」
01:29
"I want soup," that child would pick
29
89513
2458
這孩子會拿起
01:31
three different pictures, "I," "want," and "soup,"
30
91971
2260
三張不同的圖片「我」、「想喝」、「湯」,
01:34
and they would put these together,
31
94231
1609
然後把圖排在一起,
01:35
and then the therapist or the parent would
32
95840
1867
那麼治療師或家長就能理解
01:37
understand that this is what the kid wants to say.
33
97707
1887
這是孩子想說的話。
01:39
And this has been incredibly effective;
34
99594
1778
三四十年來
01:41
for the last 30, 40 years
35
101372
2141
這方法一直都很有效,
01:43
people have been doing this.
36
103513
1613
大家都這麼做。
01:45
In fact, a few years back,
37
105126
1349
事實上,幾年前
01:46
I developed an app for the iPad
38
106475
2675
我開發了一個 iPad 的應用程式,
01:49
which does exactly this. It's called Avaz,
39
109150
2255
名為「阿維思」(Avaz),就是採用此法。
01:51
and the way it works is that kids select
40
111405
2279
操作方式是讓孩子選擇
01:53
different pictures.
41
113684
1321
不同的圖片,
01:55
These pictures are sequenced together to form sentences,
42
115005
2570
將圖片排列成句子,
01:57
and these sentences are spoken out.
43
117575
1719
然後這些句子會被唸出。
01:59
So Avaz is essentially converting pictures,
44
119294
3025
因此基本上「阿維思」會轉換圖片,
02:02
it's a translator, it converts pictures into speech.
45
122319
3960
它是翻譯機,能將圖片轉換成言語。
02:06
Now, this was very effective.
46
126279
1718
這很有用。
02:07
There are thousands of children using this,
47
127997
1384
有成千上萬的孩子使用它,
02:09
you know, all over the world,
48
129381
1430
遍及全世界,
02:10
and I started thinking about
49
130811
2175
於是我開始思考
02:12
what it does and what it doesn't do.
50
132986
2654
它做了什麼,又漏了什麼。
02:15
And I realized something interesting:
51
135640
1684
我發現某件很有趣的事:
02:17
Avaz helps children with autism learn words.
52
137324
4203
「阿維思」協助有自閉症的孩子學習文字。
02:21
What it doesn't help them do is to learn
53
141527
2405
但沒有教他們
02:23
word patterns.
54
143932
2748
文字模式。
02:26
Let me explain this in a little more detail.
55
146680
2472
讓我說明一些細節。
02:29
Take this sentence: "I want soup tonight."
56
149152
3057
以此句為例:「我今晚想喝湯。」
02:32
Now it's not just the words here that convey the meaning.
57
152209
4080
這不只是文字傳達了意義,
02:36
It's also the way in which these words are arranged,
58
156289
3140
這些文字排列的方式、
02:39
the way these words are modified and arranged.
59
159429
2515
這些文字修飾與排列的方式也有意義。
02:41
And that's why a sentence like "I want soup tonight"
60
161959
2306
那就是為什麼像是「我今晚想喝湯」這句話
02:44
is different from a sentence like
61
164265
1984
會完全不同於
02:46
"Soup want I tonight," which is completely meaningless.
62
166249
3312
「湯想喝我今晚」這樣無意義的句子。
02:49
So there is another hidden abstraction here
63
169561
2619
這裡有另一種隱藏的抽象概念,
02:52
which children with autism find a lot of difficulty coping with,
64
172180
3557
讓自閉症孩童難以處理,
02:55
and that's the fact that you can modify words
65
175737
2840
那就是你能透過修飾文字、
02:58
and you can arrange them to have
66
178577
2101
排列文字,
03:00
different meanings, to convey different ideas.
67
180678
2895
讓它有不同的意義,傳達不同的想法。
03:03
Now, this is what we call grammar.
68
183573
3459
我們稱之為文法。
03:07
And grammar is incredibly powerful,
69
187032
2036
而文法的力量十分強大,
03:09
because grammar is this one component of language
70
189068
3157
因為文法是語言的其中一項要素,
03:12
which takes this finite vocabulary that all of us have
71
192225
3489
讓我們使用所擁有的有限字彙
03:15
and allows us to convey an infinite amount of information,
72
195714
4531
傳達無限種資訊、
03:20
an infinite amount of ideas.
