Stuart Firestein: The pursuit of ignorance

1,348,536 views ใƒป 2013-09-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yubal Masalker ืžื‘ืงืจ: Ido Dekkers
00:12
There is an ancient proverb that says
0
12495
3558
ื™ืฉื ื• ืคืชื’ื ืขืชื™ืง ื”ืื•ืžืจ
00:16
it's very difficult to find a black cat in a dark room,
1
16053
4062
ืฉืงืฉื” ืœืžืฆื•ื ื—ืชื•ืœ ืฉื—ื•ืจ ื‘ื—ื“ืจ ื—ืฉื•ืš,
00:20
especially when there is no cat.
2
20115
2788
ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ืื™ืŸ ื—ืชื•ืœ.
00:22
I find this a particularly apt description of science
3
22903
3329
ืื ื™ ืžื•ืฆื ื‘ื–ื” ืชืื•ืจ ื”ื•ืœื ืฉืœ ื”ืžื“ืข
00:26
and how science works --
4
26232
2136
ื•ืื™ืš ืฉื”ืžื“ืข ืขื•ื‘ื“ --
00:28
bumbling around in a dark room, bumping into things,
5
28368
3320
ื ื•ืคืœื™ื ื•ืงืžื™ื ื‘ื—ื“ืจ ื—ืฉื•ืš, ื ืชืงืœื™ื ื‘ื—ืคืฆื™ื,
00:31
trying to figure out what shape this might be,
6
31688
2302
ืžื ืกื™ื ืœืฉืขืจ ืื™ื–ื• ืฆื•ืจื” ื™ืฉ ืœื”ื,
00:33
what that might be,
7
33990
1444
ืžื” ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช.
00:35
there are reports of a cat somewhere around,
8
35434
2489
ืื•ืžืจื™ื ืฉื™ืฉ ื—ืชื•ืœ ื”ื™ื›ืŸ ืฉื”ื•ื,
00:37
they may not be reliable, they may be,
9
37923
1793
ืื•ืœื™ ื–ื” ื ื›ื•ืŸ, ืื•ืœื™ ืœื,
00:39
and so forth and so on.
10
39716
1520
ื•ื›ืš ื”ืœืื”.
00:41
Now I know this is different than the way most people
11
41236
1976
ืื ื™ ื™ื•ื“ืข ืฉื–ื” ืฉื•ื ื” ืžืžื” ืฉืจื•ื‘ ื”ืื ืฉื™ื
00:43
think about science.
12
43212
1552
ื—ื•ืฉื‘ื™ื ืขืœ ื”ืžื“ืข.
00:44
Science, we generally are told,
13
44764
1554
ืžื“ืข, ื›ืš ืžืกืคืจื™ื ืœื ื•,
00:46
is a very well-ordered mechanism for
14
46318
2750
ื”ื•ื ืชื”ืœื™ืš ืžืื•ื“ ืžืกื•ื“ืจ ืœื”ื‘ื ืช
00:49
understanding the world,
15
49068
1301
ื”ืขื•ืœื,
00:50
for gaining facts, for gaining data,
16
50369
2286
ืœืื™ืกื•ืฃ ืจืื™ื•ืช, ื ืชื•ื ื™ื,
00:52
that it's rule-based,
17
52655
1553
ืฉื”ื•ื ืžื‘ื•ืกืก ืขืœ ื›ืœืœื™ื ื‘ืจื•ืจื™ื,
00:54
that scientists use this thing called the scientific method
18
54208
3241
ืฉืžื“ืขื ื™ื ืžืฉืชืžืฉื™ื ื‘ืžื” ืฉืงืจื•ื™ ื”ืฉื™ื˜ื” ื”ืžื“ืขื™ืช
00:57
and we've been doing this for 14 generations or so now,
19
57449
2839
ื•ืฉืื ื—ื ื• ืขื•ืฉื™ื ื–ืืช ื›ื‘ืจ 14 ื“ื•ืจื•ืช ื‘ืขืจืš,
01:00
and the scientific method is a set of rules
20
60288
2571
ื•ืฉื”ืฉื™ื˜ื” ื”ืžื“ืขื™ืช ื”ื™ื ืžืขืจื›ืช ื›ืœืœื™ื
01:02
for getting hard, cold facts out of the data.
21
62859
4192
ื›ื“ื™ ืœื”ื’ื™ืข ืœืขื•ื‘ื“ื•ืช ืงืฉื™ื—ื•ืช ื•ื—ืกืจื•ืช-ืคื ื™ื•ืช ืžื”ืžื™ื“ืข.
01:07
I'd like to tell you that's not the case.
22
67051
2095
ืื‘ืœ ืื ื™ ืื•ืžืจ ืœื›ื ืฉื–ื” ืœื ื›ืš.
01:09
So there's the scientific method,
23
69146
1832
ื™ืฉื ื” ื”ืฉื™ื˜ื” ื”ืžื“ืขื™ืช,
01:10
but what's really going on is this. (Laughter)
24
70978
2319
ืื‘ืœ ืžื” ืฉื‘ืืžืช ืงื•ืจื” ื”ื•ื ื–ื”.
01:13
[The Scientific Method vs. Farting Around]
25
73297
958
[ื”ืฉื™ื˜ื” ื”ืžื“ืขื™ืช ืœืขื•ืžืช ื”ืชื‘ืจื‘ืจื•ืช]
01:14
And it's going on kind of like that.
26
74255
3104
ื•ื–ื” ืžืžืฉื™ืš ื‘ืขืจืš ื›ืš.
01:17
[... in the dark] (Laughter)
27
77359
1421
[....ื‘ื—ื•ืฉืš]
01:18
So what is the difference, then,
28
78780
4541
ืื– ืžื” ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ื”ื“ืจืš
01:23
between the way I believe science is pursued
29
83321
3816
ืฉื‘ื” ืื ื™ ืกื‘ื•ืจ ืฉื”ืžื“ืข ืžืชืงื“ื
01:27
and the way it seems to be perceived?
30
87137
2861
ื•ื”ื“ืจืš ื‘ื” ื”ื•ื ื ืชืคืก?
01:29
So this difference first came to me in some ways
31
89998
2715
ื”ื‘ื“ืœ ื–ื” ืงืคืฅ ืžื•ืœ ืขื™ื ื™ื™ ื‘ืžื™ื“ื” ืžืกื•ื™ื™ืžืช ื‘ื’ืœืœ
01:32
in my dual role at Columbia University,
32
92713
2097
ื”ืชืคืงื™ื“ ื”ื›ืคื•ืœ ืฉืœื™ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ืงื•ืœื•ืžื‘ื™ื”,
01:34
where I'm both a professor and run a laboratory in neuroscience
33
94810
4155
ื‘ื” ืื ื™ ื’ื ืžืจืฆื” ื•ื’ื ืžื ื”ืœ ืžืขื‘ื“ืช ืžื—ืงืจ ืขื™ืฆื‘ื™
01:38
where we try to figure out how the brain works.
34
98965
2195
ืฉื‘ื” ืื ื• ืžื ืกื™ื ืœืคืฆื— ื›ื™ืฆื“ ื”ืžื•ื— ืคื•ืขืœ.
01:41
We do this by studying the sense of smell,
35
101160
2371
ืื ื• ืขื•ืฉื™ื ื–ืืช ื‘ืืžืฆืขื•ืช ื—ืงืจ ื—ื•ืฉ ื”ืจื™ื—,
01:43
the sense of olfaction, and in the laboratory,
36
103531
2531
ื•ื‘ืžืขื‘ื“ื”, ื–ื• ื”ื ืื” ื’ื“ื•ืœื”,
01:46
it's a great pleasure and fascinating work
37
106062
2634
ืขื‘ื•ื“ื” ืžืจืชืงืช ื•ืžืจื’ืฉืช
01:48
and exciting to work with graduate students and post-docs
38
108696
2871
ืœืขื‘ื•ื“ ืขื ืชืœืžื™ื“ื™ ืžื—ืงืจ ื•ืคื•ืกื˜-ื“ื•ืงื˜ื•ืจื˜ื™ื
01:51
and think up cool experiments to understand how this
39
111567
2611
ื•ืœื—ืฉื•ื‘ ืขืœ ื ื™ืกื•ื™ื™ื ืžืงื•ืจื™ื™ื ื›ื“ื™ ืœื”ื‘ื™ืŸ ื›ื™ืฆื“
01:54
sense of smell works and how the brain might be working,
40
114178
2386
ื—ื•ืฉ ื”ืจื™ื— ืขื•ื‘ื“ ื•ื›ื™ืฆื“ ื”ืžื•ื— ืžืชืคืงื“,
01:56
and, well, frankly, it's kind of exhilarating.
41
116564
2802
ื•ื”ืืžืช, ื–ื” ื“ื™ ืžืจื•ืžื-ื ืคืฉ.
01:59
But at the same time, it's my responsibility
42
119366
2718
ืื‘ืœ ื‘ื• ื‘ื–ืžืŸ, ืชื—ืช ืื—ืจื™ื•ืชื™ ื’ื
02:02
to teach a large course to undergraduates on the brain,
43
122084
2949
ืœืœืžื“ ืงื•ืจืก ืชื•ืืจ Iืจืืฉื•ืŸ ืขืœ ื”ืžื•ื—,
02:05
and that's a big subject,
44
125033
1075
ื•ื–ื” ื ื•ืฉื ืจืฆื™ื ื™,
02:06
and it takes quite a while to organize that,
45
126108
2391
ื›ื™ ื–ื” ืœื•ืงื— ื“ื™ ื”ืจื‘ื” ื–ืžืŸ ืœืืจื’ืŸ ืืช ื”ื—ื•ืžืจ,
02:08
and it's quite challenging and it's quite interesting,
46
128499
2811
ื•ื–ื” ื“ื™ ืžืืชื’ืจ ื•ื’ื ืžืขื ื™ื™ืŸ,
02:11
but I have to say, it's not so exhilarating.
47
131310
3557
ืื‘ืœ ืขืœื™ื™ ืœื•ืžืจ ืฉื–ื” ืœื ื›ืœ-ื›ืš ืžืœื”ื™ื‘.
02:14
So what was the difference?
48
134867
1396
ืื– ืžื” ื”ื”ื‘ื“ืœ?
02:16
Well, the course I was and am teaching
49
136263
2069
ื”ืงื•ืจืก ืฉืื ื™ ืžืœืžื“ ื ืงืจื
02:18
is called Cellular and Molecular Neuroscience - I. (Laughs)
50
138332
6464
ืžื“ืขื™ ืขืฆื‘ ืชืื™ื™ื ื•ืžื•ืœืงื•ืœืจื™ื™ื - 1 (ืฆื•ื—ืง)
02:24
It's 25 lectures full of all sorts of facts,
51
144796
4555
ื”ืžื•ืจื›ื‘ ืž-25 ื”ืจืฆืื•ืช ื”ื’ื“ื•ืฉื•ืช ื‘ื›ืœ ืžื™ื ื™ ืขื•ื‘ื“ื•ืช,
02:29
it uses this giant book called "Principles of Neural Science"
52
149351
4317
ื•ื‘ืงื•ืจืก ืื ื™ ืžืฉืชืžืฉ ื‘ืกืคืจ ืขื‘-ื›ืจืก ื–ื” ืฉื ืงืจื "ืขืงืจื•ื ื•ืช ืžื“ืขื™ ืžืขืจื›ื•ืช ืขืฆื‘ื™ื",
02:33
by three famous neuroscientists.
53
153668
2334
ืžืืช 3 ื—ื•ืงืจื™ ืขืฆื‘ื™ื ื™ื“ื•ืขื™ื.
02:36
This book comes in at 1,414 pages,
54
156002
3781
ื‘ืกืคืจ ื–ื” 1,414 ืขืžื•ื“ื™ื,
02:39
it weighs a hefty seven and a half pounds.
55
159783
2736
ืžืฉืงืœื• 3.5 ืง"ื’.
02:42
Just to put that in some perspective,
56
162519
1927
ื•ืจืง ื›ื“ื™ ืœืชืช ืžื•ืฉื’,
02:44
that's the weight of two normal human brains.
57
164446
3455
ื–ื” ืžืฉืงืœื ืฉืœ ืฉื ื™ ืžื•ื—ื•ืช ืื“ื ืžืžื•ืฆืขื™ื.
02:47
(Laughter)
58
167901
3283
(ืฆื—ื•ืง)
02:51
So I began to realize, by the end of this course,
59
171184
3267
ื”ืชื—ืœืชื™ ืœื”ื‘ื™ืŸ, ืขื ืกื™ื•ื ื”ืงื•ืจืก,
02:54
that the students maybe were getting the idea
60
174451
2248
ืฉื”ืกื˜ื•ื“ื ื˜ื™ื ืื•ืœื™ ื—ื•ืฉื‘ื™ื
02:56
that we must know everything there is to know about the brain.
61
176699
3031
ืฉืื ื• ื›ื‘ืจ ื™ื•ื“ืขื™ื ื”ื›ืœ ืขืœ ื”ืžื•ื—.
02:59
That's clearly not true.
62
179730
1762
ื‘ืจื•ืจ ืฉื–ื” ืœื ื ื›ื•ืŸ.
03:01
And they must also have this idea, I suppose,
63
181492
2698
ื•ื”ื ื‘ื˜ื— ื’ื ื—ื•ืฉื‘ื™ื, ืื ื™ ืžื ื™ื—,
03:04
that what scientists do is collect data and collect facts
64
184190
3381
ืฉืžื” ืฉื”ืžื“ืขื ื™ื ืขื•ืฉื™ื ื–ื” ืœืืกื•ืฃ ื ืชื•ื ื™ื ื•ืจืื™ื•ืช
03:07
and stick them in these big books.
65
187571
2089
ื•ืœืฆืจืคื ื‘ื™ื—ื“ ื‘ืชื•ืš ื”ืกืคืจื™ื ื”ืขื‘ื™ื ื”ืœืœื•.
03:09
And that's not really the case either.
66
189660
1407
ื•ื’ื ื–ื” ืœื ื‘ื“ื™ื•ืง ื ื›ื•ืŸ.
03:11
When I go to a meeting, after the meeting day is over
67
191067
3303
ื›ืืฉืจ ืื ื™ ื‘ื›ื™ื ื•ืก, ื•ื‘ืกื•ืฃ ื”ื™ื•ื
03:14
and we collect in the bar over a couple of beers with my colleagues,
68
194370
3097
ืื ื™ ื•ืขืžื™ืชื™ื™ ืžืชืืกืคื™ื ื‘ื‘ืจ ืœืฉืชื•ืช ื‘ื™ืจื”,
03:17
we never talk about what we know.
69
197467
2201
ืื ื• ืืฃ ืคืขื ืœื ืžื“ื‘ืจื™ื ืขืœ ืžื” ืฉืื ื• ื™ื•ื“ืขื™ื.
03:19
We talk about what we don't know.
70
199668
2166
ืื ื• ืžื“ื‘ืจื™ื ืขืœ ืžื” ืฉืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื.
03:21
We talk about what still has to get done,
71
201834
2285
ืื ื• ืžื“ื‘ืจื™ื ืขืœ ืžื” ืฉืขืœื™ื ื• ืขื•ื“ ืœืขืฉื•ืช,
03:24
what's so critical to get done in the lab.
72
204119
2825
ืžื” ื”ื›ื™ ื“ื—ื•ืฃ ืœื‘ืฆืข ื‘ืžืขื‘ื“ื•ืช.
03:26
Indeed, this was, I think, best said by Marie Curie
73
206944
2557
ื•ืื›ืŸ, ืžืืจื™ ืงื™ืจื™ ื”ื’ื“ื™ืจื” ื–ืืช ื‘ืžื“ื•ื™ื™ืง ื›ืืฉืจ ืืžืจื”
03:29
who said that one never notices what has been done
74
209501
2419
ืฉืื ื• ืžืขื•ืœื ืœื ืฉืžื™ื ืœื‘ ืœืžื” ืฉื›ื‘ืจ ื ืขืฉื”
03:31
but only what remains to be done.
75
211920
1461
ืืœื ืœืžื” ืฉืขื•ื“ ืฆืจื™ืš ืœื”ื™ืขืฉื•ืช.
03:33
This was in a letter to her brother after obtaining
76
213381
2225
ื–ื” ื”ื•ืคื™ืข ื‘ืžื›ืชื‘ ืฉืฉืœื—ื” ืœืื—ื™ื”
03:35
her second graduate degree, I should say.
77
215606
3718
ืœืื—ืจ ืงื‘ืœืช ืชื•ืืจ ืฉื ื™ ืฉื ื™.
03:39
I have to point out this has always been one of my favorite pictures of Marie Curie,
78
219324
2813
ืขืœื™ื™ ืœืฆื™ื™ืŸ ืฉื–ื• ืื—ืช ื”ืชืžื•ื ื•ืช ืฉืœ ืžืืจื™ ืงื™ืจื™ ื”ื—ื‘ื™ื‘ื•ืช ืขืœื™ื™,
03:42
because I am convinced that that glow behind her
79
222137
2303
ื›ื™ ืื ื™ ืžืฉื•ื›ื ืข ืฉื”ื”ื™ืœื” ืžืื—ื•ืจื™ื”
03:44
is not a photographic effect. (Laughter)
80
224440
2738
ืื™ื ื” ืืคืงื˜ ืฆื™ืœื•ื. (ืฆื—ื•ืง)
03:47
That's the real thing.
81
227178
1800
ื•ื–ื”ื• ื”ื“ื‘ืจ ื”ืืžื™ืชื™.
03:48
It is true that her papers are, to this day,
82
228978
4380
ืื›ืŸ ื ื›ื•ืŸ ืฉืžืกืžื›ื™ื”, ืขื“ ื”ื™ื•ื,
03:53
stored in a basement room in the Bibliothรจque Franรงaise
83
233358
2879
ืžืื•ื—ืกื ื™ื ื‘ืžืจืชืฃ ืฉืœ ื”ืกืคืจื™ื” ื”ืœืื•ืžื™ืช ื‘ืคืจื™ื–
03:56
in a concrete room that's lead-lined,
84
236237
2197
ื‘ื—ื“ืจ ืขืฉื•ื™ ื‘ื˜ื•ืŸ ืขื ืฆื™ืคื•ื™ ืขื•ืคืจืช,
03:58
and if you're a scholar and you want access to these notebooks,
85
238434
2652
ื•ืื ืื™ื–ื” ืžืชืžื—ื” ืจื•ืฆื” ืœืจืื•ืช ืืช ืžื—ื‘ืจื•ืชื™ื”,
04:01
you have to put on a full radiation hazmat suit,
86
241086
2749
ืขืœื™ื• ืœืœื‘ื•ืฉ ื—ืœื™ืคืช ื”ื’ื ื” ื ื’ื“ ืงืจื™ื ื”,
04:03
so it's pretty scary business.
87
243835
2351
ื›ืš ืฉื–ื” ืขื ื™ื™ืŸ ื“ื™ ืžืคื—ื™ื“.
04:06
Nonetheless, this is what I think we were leaving out
88
246186
2796
ื‘ื›ืœ ืื•ืคืŸ, ืื ื™ ืกื‘ื•ืจ ืฉื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืื ื• ืžืฉืžื™ื˜ื™ื
04:08
of our courses
89
248982
1626
ืžื”ืงื•ืจืกื™ื ืฉืœื ื•
04:10
and leaving out of the interaction that we have
90
250608
2526
ื•ืžื”ืžื’ืข ืฉื™ืฉ ืœื ื•
04:13
with the public as scientists, the what-remains-to-be-done.
91
253134
2973
ื‘ืชื•ืจ ืžื“ืขื ื™ื ืขื ื”ืฆื™ื‘ื•ืจ, ืืช ืžื”-ืฉื ืฉืืจ-ืœืขืฉื•ืช.
04:16
This is the stuff that's exhilarating and interesting.
92
256107
2634
ื–ื” ื”ื ื•ืฉื ืฉื›ื” ืžืœื”ื™ื‘ ื•ืžืขื ื™ื™ืŸ.
04:18
It is, if you will, the ignorance.
93
258741
2910
ื–ื•, ืื ืœื›ื ื•ืชื” ื›ืš, ื”ื™ื ื”ื‘ื•ืจื•ืช.
04:21
That's what was missing.
94
261651
979
ื–ื” ืžื” ืฉื”ื™ื” ื—ืกืจ.
04:22
So I thought, well, maybe I should teach a course
95
262630
2860
ืœื›ืŸ ื—ืฉื‘ืชื™, ืื•ืœื™ ืื ื™ ืฆืจื™ืš ืœื”ืขื‘ื™ืจ
04:25
on ignorance,
96
265490
2100
ืงื•ืจืก ืขืœ ื‘ื•ืจื•ืช,
04:27
something I can finally excel at, perhaps, for example.
97
267590
3629
ืžืฉื”ื• ืฉืื ื™ ื™ื›ื•ืœ ืกื•ืฃ ืกื•ืฃ ืœื”ืฆื˜ื™ื™ืŸ ื‘ื•, ืื•ืœื™.
04:31
So I did start teaching this course on ignorance,
98
271219
1878
ืื– ื”ืชื—ืœืชื™ ืœืœืžื“ ืืช ื”ืงื•ืจืก ืขืœ ื‘ื•ืจื•ืช,
04:33
and it's been quite interesting
99
273097
1096
ื•ื–ื” ื”ื™ื” ื“ื™ ืžืขื ื™ื™ืŸ.