73
200245
2134
無限種想法。
03:22
It's the way in which you can put things together
74
202379
2002
這種方式能讓你把東西組合在一起
03:24
in order to convey anything you want to.
75
204381
2168
來傳達所有你想表達的事。
03:26
And so after I developed Avaz,
76
206549
2127
因此在我開發「阿維思」之後,
03:28
I worried for a very long time
77
208676
1568
有件事讓我擔心很久,
03:30
about how I could give grammar to children with autism.
78
210244
3910
那就是我要怎麼教自閉症孩童文法。
03:34
The solution came to me from a very interesting perspective.
79
214154
2275
解決方式來自一種非常有趣的觀點。
03:36
I happened to chance upon a child with autism
80
216429
3449
我巧遇自閉症的孩童
03:39
conversing with her mom,
81
219878
2109
和她的母親對話,
03:41
and this is what happened.
82
221987
2094
事情就這樣發生了。
03:44
Completely out of the blue, very spontaneously,
83
224081
2186
事發非常突然、不期而遇,
03:46
the child got up and said, "Eat."
84
226267
2463
那孩子站起來說:「吃。」
03:48
Now what was interesting was
85
228730
1770
有趣的是
03:50
the way in which the mom was trying to tease out
86
230500
4244
那位媽媽誘導小孩的方式,
03:54
the meaning of what the child wanted to say
87
234744
2213
她讓小孩透過回答她的問題
03:56
by talking to her in questions.
88
236957
2260
表達出想說的話。
03:59
So she asked, "Eat what? Do you want to eat ice cream?
89
239217
2593
因此她問:「吃什麼?」 「你想吃冰淇淋?」
04:01
You want to eat? Somebody else wants to eat?
90
241810
2112
「你想吃?」 「其他人想吃?」
04:03
You want to eat cream now? You want to eat ice cream in the evening?"
91
243922
3313
「你想現在吃冰淇淋?」 「你想晚上吃冰淇淋?」
04:07
And then it struck me that
92
247235
1514
我突然意識到
04:08
what the mother had done was something incredible.
93
248749
2028
那位母親做了一件非常棒的事。
04:10
She had been able to get that child to communicate
94
250777
1994
她已經能讓那個孩子
04:12
an idea to her without grammar.
95
252771
4138
不用文法就能傳達想法。
04:16
And it struck me that maybe this is what
96
256909
2696
我突然想到也許這就是
04:19
I was looking for.
97
259605
1385
我在找的方式。
04:20
Instead of arranging words in an order, in sequence,
98
260990
4142
與其透過按照規則、順序 將文字排列成句子,
04:25
as a sentence, you arrange them
99
265132
2172
不如將文字排列在這張圖中,
04:27
in this map, where they're all linked together
100
267304
3811
文字連結在一起的方式
04:31
not by placing them one after the other
101
271115
2143
不是透過將它們一個接一個排列,
04:33
but in questions, in question-answer pairs.
102
273258
3284
而是透過問題,多組問答題。
04:36
And so if you do this, then what you're conveying
103
276542
2358
因此如果你這麼做,那你傳達的
04:38
is not a sentence in English,
104
278900
1986
不是一個英文句子,
04:40
but what you're conveying is really a meaning,
105
280886
2966
你傳達的是一個意義,
04:43
the meaning of a sentence in English.
106
283852
1511
一個英文句子的意義。
04:45
Now, meaning is really the underbelly, in some sense, of language.
107
285363
2932
從某個層面來說, 意義在語言中屬於較深層的部分。
04:48
It's what comes after thought but before language.
108
288295
3821
意義出現在想法之後,但是在語言之前。
04:52
And the idea was that this particular representation
109
292116
2503
而此想法是這種特殊的表述
04:54
might convey meaning in its raw form.