04:34
and I'd like to tell you to go to the website.
100
274193
2086
ืื‘ืงืฉื›ื ืœื‘ืงืจ ื‘ืืชืจ.
04:36
You can find all sorts of information there. It's wide open.
101
276279
3636
ื ื™ืชืŸ ืœืžืฆื•ื ืฉื ืžื™ื“ืข ืžื›ืœ ืกื•ื’. ื”ื•ื ืคืชื•ื— ืœื›ื•ืœื.
04:39
And it's been really quite an interesting time for me
102
279915
3523
ื–ื• ืชืงื•ืคื” ื‘ืืžืช ืžืขื ื™ื™ื ืช ื‘ืฉื‘ื™ืœื™ ืœืคื’ื•ืฉ ืžื“ืขื ื™ื ืื—ืจื™ื
04:43
to meet up with other scientists who come in and talk
103
283438
1841
ืืฉืจ ืžื“ื‘ืจื™ื ืขืœ ืžื”
04:45
about what it is they don't know.
104
285279
1548
ืฉื”ื ืื™ื ื ื™ื•ื“ืขื™ื.
04:46
Now I use this word "ignorance," of course,
105
286827
1985
ื›ืžื•ื‘ืŸ ืฉืื ื™ ืžืฉืชืžืฉ ื‘ืžื™ืœื” "ื‘ื•ืจื•ืช",
04:48
to be at least in part intentionally provocative,
106
288812
3158
ื—ืœืงื™ืช ืœืคื—ื•ืช, ื›ื“ื™ ืœื”ืชื’ืจื•ืช,
04:51
because ignorance has a lot of bad connotations
107
291970
2390
ื›ื™ ืœื‘ื•ืจื•ืช ื™ืฉ ื”ืจื‘ื” ื”ืงืฉืจื™ื ืฉืœื™ืœื™ื™ื
04:54
and I clearly don't mean any of those.
108
294360
2005
ื•ื‘ืจื•ืจ ืฉืื™ื ื™ ืžื›ื•ื•ืŸ ืœืืฃ ืื—ื“ ืžืืœื”.
04:56
So I don't mean stupidity, I don't mean a callow indifference
109
296365
3505
ืื™ื ื™ ืžืชื›ื•ื•ืŸ ืœื˜ืคืฉื•ืช, ื•ืœื ืœืื“ื™ืฉื•ืช ืœืขื•ื‘ื“ื•ืช,
04:59
to fact or reason or data.
110
299870
2308
ื”ื™ื’ื™ื•ืŸ ืื• ืžื™ื“ืข.
05:02
The ignorant are clearly unenlightened, unaware,
111
302178
3271
ื”ื ื‘ืขืจื™ื ื”ื ืฆืจื™-ืื•ืคืงื™ื, ื—ืกืจื™ ืžื•ื“ืขื•ืช,
05:05
uninformed, and present company today excepted,
112
305449
3307
ื—ืกืจื™ ื™ื“ืข, ื•ืžืœื‘ื“ ืืœื” ืฉืœ ื”ื™ื•ื,
05:08
often occupy elected offices, it seems to me.
113
308756
2908
ื‘ื“ืจืš-ื›ืœืœ ืžืื™ื™ืฉื™ื ืžื™ืฉืจื•ืช ืฆื™ื‘ื•ืจื™ื•ืช.
05:11
That's another story, perhaps.
114
311664
1806
ื˜ื•ื‘, ื–ื” ื›ื‘ืจ ืกื™ืคื•ืจ ืื—ืจ.
05:13
I mean a different kind of ignorance.
115
313470
1633
ืื ื™ ืžืชื›ื•ื•ืŸ ืœื‘ื•ืจื•ืช ืžืกื•ื’ ืื—ืจ.
05:15
I mean a kind of ignorance that's less pejorative,
116
315103
2268
ืื ื™ ืžืชื›ื•ื•ืŸ ืœื‘ื•ืจื•ืช ืฉื”ื™ื ืคื—ื•ืช ืžืขืœื™ื‘ื”,
05:17
a kind of ignorance that comes from a communal gap in our knowledge,
117
317371
3487
ืžื™ืŸ ื‘ื•ืจื•ืช ื”ื ื•ื‘ืขืช ืžื”ื—ืœืœื™ื ื”ืงื™ื™ืžื™ื ื‘ื™ื“ืข ืฉืœื ื•,
05:20
something that's just not there to be known
118
320858
1865
ืžืฉื”ื• ืฉืื™ื ื• ื™ื“ื•ืข ื›ื™ ืคืฉื•ื˜ ืื™ื ื• ืงื™ื™ื,
05:22
or isn't known well enough yet or we can't make predictions from,
119
322723
2821
ืื• ืฉืื™ื ื• ื™ื“ื•ืข ืžืกืคื™ืง ื˜ื•ื‘, ืื• ืฉืœื ื ื™ืชืŸ ืœื ื‘ื ืขืœ-ืคื™ื•,
05:25
the kind of ignorance that's maybe best summed up
120
325544
2318
ืื•ืชื” ื‘ื•ืจื•ืช ืฉื ื™ืชืŸ ืœืกื›ืžื” ื”ื›ื™ ื˜ื•ื‘ ื‘ืืžืฆืขื•ืช
05:27
in a statement by James Clerk Maxwell,
121
327862
1845
ืื™ืžืจืชื• ืฉืœ ื’'ื™ื™ืžืก ืงืœืืจืง ืžืงืกื•ื•ืœ,
05:29
perhaps the greatest physicist between Newton and Einstein,
122
329707
3449
ืื•ืœื™ ื”ืคื™ื–ื™ืงืื™ ื”ื›ื™ ื’ื“ื•ืœ ืฉื—ื™ ื‘ื™ืŸ ื ื™ื•ื˜ื•ืŸ ืœืื™ื™ื ืฉื˜ื™ื™ืŸ,
05:33
who said, "Thoroughly conscious ignorance
123
333156
2301
ืฉืืžืจ, "ื‘ื•ืจื•ืช ืžื•ื“ืขืช ื•ืžืขืžื™ืงื”
05:35
is the prelude to every real advance in science."
124
335457
2568
ื”ื™ื ื”ืžื‘ื•ื ืœื›ืœ ื”ืชืงื“ืžื•ืช ืžืžืฉื™ืช ื‘ืžื“ืข."
05:38
I think it's a wonderful idea:
125
338025
1388
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืžื•ืฉื’ ื ืคืœื:
05:39
thoroughly conscious ignorance.
126
339413
3147
ื‘ื•ืจื•ืช ืžื•ื“ืขืช ื•ืžืขืžื™ืงื”.
05:42
So that's the kind of ignorance that I want to talk about today,
127
342560
2421
ื–ื” ืกื•ื’ ื”ื‘ื•ืจื•ืช ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื”,
05:44
but of course the first thing we have to clear up
128
344981
1519
ืื‘ืœ ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืขืœื™ื ื• ืœื”ื‘ื”ื™ืจ
05:46
is what are we going to do with all those facts?
129
346500
2103
ื”ื•ื ืžื” ืื ื• ืขื•ืžื“ื™ื ืœืขืฉื•ืช ืขื ื›ืœ ื”ื ืชื•ื ื™ื?
05:48
So it is true that science piles up at an alarming rate.
130
348603
3674
ืื›ืŸ ื”ืžื“ืข ืฆื•ื‘ืจ ื ืชื•ื ื™ื ื‘ืงืฆื‘ ืžืกื—ืจืจ.
05:52
We all have this sense that science is this mountain of facts,
131
352277
2810
ืœื›ื•ืœื ื• ื™ืฉ ืืช ื”ืชื—ื•ืฉื” ืฉื”ืžื“ืข ื”ื•ื ืžื™ืŸ ื”ืจ ื›ื–ื” ืฉืœ ื ืชื•ื ื™ื.
05:55
this accumulation model of science, as many have called it,
132
355087
4036
ืžื•ื“ืœ ื–ื” ืฉืœ ืฆื‘ื™ืจืช ื ืชื•ื ื™ื ืžื“ืขื™ืช, ื›ืคื™ ืฉืจื‘ื™ื ืžื›ื ื™ื ืื•ืชื•,
05:59
and it seems impregnable, it seems impossible.
133
359123
2451
ื ืจืื” ืื™ืชืŸ, ืื‘ืœ ื›ื ืจืื” ื’ื ื‘ืœืชื™ ืืคืฉืจื™.
06:01
How can you ever know all of this?
134
361574
1314
ื”ื›ื™ืฆื“ ื ื™ืชืŸ ืœื“ืขืช ืืช ื›ืœ ื–ื”?
06:02
And indeed, the scientific literature grows at an alarming rate.
135
362888
3581
ื•ืื›ืŸ ื”ืกืคืจื•ืช ื”ืžื“ืขื™ืช ื’ื“ืœื” ื‘ืงืฆื‘ ืžืกื—ืจืจ.
06:06
In 2006, there were 1.3 million papers published.
136
366469
3654
ื‘-2006, ื”ืชืคืจืกืžื• 1.3 ืžื™ืœื™ื•ืŸ ืžืืžืจื™ื ืžื“ืขื™ื™ื.
06:10
There's about a two-and-a-half-percent yearly growth rate,
137
370123
2632
ื›ืœ ืฉื ื” ื™ืฉ ืขืœื™ื” ืฉืœ 2.5 ืื—ื•ื–ื™ื,
06:12
and so last year we saw over one and a half million papers being published.
138
372755
4390
ื•ืœื›ืŸ ื‘ืฉื ื” ืฉืขื‘ืจื” ื”ืชืคืจืกืžื• ื™ื•ืชืจ ืž-1.5 ืžื™ืœื™ื•ืŸ ืžืืžืจื™ื ืžื“ืขื™ื™ื.
06:17
Divide that by the number of minutes in a year,
139
377145
2230
ืื ื ื—ืœืง ื‘ืžืกืคืจ ื”ื“ืงื•ืช ื‘ืฉื ื”,
06:19
and you wind up with three new papers per minute.
140
379375
3138
ื ืงื‘ืœ 3 ืžืืžืจื™ื ื—ื“ืฉื™ื ื‘ื›ืœ ื“ืงื”.
06:22
So I've been up here a little over 10 minutes,
141
382513
1482
ื›ืš ืฉืื ื™ ื›ืืŸ ืงืฆืช ื™ื•ืชืจ ืž-10 ื“ืงื•ืช,
06:23
I've already lost three papers.
142
383995
1776
ื›ื‘ืจ ื”ืคืกื“ืชื™ 30 ืžืืžืจื™ื.
06:25
I have to get out of here actually. I have to go read.
143
385771
2840
ื”ืืžืช ืขืœื™ื™ ืœืฆืืช ืžื›ืืŸ ืขื›ืฉื™ื• ื›ื“ื™ ืœื”ืกืคื™ืง ืœืงืจื•ื.
06:28
So what do we do about this? Well, the fact is
144
388611
3446
ืื– ืžื” ืขืœื™ื ื• ืœืขืฉื•ืช ื‘ืงืฉืจ ืœื–ื”? ื”ืืžืช ื”ื™ื
06:32
that what scientists do about it is a kind of a controlled neglect, if you will.
145
392057
4509
ืฉืžื” ืฉื”ืžื“ืขื ื™ื ืขื•ืฉื™ื ื–ื” ืžื™ืŸ ื”ืชืขืœืžื•ืช ืžื•ื“ืขืช.
06:36
We just don't worry about it, in a way.
146
396566
2664
ืื ื• ืคืฉื•ื˜ ืœื ื ื•ืชื ื™ื ืœื–ื” ืœื”ื˜ืจื™ื“ ืื•ืชื ื•.
06:39
The facts are important. You have to know a lot of stuff
147
399230
2243
ื”ืขื•ื‘ื“ื•ืช ื—ืฉื•ื‘ื•ืช. ืขืœื™ื ื• ืœื“ืขืช ื”ืžื•ืŸ
06:41
to be a scientist. That's true.
148
401473
1810
ื›ื“ื™ ืœื”ื™ื•ืช ืžื“ืขื ื™ื.
06:43
But knowing a lot of stuff doesn't make you a scientist.
149
403283
2927
ืื‘ืœ ื”ื™ื“ื™ืขื” ืœื‘ื“ื” ืื™ื ื” ื”ื•ืคื›ืช ืื•ืชื ื• ืœืžื“ืขื ื™ื.
06:46
You need to know a lot of stuff to be a lawyer
150
406210
2665
ืฆืจื™ืš ืœื“ืขืช ื”ืจื‘ื” ื‘ืฉื‘ื™ืœ ืœื”ื™ื•ืช
06:48
or an accountant or an electrician or a carpenter.
151
408875
3892
ืขื•ืจืš-ื“ื™ืŸ ืื• ืจื•ืื”-ื—ืฉื‘ื•ืŸ ืื• ื—ืฉืžืœืื™ ืื• ื ื’ืจ.
06:52
But in science, knowing a lot of stuff is not the point.
152
412767
3610
ืื‘ืœ ื‘ืžื“ืข, ืœื“ืขืช ื”ืจื‘ื” ื–ื” ืœื ื”ืขื™ืงืจ.
06:56
Knowing a lot of stuff is there to help you get
153
416377
3556
ื™ื“ื™ืขืช ื”ืจื‘ื” ื ืชื•ื ื™ื ืžื˜ืจืชื” ืœืกื™ื™ืข ืœื ื•
06:59
to more ignorance.
154
419933
1388
ืœื”ื’ื™ืข ืœื‘ื•ืจื•ืช ื ื•ืกืคืช.
07:01
So knowledge is a big subject, but I would say
155
421321
2510
ื™ื“ืข ื”ื•ื ืขื ื™ื™ืŸ ืจืฆื™ื ื™, ืื‘ืœ ื”ื™ื™ืชื™ ืื•ืžืจ
07:03
ignorance is a bigger one.
156
423831
2487
ืฉื‘ื•ืจื•ืช ื”ื™ื ืขื ื™ื™ืŸ ืขื•ื“ ื™ื•ืชืจ ืจืฆื™ื ื™.
07:06
So this leads us to maybe think about, a little bit
157
426318
2194
ื–ื” ืžื•ื‘ื™ืœ ืื•ืชื ื• ืื•ืœื™ ืœื—ืฉื•ื‘, ืงืฆืช,
07:08
about, some of the models of science that we tend to use,
158
428528
2883
ืขืœ ื›ืžื” ืžื”ืžื•ื“ืœื™ื ืฉืœ ืžื“ืข ื‘ื”ื ืื ื• ื ื•ื˜ื™ื ืœื”ืฉืชืžืฉ,
07:11
and I'd like to disabuse you of some of them.
159
431411
1825
ื•ื‘ืจืฆื•ื ื™ ืœื”ืฆื‘ื™ืข ืขืœ ืฉื’ื™ืื•ืช ื ืคื•ืฆื•ืช ืœื’ื‘ื™ื”ื.
07:13
So one of them, a popular one, is that scientists
160
433236
2313
ืื—ื“ ื”ืžืงื•ื‘ืœื™ื ืžื‘ื™ื ื™ื”ื ื”ื•ื ืฉืžื“ืขื ื™ื
07:15
are patiently putting the pieces of a puzzle together
161
435549
2628
ืžืฆืจืคื™ื ื‘ืกื‘ืœื ื•ืช ืืช ื—ืœืงื™ ื”ืชืฉื‘ืฅ
07:18
to reveal some grand scheme or another.
162
438177
2773
ื›ื“ื™ ืœื’ืœื•ืช ืืช ื”ืชืžื•ื ื” ื”ื’ื“ื•ืœื”.
07:20
This is clearly not true. For one, with puzzles,
163
440950
2558
ื‘ืจื•ืจ ืฉืื™ืŸ ื–ื” ื ื›ื•ืŸ. ื“ื‘ืจ ืจืืฉื•ืŸ,
07:23
the manufacturer has guaranteed that there's a solution.
164
443508
3499
ื‘ืชืฉื‘ืฆื™ื ื”ื™ืฆืจืŸ ืขืจื‘ ืฉื™ืฉ ืคื™ืชืจื•ืŸ. ืœื ื• ื”ืžื“ืขื ื™ื
07:27
We don't have any such guarantee.
165
447007
1749
ืื™ืŸ ืฉื•ื ืขืจื•ื‘ื” ื›ื–ื•.
07:28
Indeed, there are many of us who aren't so sure about the manufacturer.
166
448756
3155
ืจื‘ื™ื ืžืื™ืชื ื• ืืคื™ืœื• ืื™ื ื ื‘ื˜ื•ื—ื™ื ืœื’ื‘ื™ ื–ื”ื•ืช ื”ื™ืฆืจืŸ.
07:31
(Laughter)
167
451911
3063
(ืฆื—ื•ืง)
07:34
So I think the puzzle model doesn't work.
168
454974
1757
ืœื›ืŸ ืื ื™ ื—ื•ืฉื‘ ืฉื”ืžื•ื“ืœ ืฉืœ ืชืฉื‘ืฅ ืœื ืžืชืื™ื.
07:36
Another popular model is that science is busy unraveling things
169
456731
3514
ืžื•ื“ืœ ืžืงื•ื‘ืœ ื ื•ืกืฃ ื”ื•ื ืฉื”ืžื“ืข ืขื•ืกืง ื‘ื’ื™ืœื•ื™ ื“ื‘ืจื™ื
07:40
the way you unravel the peels of an onion.
170
460245
2196
ื›ืžื• ืฉืžืงืœืคื™ื ืืช ืฉื›ื‘ื•ืช ื”ื‘ืฆืœ.
07:42
So peel by peel, you take away the layers of the onion
171
462441
2989
ื›ืš ืฉืงืœื™ืคื” ืื—ืจ ืงืœื™ืคื”, ืžืกื™ืจื™ื ืืช ืฉื›ื‘ื•ืช ื”ื‘ืฆืœ
07:45
to get at some fundamental kernel of truth.
172
465430
2319
ื›ื“ื™ ืœื”ื’ื™ืข ืœืื™ื–ื” ืฉื”ื•ื ื’ืจืขื™ืŸ ืฉืœ ืืžืช.
07:47
I don't think that's the way it works either.
173
467749
2187
ื’ื ื–ื” ืื ื™ ื—ื•ืฉื‘ ืชื™ืื•ืจ ืœื ื ื›ื•ืŸ.
07:49
Another one, a kind of popular one, is the iceberg idea,
174
469936
2934
ืขื•ื“ ืชื™ืื•ืจ ืฉืžืื•ื“ ืžืงื•ื‘ืœ ื”ื•ื ืจืขื™ื•ืŸ ืฉืœ ืงืจื—ื•ืŸ,
07:52
that we only see the tip of the iceberg but underneath
175
472870
2460
ืฉืื ื• ืจื•ืื™ื ืจืง ืืช ืงืฆื” ื”ืงืจื—ื•ืŸ, ืื‘ืœ ืฉืžืชื—ืช
07:55
is where most of the iceberg is hidden.
176
475330
2185
ื—ื‘ื•ื™ ืจื•ื‘ ืจื•ื‘ื• ืฉืœ ื”ืงืจื—ื•ืŸ.
07:57
But all of these models are based on the idea of a large body of facts
177
477515
3554
ื›ืœ ื”ืžื•ื“ืœื™ื ื”ืœืœื• ืžื‘ื•ืกืกื™ื ืขืœ ื”ืจืขื™ื•ืŸ ืฉืœ ืงื™ื•ื ืžืื’ืจ ืฉืœ ืขื•ื‘ื“ื•ืช
08:01
that we can somehow or another get completed.
178
481069
2420
ืฉืื ื• ื‘ื“ืจืš ื–ื• ืื• ืื—ืจืช ืžืฉืœื™ืžื™ื ืื•ืชืŸ.
08:03
We can chip away at this iceberg and figure out what it is,
179
483489
3343
ืฉืื ื• ื ื•ื›ืœ ืœื’ืจื“ ืืช ื”ืงืจื—ื•ืŸ ื•ืœื”ื‘ื™ืŸ ืžื”ื•,
08:06
or we could just wait for it to melt, I suppose, these days,
180
486832
2605
ืื• ืฉืคืฉื•ื˜ ื ื•ื›ืœ ืœื”ืžืชื™ืŸ ืขื“ ืฉื™ื™ืžืก, ื‘ืžื™ื•ื—ื“ ื‘ื™ืžื™ื ื”ืืœื”,
08:09
but one way or another we could get to the whole iceberg. Right?
181
489437
3227
ืื‘ืœ ืฉื‘ื“ืจืš ื–ื• ืื• ืื—ืจืช, ื ื•ื›ืœ ืœื”ื’ื™ืข ืœื›ืœ ื”ืงืจื—ื•ืŸ, ื ื›ื•ืŸ?
08:12
Or make it manageable. But I don't think that's the case.
182
492664
2467
ืฉื ื•ื›ืœ ืœื”ืฉืชืœื˜ ืขืœื™ื•. ืื‘ืœ ืื™ื ื™ ืกื‘ื•ืจ ืฉื–ื” ื›ืš.