110
294619
3261
可能是用它的根本樣貌來傳達意義。
04:57
So I was very excited by this, you know,
111
297880
1771
這件事讓我很興奮,
04:59
hopping around all over the place,
112
299651
1493
開心得手舞足蹈,
05:01
trying to figure out if I can convert
113
301144
1771
試著確認我是否能
05:02
all possible sentences that I hear into this.
114
302915
2524
將所有聽見的詞句轉換成這樣。
05:05
And I found that this is not enough.
115
305439
1773
我發現這還不夠。
05:07
Why is this not enough?
116
307212
1385
為什麼不夠呢?
05:08
This is not enough because if you wanted to convey
117
308597
1711
不夠是因為如果你想要傳達
05:10
something like negation,
118
310308
2250
否定的句子,
05:12
you want to say, "I don't want soup,"
119
312558
1736
比如說:「我不想喝湯。」
05:14
then you can't do that by asking a question.
120
314294
2220
那麼你就不能用問句完成。
05:16
You do that by changing the word "want."
121
316514
2285
你會改變「想」這個字。
05:18
Again, if you wanted to say,
122
318799
1637
同樣地,如果你想說:
05:20
"I wanted soup yesterday,"
123
320436
1980
「我昨天本來 想喝湯。」
05:22
you do that by converting the word "want" into "wanted."
124
322416
2737
你把「想」轉換成「本來想」。
05:25
It's a past tense.
125
325153
1666
那是過去式。
05:26
So this is a flourish which I added
126
326819
2103
因此我加了這個功能
05:28
to make the system complete.
127
328922
1576
讓系統更完善。
05:30
This is a map of words joined together
128
330498
1977
這是許多單字的連結圖,
05:32
as questions and answers,
129
332475
1656
以問句和答案組合而成,
05:34
and with these filters applied on top of them
130
334131
2264
有了這些篩選功能在上面,
05:36
in order to modify them to represent
131
336395
1817
就能做修改,呈現出
05:38
certain nuances.
132
338212
1709
較細微的差異。
05:39
Let me show you this with a different example.
133
339921
1951
讓我舉個不同的例子來說明。
05:41
Let's take this sentence:
134
341872
1254
以這個句子來說:
05:43
"I told the carpenter I could not pay him."
135
343126
1980
「我告訴了木工我不能付錢。」
05:45
It's a fairly complicated sentence.
136
345106
1792
這是個蠻複雜的句子。
05:46
The way that this particular system works,
137
346898
1893
這個特殊系統運作的方式是
05:48
you can start with any part of this sentence.
138
348791
2578
你可以從句子的任何一處開始。
05:51
I'm going to start with the word "tell."
139
351369
1698
我用「告訴」開頭來做說明。
05:53
So this is the word "tell."
140
353067
1462
這個字是「告訴」,
05:54
Now this happened in the past,
141
354529
1600
但這是以前發生的事,
05:56
so I'm going to make that "told."
142
356129
2223
所以我要說「告訴了」。
05:58
Now, what I'm going to do is,
143
358352
1708
現在我想做的是,
06:00
I'm going to ask questions.
144
360060
1756
我開始問問題。
06:01
So, who told? I told.
145
361816
2364
是誰「告訴」? 是我。
06:04
I told whom? I told the carpenter.
146
364180
1927
我告訴了誰? 我告訴了木工。
06:06
Now we start with a different part of the sentence.
147
366107
1751
現在我們從句子的另一處開始,
06:07
We start with the word "pay,"
148
367858
1867
以「付錢」開始,
06:09
and we add the ability filter to it to make it "can pay."
149
369725
4577
我們加上使役動詞,讓它變成「能付錢」,
06:14
Then we make it "can't pay,"
150
374302
2101
接著我們就能改成「不能付錢」,
06:16
and we can make it "couldn't pay"
151
376403
1599
接著就能更改時態,
06:18
by making it the past tense.
152
378002
1663
將它改為過去式。
06:19
So who couldn't pay? I couldn't pay.
153
379665
1923
那是誰不能付錢? 我不能付錢。
06:21
Couldn't pay whom? I couldn't pay the carpenter.