08:15
I think what really happens in science
183
495131
2399
ืื ื™ ื—ื•ืฉื‘ ืฉืžื” ืฉื‘ืืžืช ืงื•ืจื” ื‘ืžื“ืข
08:17
is a model more like the magic well,
184
497530
1830
ื”ื•ื ื™ื•ืชืจ ืžื•ื“ืœ ืฉืœ ื‘ืืจ ื”ืงืกื,
08:19
where no matter how many buckets you take out,
185
499360
1837
ืฉื‘ื• ืœื ืžืฉื ื” ื›ืžื” ื“ืœื™ื™ื ื ื•ืฆื™ื ื”ื—ื•ืฆื”,
08:21
there's always another bucket of water to be had,
186
501197
2112
ื™ืฉื ื• ืชืžื™ื“ ื“ืœื™ ื ื•ืกืฃ ืฉืœ ืžื™ื ืฉืฆืจื™ืš ืœื”ื•ืฆื™ื,
08:23
or my particularly favorite one,
187
503309
2127
ืื•, ื”ืชื™ืื•ืจ ืฉืื”ื•ื‘ ืขืœื™ื™,
08:25
with the effect and everything, the ripples on a pond.
188
505436
2939
ื‘ื’ืœืœ ื”ืืคืงื˜ ื•ื›ื•', ื”ืื“ื•ื•ืช ื‘ืื’ื.
08:28
So if you think of knowledge being this ever-expanding ripple on a pond,
189
508375
3127
ื›ืš ืฉืื ืชื—ืฉื‘ื• ืขืœ ื”ื™ื“ืข ื›ืื“ื•ื•ื” ื”ืžืชืคืฉื˜ืช ืœืขื“ ื‘ืื’ื,
08:31
the important thing to realize is that our ignorance,
190
511502
3382
ื”ื“ื‘ืจ ืฉื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ื”ื•ื ืฉื”ื‘ื•ืจื•ืช ืฉืœื ื•,
08:34
the circumference of this knowledge, also grows with knowledge.
191
514884
3382
ืฉื”ื™ื ื”ื”ื™ืงืฃ ืฉืœ ื”ื™ื“ืข, ื’ื ื›ืŸ ืžืชืจื—ื‘ืช ืขื ื”ื™ื“ืข.
08:38
So the knowledge generates ignorance.
192
518266
2763
ื›ืš ืฉื”ื™ื“ืข ืžื—ื•ืœืœ ื‘ื•ืจื•ืช.
08:41
This is really well said, I thought, by George Bernard Shaw.
193
521029
2915
ื’'ื•ืจื’' ื‘ืจื ืจื“ ืฉื• ื”ื‘ื™ืข ื–ืืช ื”ื™ื˜ื‘.
08:43
This is actually part of a toast that he delivered
194
523944
2677
ื”ื™ื” ื–ื” ื‘ื”ืจืžืช ื›ื•ืกื™ืช
08:46
to celebrate Einstein at a dinner celebrating Einstein's work,
195
526621
3677
ื‘ืืจื•ื—ื” ืœื›ื‘ื•ื“ ืื™ื™ื ืฉื˜ื™ื™ืŸ ืœืฆื™ื•ืŸ ืขื‘ื•ื“ืชื•,
08:50
in which he claims that science
196
530298
1414
ื‘ื” ื”ื•ื ืืžืจ ืฉื”ืžื“ืข
08:51
just creates more questions than it answers. ["Science is always wrong. It never solves a problem without creating 10 more."]
197
531712
2265
ืจืง ื™ื•ืฆืจ ื™ื•ืชืจ ืฉืืœื•ืช ืžืืฉืจ ืชืฉื•ื‘ื•ืช. ["ื”ืžื“ืข ืชืžื™ื“ ื˜ื•ืขื”. ื”ื•ื ืืฃ ืคืขื ืœื ืคื•ืชืจ ื‘ืขื™ื•ืช ืžื‘ืœื™ ืœื™ืฆื•ืจ 10 ื ื•ืกืคื•ืช."]
08:53
I find that kind of glorious, and I think he's precisely right,
198
533977
3542
ืื ื™ ืžื•ืฆื ื‘ื–ื” ืžืฉื”ื• ืžื•ืคืœื ื•ืื ื™ ื—ื•ืฉื‘ ืฉื”ื•ื ืžืื•ื“ ืฆื•ื“ืง,
08:57
plus it's a kind of job security.
199
537519
2526
ื•ื‘ื ื•ืกืฃ ื–ื” ื’ื ืžื‘ื˜ื™ื— ืคืจื ืกื”.
09:00
As it turns out, he kind of cribbed that
200
540045
2726
ืžืชื‘ืจืจ ืฉื”ื•ื ื”ืขืชื™ืง ื–ืืช ืžื”ืคื™ืœื•ืกื•ืฃ
09:02
from the philosopher Immanuel Kant
201
542771
1852
ืขืžื ื•ืืœ ืงืื ื˜
09:04
who a hundred years earlier had come up with this idea
202
544623
2645
ืฉ-100 ืฉื ื” ื™ื•ืชืจ ืžื•ืงื“ื ื™ืฆื ืขื ื”ืจืขื™ื•ืŸ
09:07
of question propagation, that every answer begets more questions.
203
547268
3808
ืฉืœ ื”ืชืคืฉื˜ื•ืช ืฉืืœื”. ืฉื›ืœ ืชืฉื•ื‘ื” ืžื•ืœื™ื“ื” ืขื•ื“ ืฉืืœื•ืช.
09:11
I love that term, "question propagation,"
204
551076
2199
ืื ื™ ืื•ื”ื‘ ืืช ื”ื‘ื™ื˜ื•ื™, "ื”ืชืคืฉื˜ื•ืช ืฉืืœื”",
09:13
this idea of questions propagating out there.
205
553275
2739
ืืช ื”ืจืขื™ื•ืŸ ืฉืœ ื”ืชืคืฉื˜ื•ืช ืฉืืœื•ืช ื‘ืžืจื—ื‘.
09:16
So I'd say the model we want to take is not
206
556014
1887
ืœื›ืŸ ื”ื™ื™ืชื™ ืื•ืžืจ ืฉื”ืžื•ื“ืœ ืฉืื ื• ืจื•ืฆื™ื
09:17
that we start out kind of ignorant and we get some facts together
207
557901
3509
ื”ื•ื ืื™ื ื• ื›ื–ื” ืฉืžืชื—ื™ืœื™ื ื‘ืชื•ืจ ื‘ื•ืจื™ื, ืžื“ื‘ื™ืงื™ื ื‘ื™ื—ื“ ื›ืžื” ืขื•ื‘ื“ื•ืช
09:21
and then we gain knowledge.
208
561410
2143
ื•ืื– ื–ื•ื›ื™ื ื‘ื™ื“ืข.
09:23
It's rather kind of the other way around, really.
209
563553
2379
ื–ื” ื”ืคื•ืš.
09:25
What do we use this knowledge for?
210
565932
1907
ืื™ื–ื” ืฉื™ืžื•ืฉ ืื ื• ืขื•ืฉื™ื ื‘ื™ื“ืข?
09:27
What are we using this collection of facts for?
211
567839
2528
ืœืื™ื–ื• ืžื˜ืจื” ืื ื• ืื•ืกืคื™ื ืืช ื”ืขื•ื‘ื“ื•ืช?
09:30
We're using it to make better ignorance,
212
570367
2857
ืื ื• ืžืฉืชืžืฉื™ื ื‘ื”ืŸ ืœื™ืฆื™ืจืช ื‘ื•ืจื•ืช ื™ื•ืชืจ ื˜ื•ื‘ื”,
09:33
to come up with, if you will, higher-quality ignorance.
213
573224
3079
ื›ื“ื™ ืœืงื‘ืœ ื‘ื•ืจื•ืช ื‘ืื™ื›ื•ืช ื™ื•ืชืจ ื’ื‘ื•ื”ื”.
09:36
Because, you know, there's low-quality ignorance
214
576303
1872
ื›ื™ ื›ื™ื“ื•ืข, ื™ืฉ ื‘ื•ืจื•ืช ื‘ืจืžื” ื™ืจื•ื“ื”
09:38
and there's high-quality ignorance. It's not all the same.
215
578175
2413
ื•ื™ืฉ ื‘ื•ืจื•ืช ื‘ืจืžื” ื’ื‘ื•ื”ื”. ื”ืŸ ืœื ืื•ืชื• ื”ื“ื‘ืจ.
09:40
Scientists argue about this all the time.
216
580588
2370
ืžื“ืขื ื™ื ื“ื ื™ื ื‘ื–ื” ื›ืœ ื”ื–ืžืŸ.
09:42
Sometimes we call them bull sessions.
217
582958
1965
ืœืคืขืžื™ื ืื ื• ืžื›ื ื™ื ื–ืืช ืฉื™ื—ื•ืช ื‘ื˜ืœื•ืช.
09:44
Sometimes we call them grant proposals.
218
584923
1918
ืœืคืขืžื™ื ืžื›ื ื™ื ื–ืืช ื”ืฆืขื•ืช ืžื—ืงืจ.
09:46
But nonetheless, it's what the argument is about.
219
586841
3508
ื‘ื›ืœ ืื•ืคืŸ, ื–ื”ื• ื ื•ืฉื ื”ื“ื™ื•ืŸ -- ื”ื‘ื•ืจื•ืช.
09:50
It's the ignorance. It's the what we don't know.
220
590349
1844
ื–ื”ื• ืžื” ืฉืื ื• ืœื ื™ื•ื“ืขื™ื.
09:52
It's what makes a good question.
221
592193
2690
ื–ื” ืžื” ืฉืžืขื•ืจืจ ืืช ื”ืฉืืœื•ืช ื”ื˜ื•ื‘ื•ืช.
09:54
So how do we think about these questions?
222
594883
1630
ืื– ื›ื™ืฆื“ ื”ืฉืืœื•ืช ื”ืœืœื• ืขื•ืœื•ืช?
09:56
I'm going to show you a graph that shows up
223
596513
1952
ืืจืื” ืœื›ื ื’ืจืฃ ื”ืžื•ืคื™ืข ื“ื™ ื”ืจื‘ื”
09:58
quite a bit on happy hour posters in various science departments.
224
598465
3867
ืขืœ ืžื•ื“ืขื•ืช ืžืคื’ืฉื™ ื—ื‘ืจื” ื‘ืžื—ืœืงื•ืช ืžื“ืขื™ื•ืช ืฉื•ื ื•ืช (ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช).
10:02
This graph asks the relationship between what you know
225
602332
4221
ื”ื’ืจืฃ ืžืชืืจ ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืžื” ืฉืื ื• ื™ื•ื“ืขื™ื
10:06
and how much you know about it.