154
381588
2676
不能付錢給誰? 我不能付錢給木工。
06:24
And then you join these two together
155
384264
1731
接著你透過問這個問題
06:25
by asking this question:
156
385995
1350
把這兩個部分連在一起:
06:27
What did I tell the carpenter?
157
387345
1737
我告訴了木工什麼?
06:29
I told the carpenter I could not pay him.
158
389082
4049
我告訴了木工我不能付錢。
06:33
Now think about this. This is
159
393131
1937
想想看這個問題,
06:35
—(Applause)—
160
395068
3542
(掌聲)
06:38
this is a representation of this sentence
161
398610
3672
這是這個句子要表達的內容,
06:42
without language.
162
402282
2435
沒有語言。
06:44
And there are two or three interesting things about this.
163
404717
2192
這裡有兩到三件有趣的事。
06:46
First of all, I could have started anywhere.
164
406909
3131
首先,我能從任何一個單字開始,
06:50
I didn't have to start with the word "tell."
165
410040
2243
我不一定要從「告訴」開始。
06:52
I could have started anywhere in the sentence,
166
412283
1416
我能從句子的任何一部分開始,
06:53
and I could have made this entire thing.
167
413699
1507
還是能完成整件事。
06:55
The second thing is, if I wasn't an English speaker,
168
415206
2776
第二點是,如果我不是說英語的人,
06:57
if I was speaking in some other language,
169
417982
2175
如果我說的是別的語言,
07:00
this map would actually hold true in any language.
170
420157
3156
這個地圖真的在任何語言都管用。
07:03
So long as the questions are standardized,
171
423313
1990
只要這個問題符合標準,
07:05
the map is actually independent of language.
172
425303
4287
這個地圖就能獨立於語言使用。
07:09
So I call this FreeSpeech,
173
429590
2115
因此我稱它為「輕鬆講」 (FreeSpeech),
07:11
and I was playing with this for many, many months.
174
431705
2935
我已經玩了好幾個月,
07:14
I was trying out so many different combinations of this.
175
434640
2726
並試著使用許多不同的組合。
07:17
And then I noticed something very interesting about FreeSpeech.
176
437366
2289
後來,我注意到「輕鬆講」有個有趣的部分。
07:19
I was trying to convert language,
177
439655
3243
我試著轉換語言,
07:22
convert sentences in English into sentences in FreeSpeech,
178
442898
2384
轉換英語句子和「輕鬆講」的句子,
07:25
and vice versa, and back and forth.
179
445282
1752
來回反覆不斷嘗試。
07:27
And I realized that this particular configuration,
180
447034
2255
我理解這種特殊的結構,
07:29
this particular way of representing language,
181
449289
2026
這種表現語言的特殊方式
07:31
it allowed me to actually create very concise rules
182
451315
4395
讓我能夠真正地建立很簡要的規則,
07:35
that go between FreeSpeech on one side
183
455710
2734
在「輕鬆講」
07:38
and English on the other.
184
458444
1488
以及英語之間的規則。
07:39
So I could actually write this set of rules
185
459932
2180
我確實能寫下這組規則,
07:42
that translates from this particular representation into English.
186
462112
3395
讓這個特殊的表述轉換成英語。
07:45
And so I developed this thing.
187
465507
1831
因此我發明了這項產品,
07:47
I developed this thing called the FreeSpeech Engine
188
467338
2232
稱為「輕鬆講引擎」,
07:49
which takes any FreeSpeech sentence as the input
189
469570
2561
能把任何「輕鬆講」的句子輸入,
07:52
and gives out perfectly grammatical English text.
190
472131
3930
然後產出有完美文法的英語。
07:56
And by putting these two pieces together,
191
476061
1605
透過組合
07:57
the representation and the engine,
192
477666
1881
表述與引擎,
07:59
I was able to create an app, a technology for children with autism,
193
479547
3796
我就能建立一個應用程式, 一個供自閉症孩童用的科技,
08:03
that not only gives them words
194
483343
2499
不只是提供他們文字,
08:05
but also gives them grammar.
195
485842
3941
也提供他們文法。
08:09
So I tried this out with kids with autism,
196
489783
2360
我在自閉症孩童身上測試,
08:12
and I found that there was an incredible amount of identification.
197
492143
5013
發現了很驚人的成效。
08:17
They were able to create sentences in FreeSpeech
198
497156
2720
他們用「輕鬆講」建立的句子
08:19
which were much more complicated but much more effective
199
499876
2558
複雜程度和效用都遠高於
08:22
than equivalent sentences in English,
200
502434
2899
用英語講同一句話,
08:25
and I started thinking about
201
505333
1682
我開始思考
08:27
why that might be the case.
202
507015
1969
為什麼會成功。
08:28
And I had an idea, and I want to talk to you about this idea next.
203
508984
4287
因此,接下來我想與大家分享一個想法。
08:33
In about 1997, about 15 years back,
204
513271
3142
大約在 1997 年時,大約 15 年前,
08:36
there were a group of scientists that were trying
205
516413
2011
有一群科學家嘗試
08:38
to understand how the brain processes language,
206
518424
2389
理解大腦處理語言的方式,
08:40
and they found something very interesting.
207
520813
1779
他們發現一件很有趣的事情。
08:42
They found that when you learn a language
208
522592
1872
就是當你學習一種語言,
08:44
as a child, as a two-year-old,
209
524464
2912
身為一個兩歲小孩,
08:47
you learn it with a certain part of your brain,
210
527376
2366
你用大腦的特定部位在學習;
08:49
and when you learn a language as an adult --
211
529742
1600
而當你身為一名成人
08:51
for example, if I wanted to learn Japanese right now —
212
531342
3911
──舉例來說,如果我現在想學日語──
08:55
a completely different part of my brain is used.
213
535253
2707
就會運用完全不同部位的大腦。
08:57
Now I don't know why that's the case,
214
537960
1831
我不了解為什麼會這樣,
08:59
but my guess is that that's because
215
539791
1991
但我猜是因為
09:01
when you learn a language as an adult,
216
541782
2437
成年時學習語言
09:04
you almost invariably learn it
217
544219
1616
幾乎無可避免會
09:05
through your native language, or through your first language.
218
545835
4266
透過你的母語、習慣語言來學習。
09:10
So what's interesting about FreeSpeech
219
550101
3252
「輕鬆講」有趣的是
09:13
is that when you create a sentence
220
553353
1802
當你建立一個句子,
09:15
or when you create language,
221
555155
1695
或是建立一種語言,
09:16
a child with autism creates language with FreeSpeech,
222
556850
3070
自閉症孩童用「輕鬆講」建立語言,
09:19
they're not using this support language,
223
559920
1833
他們不是用它來支援語言,
09:21
they're not using this bridge language.
224
561753
2211
他們不是用它來連結語言,
09:23
They're directly constructing the sentence.
225
563964
2657
他們是直接建立句子。
09:26
And so this gave me this idea.
226
566621
2193
這讓我有個想法。
09:28
Is it possible to use FreeSpeech
227
568814
2024
有可能讓「輕鬆講」
09:30
not for children with autism
228
570838
2510
教自閉症孩童語言之外,
09:33
but to teach language to people without disabilities?
229
573348
6262
也教非身障的孩童嗎?
09:39
And so I tried a number of experiments.
230
579610
1978
因此我嘗試許多實驗。
09:41
The first thing I did was I built a jigsaw puzzle
231
581588
2948
首先我設計了一個拼圖,
09:44
in which these questions and answers
232
584536
1970
這些問題和答案
09:46
are coded in the form of shapes,
233
586506
1835
都編碼成各種形狀,
09:48
in the form of colors,
234
588341
1138
各種顏色,
09:49
and you have people putting these together
235
589479
1849
操作人把這些放在一起,
09:51
and trying to understand how this works.
236
591328
1773
試著了解這是如何運作。
09:53
And I built an app out of it, a game out of it,
237
593101
2376
我設計了一個應用程式,以此為基礎的遊戲,
09:55
in which children can play with words
238
595477
2661
孩童可以玩文字遊戲,
09:58
and with a reinforcement,
239
598138
1704
並且有強化的功能,
09:59
a sound reinforcement of visual structures,
240
599842
2585
以聽覺強化視覺,
10:02
they're able to learn language.