226
606553
2190
ืœื‘ื™ืŸ ืจืžืช ื”ื™ื“ืข ืฉืœื ื• ืœื’ื‘ื™ื•.
10:08
So what you know, you can know anywhere from nothing to everything, of course,
227
608743
3515
ืžื” ืฉืื ื• ื™ื•ื“ืขื™ื, ื–ื” ื™ื›ื•ืœ ืœื ื•ืข ืžืฉื•ื ื“ื‘ืจ ืœื”ื›ืœ,
10:12
and how much you know about it can be anywhere
228
612258
1683
ื•ืจืžืช ื”ื™ื“ืข ืœื’ื‘ื™ื•
10:13
from a little to a lot.
229
613941
2423
ื™ื›ื•ืœื” ืœื ื•ืข ืžืžืขื˜ ืœื”ืžื•ืŸ.
10:16
So let's put a point on the graph. There's an undergraduate.
230
616364
4232
ื”ื‘ื” ื ืกืžืŸ ื ืงื•ื“ื” ืขืœ ื”ื’ืจืฃ. ื™ืฉ ืกื˜ื•ื“ื ื˜ ืœืชื•ืืจ I.
10:20
Doesn't know much but they have a lot of interest.
231
620596
2364
ื”ื•ื ืื™ื ื• ื™ื•ื“ืข ื”ืจื‘ื” ืื‘ืœ ื™ืฉ ืœื• ืขื ื™ื™ืŸ ืจื—ื‘.
10:22
They're interested in almost everything.
232
622960
1691
ื”ื•ื ืžืชืขื ื™ื™ืŸ ื›ืžืขื˜ ื‘ื”ื›ืœ.
10:24
Now you look at a master's student, a little further along in their education,
233
624651
3454
ื›ืขืช ืื ืžืกืชื›ืœื™ื ืขืœ ืกื˜ื•ื“ื ื˜ ืœืชื•ืืจ ืฉื ื™, ื”ืžืชืงื“ื ืžืขื˜ ื™ื•ืชืจ ื‘ืœื™ืžื•ื“ื™ื•,
10:28
and you see they know a bit more,
234
628105
1351
ืจื•ืื™ื ืฉื”ื•ื ื™ื•ื“ืข ื™ื•ืชืจ,
10:29
but it's been narrowed somewhat.
235
629456
1890
ืื‘ืœ ื‘ืชื—ื•ื ื™ื•ืชืจ ืฆืจ ื‘ืžื™ื“ืช ืžื”.
10:31
And finally you get your Ph.D., where it turns out
236
631346
2719
ื•ื‘ืกื•ืฃ ืžื™ืฉื”ื• ืžืงื‘ืœ ืชื•ืืจ ืฉืœื™ืฉื™, ื•ืื– ืžืชื‘ืจืจ
10:34
you know a tremendous amount about almost nothing. (Laughter)
237
634065
5105
ืฉื™ื•ื“ืขื™ื ื”ืžื•ืŸ ืขืœ ื›ืžืขื˜ ืฉื•ื ื“ื‘ืจ. (ืฆื—ื•ืง)
10:39
What's really disturbing is the trend line that goes through that
238
639170
3781
ืžื” ืฉื‘ืืžืช ืžื˜ืจื™ื“ ื”ื•ื ืžื’ืžืช ื”ื’ืจืฃ ืืฉืจ ืžืžืฉื™ืš
10:42
because, of course, when it dips below the zero axis, there,
239
642951
3775
ื•ืฆื•ืœืœ ืžืชื—ืช ืœืฆื™ืจ -- ืžืชื—ืช ืœืืคืก,
10:46
it gets into a negative area.
240
646726
2262
ืฉื ื”ื•ื ื ื›ื ืก ืœืื–ื•ืจ ื”ืฉืœื™ืœื™.
10:48
That's where you find people like me, I'm afraid.
241
648988
2915
ืฉื ืžื•ืฆืื™ื ืื ืฉื™ื ื›ืžื•ื ื™, ื›ืš ื—ื•ืฉืฉื ื™.
10:51
So the important thing here is that this can all be changed.
242
651903
3368
ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื›ืืŸ ื”ื•ื ืฉืืช ื›ืœ ื–ื” ื ื™ืชืŸ ืœืฉื ื•ืช.
10:55
This whole view can be changed
243
655271
1804
ื ื™ืชืŸ ืœืฉื ื•ืช ืืช ื›ืœ ืฆื•ืจืช ื”ื”ืกืชื›ืœื•ืช
10:57
by just changing the label on the x-axis.
244
657075
3161
ืคืฉื•ื˜ ืขืœ-ื™ื“ื™ ืฉื™ื ื•ื™ ื”ืชื’ ืฉืœ ืฆื™ืจ ื”-X. ื›ืš ืฉื‘ืžืงื•ื ืœื•ืžืจ
11:00
So instead of how much you know about it,
245
660236
1917
ื›ืžื” ืื ื• ื™ื•ื“ืขื™ื ืขืœ ืžืฉื”ื•,
11:02
we could say, "What can you ask about it?"
246
662153
3541
ืืคืฉืจ ืœื•ืžืจ, "ืžื” ื ื™ืชืŸ ืœืฉืื•ืœ ืขืœ ื–ื”?"
11:05
So yes, you do need to know a lot of stuff as a scientist,
247
665694
2867
ืื– ื ื›ื•ืŸ, ืฆืจื™ืš ืœื“ืขืช ื”ืžื•ืŸ ื—ื•ืžืจ ื‘ืชื•ืจ ืžื“ืขืŸ,
11:08
but the purpose of knowing a lot of stuff
248
668561
2629
ืื‘ืœ ืžื˜ืจืช ื™ื“ื™ืขืช ื”ืžื•ืŸ ื—ื•ืžืจ ืื™ื ื” ืจืง ื‘ืฉื‘ื™ืœ
11:11
is not just to know a lot of stuff. That just makes you a geek, right?
249
671190
2587
ืœื“ืขืช ืื•ืชื•. ื–ื” ื”ื•ืคืš ืื•ืชื ื• ืกืชื ืœืžื›ื•ืจื™ ื™ื“ืข.
11:13
Knowing a lot of stuff, the purpose is
250
673777
2138
ืžื˜ืจืช ื™ื“ื™ืขืช ื”ืจื‘ื” ื—ื•ืžืจ ื”ื™ื
11:15
to be able to ask lots of questions,
251
675915
1676
ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœืฉืื•ืœ ื”ืจื‘ื” ืฉืืœื•ืช,
11:17
to be able to frame thoughtful, interesting questions,
252
677591
3088
ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื”ืจื›ื™ื‘ ืฉืืœื•ืช ื—ื›ืžื•ืช ื•ืžืขื ื™ื™ื ื•ืช,
11:20
because that's where the real work is.
253
680679
1725
ื›ื™ ื–ื•ื”ื™ ื”ืžืœืื›ื” ื”ืืžื™ืชื™ืช.
11:22
Let me give you a quick idea of a couple of these sorts of questions.
254
682404
2552
ืืฆื™ื’ ื‘ืคื ื™ื›ื ื›ืžื” ืฉืืœื•ืช ืžื”ืกื•ื’ ื”ื–ื”.
11:24
I'm a neuroscientist, so how would we come up
255
684956
2163
ืื ื™ ืžื“ืขืŸ ืขืฆื‘ื™ื, ืื– ื›ื™ืฆื“ ื ืขืœื” ืฉืืœื”
11:27
with a question in neuroscience?
256
687119
1431
ื‘ืžื“ืขื™ ื”ืขืฆื‘?
11:28
Because it's not always quite so straightforward.
257
688550
2669
ื›ื™ ื–ื” ืœื ืชืžื™ื“ ื›ืœ-ื›ืš ื‘ืจื•ืจ ืžืืœื™ื•.
11:31
So, for example, we could say, well what is it that the brain does?
258
691219
2559
ืœื“ื•ื’ืžื, ืืคืฉืจ ืœืฉืื•ืœ, ืžื” ื‘ื“ื™ื•ืง ื”ืžื•ื— ืขื•ืฉื”? ืื—ื“ ื”ื“ื‘ืจื™ื
11:33
Well, one thing the brain does, it moves us around.
259
693778
1814
ืฉื”ืžื•ื— ืขื•ืฉื” ื–ื” ืœื”ื–ื™ื– ืื•ืชื ื• ืื ื” ื•ืื ื”.
11:35
We walk around on two legs.
260
695592
2005
ืื ื• ืžืชื”ืœื›ื™ื ืขืœ ืฉืชื™ ืจื’ืœื™ื ื•.
11:37
That seems kind of simple, somehow or another.
261
697597
1851
ื–ื” ื ืจืื” ื“ื™ ืคืฉื•ื˜, ื›ืš ืื• ืื—ืจืช.
11:39
I mean, virtually everybody over 10 months of age
262
699448
2725
ื›ืœื•ืžืจ, ื›ืœ ืื—ื“ ืžืขืœ ื’ื™ืœ 10 ื—ื•ื“ืฉื™ื
11:42
walks around on two legs, right?
263
702173
2172
ื”ื•ืœืš ืขืœ ืฉืชื™ ืจื’ืœื™ื™ื, ื ื›ื•ืŸ?
11:44
So that maybe is not that interesting.
264
704345
1391
ืœื›ืŸ ืื•ืœื™ ื–ื” ืœื ื›ืœ-ื›ืš ืžืขื ื™ื™ืŸ.
11:45
So instead maybe we want to choose something a little more complicated to look at.
265
705736
3148
ืื– ืื•ืœื™ ื ื‘ื—ืจ ื‘ืžืงื•ื ื–ื” ืžืฉื”ื• ืงืฆืช ื™ื•ืชืจ ืžื•ืจื›ื‘.
11:48
How about the visual system?
266
708884
2775
ืžื” ืœื’ื‘ื™ ืžืขืจื›ืช ื”ืจืื™ื™ื”?
11:51
There it is, the visual system.
267
711659
1627
ื”ื ื” ื”ื™ื, ืžืขืจื›ืช ื”ืจืื™ื™ื”.
11:53
I mean, we love our visual systems. We do all kinds of cool stuff.
268
713286
3248
ืื ื• ืื•ื”ื‘ื™ื ืืช ืžืขืจื›ืช ื”ืจืื™ื” ืฉืœื ื•. ืื ื• ืขื•ืฉื™ื ืื™ืชื” ื”ืžื•ืŸ ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื.