241
602427
2013
他們就能學習語言。
10:04
And this, this has a lot of potential, a lot of promise,
242
604440
2736
這有很大的潛力和前景,
10:07
and the government of India recently
243
607176
1975
而最近印度政府
10:09
licensed this technology from us,
244
609151
1404
向我們取得這項科技的授權,
10:10
and they're going to try it out with millions of different children
245
610555
2074
他們打算讓上百萬名孩童嘗試,
10:12
trying to teach them English.
246
612629
2605
試著教他們英語。
10:15
And the dream, the hope, the vision, really,
247
615234
2614
而這個夢想、希望、願景
10:17
is that when they learn English this way,
248
617848
3082
即是當他們以此學習英語,
10:20
they learn it with the same proficiency
249
620930
2643
他們能夠表達流利,
10:23
as their mother tongue.
250
623573
3718
就像母語一樣。
10:27
All right, let's talk about something else.
251
627291
3816
接下來,我們來討論另一點。
10:31
Let's talk about speech.
252
631107
1997
談談說話。
10:33
This is speech.
253
633104
1271
這是說話。
10:34
So speech is the primary mode of communication
254
634375
1962
因此說話是溝通的基礎,
10:36
delivered between all of us.
255
636337
1613
在我們之間傳遞訊息。
10:37
Now what's interesting about speech is that
256
637950
1855
關於說話,有趣的是
10:39
speech is one-dimensional.
257
639805
1245
說話是單面的。
10:41
Why is it one-dimensional?
258
641050
1359
為什麼是單面的?
10:42
It's one-dimensional because it's sound.
259
642409
1568
因為說話是聲音,所以它是單面的。
10:43
It's also one-dimensional because
260
643977
1539
也因為
10:45
our mouths are built that way.
261
645516
1205
那是嘴巴的功能。
10:46
Our mouths are built to create one-dimensional sound.
262
646721
3512
嘴巴的功能即是創造單面的聲音。
10:50
But if you think about the brain,
263
650233
2866
但是如果你想想大腦,
10:53
the thoughts that we have in our heads
264
653099
1764
在我們頭腦裡的思想
10:54
are not one-dimensional.
265
654863
2102
並非一面向的。
10:56
I mean, we have these rich,
266
656965
1459
我的意思是,我們有這些豐富、
10:58
complicated, multi-dimensional ideas.
267
658424
3028
複雜和多面向的想法。
11:01
Now, it seems to me that language
268
661452
1690
對我來說,語言
11:03
is really the brain's invention
269
663142
2332
就是大腦的發明,
11:05
to convert this rich, multi-dimensional thought
270
665474
3096
一方面轉換這豐富、
11:08
on one hand
271
668570
1587
多面向的思想,
11:10
into speech on the other hand.
272
670157
1923
另一方面轉換成話語。
11:12
Now what's interesting is that
273
672080
1762
有趣的是
11:13
we do a lot of work in information nowadays,
274
673842
2568
現在我們以資訊做許多事,
11:16
and almost all of that is done in the language domain.
275
676410
3079
幾乎所有的事情都是在語言的領域中完成。
11:19
Take Google, for example.
276
679489
1939
以 Google 為例,
11:21
Google trawls all these countless billions of websites,
277
681428
2677
Google 網羅千百萬個網站,
11:24
all of which are in English, and when you want to use Google,
278
684105
2725
全都是英語網站, 而當你想要用 Google,
11:26
you go into Google search, and you type in English,
279
686830
2450
進入 Google 搜尋功能列,輸入英語,
11:29
and it matches the English with the English.
280
689280
4163
會出現符合你要的英語。
11:33
What if we could do this in FreeSpeech instead?
281
693443
3583
有沒有可能我們改用「輕鬆講」這樣做呢?
11:37
I have a suspicion that if we did this,
282
697026
2301
我推測如果我們這麼做,
11:39
we'd find that algorithms like searching,
283
699327
2068
我們會發現一些規則系統,像是搜尋、
11:41
like retrieval, all of these things,
284
701395
2325
像是擷取,所有的這些功能
11:43
are much simpler and also more effective,
285
703720
3075
都更簡單也更有效,
11:46
because they don't process the data structure of speech.