11:56
Indeed, there are over 12,000 neuroscientists
269
716534
3391
ื™ืฉ ื™ื•ืชืจ ืž-12,000 ืžื“ืขื ื™ื ืฉืขื•ื‘ื“ื™ื ื‘ืชื—ื•ื
11:59
who work on the visual system,
270
719925
1580
ืžืขืจื›ืช ื”ืจืื™ื™ื”,
12:01
from the retina to the visual cortex,
271
721505
2081
ืžื”ืจืฉืชื™ืช ื•ืขื“ ืื–ื•ืจ ื”ืจืื™ื™ื” ืฉื‘ืงืœื™ืคืช ื”ืžื•ื—,
12:03
in an attempt to understand not just the visual system
272
723586
2565
ื‘ื ื™ืกื™ื•ืŸ ืœื”ื‘ื™ืŸ ืœื ืจืง ืืช ืžืขืจื›ืช ื”ืจืื™ื™ื”,
12:06
but to also understand how general principles
273
726151
3024
ืืœื ื’ื ืœื”ื‘ื™ืŸ ืžื” ื”ื ื”ืขืงืจื•ื ื•ืช ื”ื›ืœืœื™ื™ื
12:09
of how the brain might work.
274
729175
1951
ืœืคื™ื”ื ื”ืžื•ื— ืคื•ืขืœ.
12:11
But now here's the thing:
275
731126
1660
ืื‘ืœ ื—ืฉื•ื‘ ืœืฉื™ื ืœื‘ ืœื–ื”:
12:12
Our technology has actually been pretty good
276
732786
2480
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืœื ื• ื“ื™ ื”ืฆืœื™ื—ื”
12:15
at replicating what the visual system does.
277
735266
2590
ื‘ืฉื›ืคื•ืœ ืฉืœ ืžื” ืฉืขื•ืฉื” ืžืขืจื›ืช ื”ืจืื™ื™ื”.
12:17
We have TV, we have movies,
278
737856
3023
ื™ืฉ ืœื ื• ื˜ืœื•ื•ื™ื–ื™ื•ืช, ืกืจื˜ื™ื,
12:20
we have animation, we have photography,
279
740879
2495
ื™ืฉ ืกืจื˜ื™ ื”ื ืคืฉื”, ื™ืฉ ืฆื™ืœื•ื,
12:23
we have pattern recognition, all of these sorts of things.
280
743374
3151
ื™ืฉ ื–ื™ื”ื•ื™ ืฆื•ืจื•ืช ื•ื›ืœ ืžื™ื ื™ ื“ื‘ืจื™ื ื“ื•ืžื™ื ื›ืืœื”.
12:26
They work differently than our visual systems in some cases,
281
746525
2646
ื‘ื›ืžื” ืžืงืจื™ื ื–ื” ืขื•ื‘ื“ ื‘ืื•ืคืŸ ืฉื•ื ื” ืœืขื•ืžืช ืžืขืจื›ืช ื”ืจืื™ื™ื”.
12:29
but nonetheless we've been pretty good at
282
749171
1591
ืื‘ืœ ื‘ื›ืœ ืžืงืจื” ืื ื•
12:30
making a technology work like our visual system.
283
750762
3476
ื“ื™ ืžืฆื˜ื™ื™ื ื™ื ื‘ื™ืฆื™ืจืช ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ืคื•ืขืœืช ื›ืžื• ืžืขืจื›ืช ื”ืจืื™ื™ื” ืฉืœื ื•.
12:34
Somehow or another, a hundred years of robotics,
284
754238
2936
ืื‘ืœ, ืœืื—ืจ 100 ืฉื ื•ืช ืจื•ื‘ื•ื˜ื™ืงื”,
12:37
you never saw a robot walk on two legs,
285
757174
2266
ืขื“ื™ื™ืŸ ืœื ืจืื™ื ื• ืจื•ื‘ื•ื˜ ืžื”ืœืš ืขืœ ืฉืชื™ื™ื,
12:39
because robots don't walk on two legs
286
759440
2163
ื›ื™ ืจื•ื‘ื•ื˜ื™ื ืื™ื ื ื™ื›ื•ืœื™ื ืœืœื›ืช ืขืœ ืฉืชื™ื™ื
12:41
because it's not such an easy thing to do.
287
761603
2390
ืžื›ื™ื•ื•ืŸ ืฉื–ื” ืœื ื›ืœ-ื›ืš ืงืœ ืœืขืฉื•ืช ื–ืืช.
12:43
A hundred years of robotics,
288
763993
1528
100 ืฉื ื•ืช ืจื•ื‘ื•ื˜ื™ืงื”,
12:45
and we can't get a robot that can move more than a couple steps one way or the other.
289
765521
3367
ื•ืขื“ื™ื™ืŸ ืื™ืŸ ืœื ื• ืจื•ื‘ื•ื˜ ืฉื™ื›ื•ืœ ืœื ื•ืข ื™ื•ืชืจ ืžื›ืžื” ืฆืขื“ื™ื.
12:48
You ask them to go up an inclined plane, and they fall over.
290
768888
2572
ืฉื•ืœื—ื™ื ืื•ืชื ืขืœ ืžืฉื˜ื— ืžืฉื•ืคืข ื•ื”ื ื ื•ืคืœื™ื.
12:51
Turn around, and they fall over. It's a serious problem.
291
771460
2004
ื”ื ืžื ืกื™ื ืœื”ืกืชื•ื‘ื‘ ืื‘ืœ ื ื•ืคืœื™ื. ื–ื• ื‘ืขื™ื” ืงืฉื”.
12:53
So what is it that's the most difficult thing for a brain to do?
292
773464
3547
ืื ื›ืš, ืžื” ื”ื•ื ื”ื“ื‘ืจ ื”ืงืฉื” ื‘ื™ื•ืชืจ ืœืžื•ื— ืœื‘ืฆืข?
12:57
What ought we to be studying?
293
777011
1623
ืžื” ืขืœื™ื ื• ืœื—ืงื•ืจ?
12:58
Perhaps it ought to be walking on two legs, or the motor system.
294
778634
4295
ืื•ืœื™ ื–ื” ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื”ืœื™ื›ื” ืขืœ ืฉืชื™ื™ื, ืื• ื”ืžืขืจื›ืช ื”ืžื•ื˜ื•ืจื™ืช.
13:02
I'll give you an example from my own lab,
295
782929
1735
ืืชืŸ ื“ื•ื’ืžื ืžื”ืžืขื‘ื“ื” ืฉืœื™,
13:04
my own particularly smelly question,
296
784664
1725
ื”ืฉืืœื” ื”ืจื™ื—ื ื™ืช ืฉืœื™,
13:06
since we work on the sense of smell.
297
786389
2099
ืžืื—ืจ ื•ืื ื• ื—ื•ืงืจื™ื ืืช ื—ื•ืฉ ื”ืจื™ื—.
13:08
But here's a diagram of five molecules
298
788488
3228
ื”ื ื” ืชืจืฉื™ื ืฉืœ 5 ืžื•ืœืงื•ืœื•ืช
13:11
and sort of a chemical notation.
299
791716
1510
ื•ืกื™ืžื•ืŸ ื›ื™ืžื™.
13:13
These are just plain old molecules, but if you sniff those molecules
300
793226
2996
ืืœื• ื”ืŸ ืจืง ืžื•ืœืงื•ืœื•ืช ืจื’ื™ืœื•ืช ื•ื™ื“ื•ืขื•ืช, ืื‘ืœ ืื ืจืง ืชืจื—ืจื—ื• ืžื•ืœืงื•ืœื•ืช ื”ืœืœื•
13:16
up these two little holes in the front of your face,
301
796222
2470
ืขื ืฉื ื™ ื”ื—ื•ืจื™ื ื‘ืงื™ื“ืžืช ืคื ื™ื›ื,
13:18
you will have in your mind the distinct impression of a rose.
302
798692
3874
ื™ื•ื•ืฆืจ ื‘ืžื•ื—ื›ื ืจื•ืฉื ื‘ืจื•ืจ ืฉืœ ื•ืจื“. ืื ื™ื”ื™ื” ืฉื ื•ืจื“ ืืžื™ืชื™,
13:22
If there's a real rose there, those molecules will be the ones,
303
802566
2158
ืืœื• ื”ืŸ ื”ืžื•ืœืงื•ืœื•ืช ืฉื™ื”ื™ื• ืฉื,
13:24
but even if there's no rose there,
304
804724
1560
ืื‘ืœ ื’ื ืื ืœื ื™ื”ื™ื” ื•ืจื“,
13:26
you'll have the memory of a molecule.
305
806284
1591
ื™ื”ื™ื” ืœื›ื ื”ื–ื™ื›ืจื•ืŸ ืฉืœ ื”ืžื•ืœืงื•ืœื•ืช.
13:27
How do we turn molecules into perceptions?
306
807875
3104
ื›ื™ืฆื“ ืื ื• ื”ื•ืคื›ื™ื ืžื•ืœืงื•ืœื•ืช ืœืชืคื™ืกื”?
13:30
What's the process by which that could happen?
307
810979
1857
ืžื”ื• ื”ืชื”ืœื™ืš ืฉื“ืจื›ื• ื–ื” ืžืชืจื—ืฉ?
13:32
Here's another example: two very simple molecules, again in this kind of chemical notation.
308
812836
3960
ื”ื ื” ื“ื•ื’ืžื ื ื•ืกืคืช: ืฉืชื™ ืžื•ืœืงื•ืœื•ืช ืžืื•ื“ ืคืฉื•ื˜ื•ืช, ืฉื•ื‘ ืชื—ืช ืื•ืชื• ืกื™ืžื•ืŸ ื›ื™ืžื™.
13:36
It might be easier to visualize them this way,
309
816796
2077
ืื•ืœื™ ื™ื”ื™ื” ื™ื•ืชืจ ืงืœ ืœื”ืกืชื›ืœ ืขืœื™ื”ืŸ ื›ืš,
13:38
so the gray circles are carbon atoms, the white ones
310
818873
2794
ื”ืขื™ื’ื•ืœื™ื ื”ืืคื•ืจื™ื ื”ื ืื˜ื•ืžื™ ืคื—ืžืŸ,
13:41
are hydrogen atoms and the red ones are oxygen atoms.
311
821667
2775
ื”ืœื‘ื ื™ื ืื˜ื•ืžื™ ืžื™ืžืŸ ื•ื”ืื“ื•ืžื™ื ืื˜ื•ืžื™ ื—ืžืฆืŸ.
13:44
Now these two molecules differ by only one carbon atom
312
824442
4298
ืฉืชื™ ืžื•ืœืงื•ืœื•ืช ื”ืœืœื• ื ื‘ื“ืœื•ืช ื–ื• ืžื–ื• ืจืง ื‘ืื˜ื•ื ืคื—ืžืŸ ืื—ื“
13:48
and two little hydrogen atoms that ride along with it,
313
828740
2688
ื•ืฉื ื™ ืื˜ื•ืž ืžื™ืžืŸ ื”ืงืฉื•ืจื™ื ืืœื™ื•,
13:51
and yet one of them, heptyl acetate,
314
831428
1986
ืื‘ืœ ืื—ืช ืžื”ืŸ, heptyl acetate,
13:53
has the distinct odor of a pear,
315
833414
2311
ื”ื™ื ื” ื‘ืขืœืช ื ื™ื—ื•ื— ืฉืœ ืื’ืก,
13:55
and hexyl acetate is unmistakably banana.
316
835725
3839
ื•-hexyl acetate ื”ื™ื ืœืœื ืกืคืง ื ื™ื—ื•ื— ืฉืœ ื‘ื ื ื”.
13:59
So there are two really interesting questions here, it seems to me.
317
839564
2557
ื›ืš ืฉืœื“ืขืชื™ ื™ืฉ ื›ืืŸ ืฉืชื™ ืฉืืœื•ืช ืžืขื ื™ื™ื ื•ืช.
14:02
One is, how can a simple little molecule like that
318
842121
3215
ื”ืื—ืช, ื›ื™ืฆื“ ืžื•ืœืงื•ืœื” ืคืฉื•ื˜ื” ื›ืžื• ื–ื•
14:05
create a perception in your brain that's so clear
319
845336
2468
ื™ื•ืฆืจืช ืชืคื™ืกื” ื‘ืžื•ื—ื ื• ืฉื”ื™ื ื›ื” ื‘ืจื•ืจื”
14:07
as a pear or a banana?
320
847804
1742
ื›ืžื• ืื’ืก ืื• ื‘ื ื ื”?
14:09
And secondly, how the hell can we tell the difference
321
849546
3121
ื•ื”ืฉื ื™ื”, ื›ื™ืฆื“ ืœื›ืœ ื”ืจื•ื—ื•ืช ืื ื• ืžืกื•ื’ืœื™ื ืœื”ื‘ื—ื™ืŸ
14:12
between two molecules that differ by a single carbon atom?
322
852667
4315
ื‘ื™ืŸ ืฉืชื™ ืžื•ืœืงื•ืœื•ืช ื”ื ื‘ื“ืœื•ืช ื‘ืื˜ื•ื ืคื—ืžืŸ ื‘ื•ื“ื“?
14:16
I mean, that's remarkable to me,
323
856982
1646
ื›ืœื•ืžืจ, ืžื‘ื—ื™ื ืชื™ ื–ื” ืžืฉื”ื• ืžื•ืคืœื,
14:18
clearly the best chemical detector on the face of the planet.
324
858628
3032
ืœืœื ืกืคืง ื”ื—ื™ื™ืฉืŸ ื”ื›ื™ืžื™ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืขืœื™-ืื“ืžื•ืช.
14:21
And you don't even think about it, do you?
325
861660
2776
ื•ืื ื• ืืคื™ืœื• ื›ืœืœ ืœื ื—ื•ืฉื‘ื™ื ืขืœ ื›ืš, ื ื›ื•ืŸ?
14:24
So this is a favorite quote of mine that takes us
326
864436
2617
ื™ืฉ ืฆื™ื˜ื•ื˜ ืฉืื ื™ ืื•ื”ื‘ ืืฉืจ ืœื•ืงื— ืื•ืชื ื•
14:27
back to the ignorance and the idea of questions.
327
867053
1746
ื‘ื—ื–ืจื” ืืœ ื”ื‘ื•ืจื•ืช ื•ืจืขื™ื•ืŸ ื”ืฉืืœื•ืช.
14:28
I like to quote because I think dead people
328
868799
2019
ืื ื™ ืื•ื”ื‘ ืœืฆื˜ื˜ ื›ื™ ืื ื™ ืกื‘ื•ืจ ืฉืื ืฉื™ื ืฉื ืคื˜ืจื•
14:30
shouldn't be excluded from the conversation.
329
870818
2543
ืื™ื ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžื—ื•ืฅ ืœืฉื™ื’-ื•ื”ืฉื™ื—.
14:33
And I also think it's important to realize that
330
873361
1939
ืื ื™ ื’ื ืกื‘ื•ืจ ืฉื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ
14:35
the conversation's been going on for a while, by the way.
331
875300
2462
ืฉืื•ืชื• ืฉื™ื’-ื•ืฉื™ื— ืžืชื ื”ืœ ื“ื™ ื”ืจื‘ื” ื–ืžืŸ.
14:37
So Erwin Schrodinger, a great quantum physicist
332
877762
2758
ืืจื•ื•ื™ืŸ ืฉืจื“ื™ื ื’ืจ, ืคื™ื–ื™ืงืื™ ื’ื“ื•ืœ ื‘ืชื•ืจืช ื”ืงื•ื•ื ื˜ื™ื
14:40
and, I think, philosopher, points out how you have to
333
880520
2566
ื•ืกื‘ื•ืจื ื™, ืฉื’ื ืคื™ืœื•ืกื•ืฃ, ืžืฆื‘ื™ืข ืขืœ ื›ื™ืฆื“
14:43
"abide by ignorance for an indefinite period" of time.
334
883086
3465
"ืœืคืขื•ืœ ื“ืจืš ื”ื‘ื•ืจื•ืช ืœืื•ืจืš ื–ืžืŸ ืœื ื™ื“ื•ืข".
14:46
And it's this abiding by ignorance
335
886551
1987
ื•ืคืขื•ืœื” ื–ื• ื“ืจืš ื”ื‘ื•ืจื•ืช,
14:48
that I think we have to learn how to do.
336
888538
1666
ื”ื™ื ืœื“ืขืชื™ ืžืฉื”ื• ืฉืขืœื™ื ื• ืœืœืžื•ื“.
14:50
This is a tricky thing. This is not such an easy business.
337
890204
2977
ื–ื”ื• ื“ื‘ืจ ืžื•ืœื™ืš-ืฉื•ืœืœ. ื–ื” ืœื ืขืกืง ื›ื–ื” ืคืฉื•ื˜.
14:53
I guess it comes down to our education system,
338
893181
1959
ืื ื™ ืžืฉืขืจ ืฉื–ื” ืžืกืชื›ื ื‘ืžืขืจื›ืช ื”ื—ื™ื ื•ืš,
14:55
so I'm going to talk a little bit about ignorance and education,
339
895140
2457
ืœื›ืŸ ืื“ื‘ืจ ืขื›ืฉื™ื• ืงืฆืช ืขืœ ื‘ื•ืจื•ืช ื•ื—ื™ื ื•ืš,
14:57
because I think that's where it really has to play out.
340
897597
2268
ื›ื™ ืื ื™ ื—ื•ืฉื‘ ืฉืฉื ื”ืžืงื•ื ื‘ื• ื–ื” ืฆืจื™ืš ืœื”ืชื‘ื”ืจ.
14:59
So for one, let's face it,
341
899865
2267
ืื– ื”ื‘ื” ื ืชืžื•ื“ื“ ืขื ื–ื”.
15:02
in the age of Google and Wikipedia,
342
902132
3352
ื‘ืขื™ื“ืŸ ืฉืœ ื’ื•ื’ืœ ื•ื•ื™ืงื™ืคื“ื™ื”,
15:05
the business model of the university
343
905484
1793
ื”ืžื•ื“ืœ ื”ืขื™ืกืงื™ ืฉืœ ื”ืื•ื ื™ื‘ืจืกื™ื˜ืื•ืช
15:07
and probably secondary schools is simply going to have to change.
344
907277
3421
ื•ื›ื ืจืื” ืฉืœ ื‘ืชื™-ืกืคืจ ืชื™ื›ื•ื ื™ื™ื, ื™ืฆื˜ืจืš ืœื”ืฉืชื ื•ืช. ืื™ืŸ ืื ื• ื™ื›ื•ืœื™ื
15:10
We just can't sell facts for a living anymore.
345
910698
1901
ืคืฉื•ื˜ ืœืžื›ื•ืจ ื™ื•ืชืจ ืขื•ื‘ื“ื•ืช ื‘ืฉื‘ื™ืœ ืœื”ืชืคืจื ืก.
15:12
They're available with a click of the mouse,
346
912599
2050
ื”ืŸ ื–ืžื™ื ื•ืช ื‘ืœื—ื™ืฆืช ืขื›ื‘ืจ,
15:14
or if you want to, you could probably just ask the wall
347
914649
2496
ืื• ืฉืคืฉื•ื˜ ืืคืฉืจ ื™ื”ื™ื” ืœืฉืื•ืœ ืืช ื”ืงื™ืจ ื‘ืื—ื“ ื”ื™ืžื™ื
15:17
one of these days, wherever they're going to hide the things
348
917145
1712
ื”ื™ื›ืŸ ื”ื ืžืกืชื™ืจื™ื ืืช ื›ืœ ื”ื“ื‘ืจื™ื
15:18
that tell us all this stuff.
349
918857
1417
ื”ืžืกืคืจื™ื ืœื ื• ืืช ื›ืœ ื”ื“ื‘ืจื™ื.
15:20
So what do we have to do? We have to give our students
350
920274
2883
ืื– ืžื” ืขืœื™ื ื• ืœืขืฉื•ืช? ืขืœื™ื ื• ืœืืคืฉืจ ืœืชืœืžื™ื“ื™ื
15:23
a taste for the boundaries, for what's outside that circumference,
351
923157
3896
ืœื—ื•ืฉ ืืช ื”ื’ื‘ื•ืœื•ืช, ื•ืืช ืžื” ืฉืžืขื‘ืจ ืœืื•ืชืŸ ื”ื’ื‘ื•ืœื•ืช,
15:27
for what's outside the facts, what's just beyond the facts.
352
927053
4308
ืืช ืžื” ืฉืžื—ื•ืฅ ืœืขื•ื‘ื“ื•ืช, ืืช ืžื” ืฉืžืขื‘ืจ ืœืขื•ื‘ื“ื•ืช.
15:31
How do we do that?
353
931361
2157
ื›ื™ืฆื“ ืขื•ืฉื™ื ื–ืืช?
15:33
Well, one of the problems, of course,
354
933518
1508
ืื—ืช ื”ื‘ืขื™ื•ืช ื›ืžื•ื‘ืŸ
15:35
turns out to be testing.
355
935026
2109
ื”ื™ื ื‘ื—ื™ื ื•ืช.
15:37
We currently have an educational system
356
937135
2649
ื ื›ื•ืŸ ืœืขื›ืฉื™ื•, ื™ืฉ ืœื ื• ืžืขืจื›ืช ื—ื™ื ื•ืš
15:39
which is very efficient but is very efficient at a rather bad thing.
357
939784
3709
ืฉื”ื™ื ืžืื•ื“ ื™ืขื™ืœื”, ืื‘ืœ ืžืื•ื“ ื™ืขื™ืœื” ื‘ื“ื‘ืจ ืฉื”ื•