286
706795
4417
因為他們不是處理說話的資料結構。
11:51
Instead they're processing the data structure of thought.
287
711212
5976
相反地,他們處理思想的資料結構。
11:57
The data structure of thought.
288
717188
2808
思想的資料結構。
11:59
That's a provocative idea.
289
719996
2076
那是個令人興奮的概念。
12:02
But let's look at this in a little more detail.
290
722072
2142
讓我們多深入看一點細節。
12:04
So this is the FreeSpeech ecosystem.
291
724214
2366
這是「輕鬆講」的生態系統。
12:06
We have the Free Speech representation on one side,
292
726580
2884
我們一邊有「輕鬆講」的畫面,
12:09
and we have the FreeSpeech Engine, which generates English.
293
729464
2228
另一邊也有「輕鬆講」的引擎產生英語。
12:11
Now if you think about it,
294
731694
1725
請想像
12:13
FreeSpeech, I told you, is completely language-independent.
295
733419
2544
「輕鬆講」是完全獨立的語言。
12:15
It doesn't have any specific information in it
296
735963
2087
裡面沒有任何關於英語的
12:18
which is about English.
297
738050
1228
特定資訊。
12:19
So everything that this system knows about English
298
739278
2800
因此對這個系統來說,
英語都已在引擎中編碼。
12:22
is actually encoded into the engine.
299
742078
4620
12:26
That's a pretty interesting concept in itself.
300
746698
2237
這之中有個很有趣的概念。
12:28
You've encoded an entire human language
301
748935
3604
你已經將所有的人類語言編碼入
12:32
into a software program.
302
752539
2645
一套軟體中。
12:35
But if you look at what's inside the engine,
303
755184
2531
但是如果你看這個引擎的內部,
12:37
it's actually not very complicated.
304
757715
2358
會發現其實不複雜,
12:40
It's not very complicated code.
305
760073
2105
不是很複雜的編碼。
12:42
And what's more interesting is the fact that
306
762178
2672
更有趣的是,
12:44
the vast majority of the code in that engine
307
764850
2203
在那個引擎中大多數的編碼
12:47
is not really English-specific.
308
767053
2412
其實都不是只針對英語。
12:49
And that gives this interesting idea.
309
769465
1895
因此有了這個有趣的想法,
12:51
It might be very easy for us to actually
310
771360
2038
我們也許可以因此輕易地
12:53
create these engines in many, many different languages,
311
773398
3826
建立很多很多不同語言的引擎,
12:57
in Hindi, in French, in German, in Swahili.
312
777224
6354
印度語、法語、德語、斯瓦希里語。 (註:斯瓦希里語是非洲使用人數最多的語言之一)
13:03
And that gives another interesting idea.
313
783578
2799
這引起了另一個有趣的想法。
13:06
For example, supposing I was a writer,
314
786377
2654
舉例來說,假設我是作家,
13:09
say, for a newspaper or for a magazine.
315
789031
2122
在報社或雜誌社工作。
13:11
I could create content in one language, FreeSpeech,
316
791153
5011
我的文章可以用一種語言「輕鬆講」來寫,
13:16
and the person who's consuming that content,
317
796164
2056
然後有個人買了那則報導,
13:18
the person who's reading that particular information
318
798220
3061
閱讀資訊的那個人
13:21
could choose any engine,
319
801281
2495
可以選擇任何引擎,
13:23
and they could read it in their own mother tongue,
320
803776
2736
他們可以用自己的母語閱讀,
13:26
in their native language.
321
806512
3939
用他們當地的語言閱讀。
13:30
I mean, this is an incredibly attractive idea,
322
810451
2722
我的意思是,這是非常吸引人的想法,
13:33
especially for India.
323
813173
1999
尤其是在印度。
13:35
We have so many different languages.
324
815172
1690
我們有好多種語言。
13:36
There's a song about India, and there's a description
325
816862
2142
有首關於印度的歌,其中有一段描述
13:39
of the country as, it says,
326
819004
2344
將國家比喻為
13:41
(in Sanskrit).
327
821348
2360
(梵語)。
13:43
That means "ever-smiling speaker
328
823708
2773
意謂著「使用美好語言、
13:46
of beautiful languages."
329
826481
4519
永遠微笑的講者」。
13:51
Language is beautiful.
330
831000
1964
語言是美好的。
13:52
I think it's the most beautiful of human creations.
331
832964
2454
我認為語言是人類最美好的創造。
13:55
I think it's the loveliest thing that our brains have invented.
332
835418
3978
我認為語言是人腦發明最可愛的東西。
13:59
It entertains, it educates, it enlightens,
333
839396
3584
語言能娛樂、教育、啟發,
14:02
but what I like the most about language
334
842980
2044
但是我最愛的一點是
14:05
is that it empowers.
335
845024
1500
語言能賦予力量。
14:06
I want to leave you with this.
336
846524
1838
我想分享一件事。
14:08
This is a photograph of my collaborators,
337
848362
2385
這是我合作夥伴的照片,
14:10
my earliest collaborators
338
850747
997
我最初的合作夥伴,
14:11
when I started working on language
339
851744
1462
當我開始研究語言、
14:13
and autism and various other things.
340
853206
1502
自閉症和各種不同的事。
14:14
The girl's name is Pavna,
341
854708
1417
這位女孩名為帕芙娜,
14:16
and that's her mother, Kalpana.
342
856125
1902
那是她的母親卡派納,
14:18
And Pavna's an entrepreneur,
343
858027
2138
帕芙娜是企業家,
14:20
but her story is much more remarkable than mine,
344
860165
2371
但是她的故事比我的更非凡,
14:22
because Pavna is about 23.
345
862536
2400
因為帕芙娜大概才 23 歲。
14:24
She has quadriplegic cerebral palsy,
346
864936
2552
她患有四肢型腦性麻庳,
14:27
so ever since she was born,
347
867488
1640
因此從她出生以來,
14:29
she could neither move nor talk.
348
869128
3600
她就不能動也不能說話。
14:32
And everything that she's accomplished so far,
349
872728
2403
迄今她所完成的所有事情,
14:35
finishing school, going to college,
350
875131
2227
完成學業、上大學、
14:37
starting a company,
351
877358
1416
開公司,
14:38
collaborating with me to develop Avaz,
352
878774
2140
和我合作開發「阿維思」,
14:40
all of these things she's done
353
880914
1892
她要做任何事情
14:42
with nothing more than moving her eyes.
354
882806
5523
都只能移動她的雙眼。
14:48
Daniel Webster said this:
355
888329
2689
丹尼爾.韋伯斯特說: (註:美國已故政治家)
14:51
He said, "If all of my possessions were taken
356
891018
2940
「如果要拿走我的一切,
14:53
from me with one exception,
357
893958
2988
只能留下一種,
14:56
I would choose to keep the power of communication,
358
896946
2981
我會選擇保留溝通的能力,
14:59
for with it, I would regain all the rest."
359
899927
3903
以此,我就能取回全部。」
15:03
And that's why, of all of these incredible applications of FreeSpeech,
360
903830
5116
那就是「輕鬆講」的所有美好功能中,
15:08
the one that's closest to my heart
361
908946
2080
最能貼近我心的一種
15:11
still remains the ability for this
362
911026
2068
還保留這項能力,
15:13
to empower children with disabilities
363
913094
2380
賦予身障孩童
15:15
to be able to communicate,
364
915474
1773
擁能溝通的能力,
15:17
the power of communication,
365
917247
1789
擁有溝通的力量,
15:19
to get back all the rest.
366
919036
2240
就能取回一切。
15:21
Thank you.
367
921276
1397
謝謝。
15:22
(Applause)
368
922673
1332
(掌聲)
15:24
Thank you. (Applause)
369
924005
4199
謝謝。(掌聲)
15:28
Thank you. Thank you. Thank you. (Applause)
370
928204
5323
謝謝。(掌聲)
15:33
Thank you. Thank you. Thank you. (Applause)
371
933527
4000
謝謝。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog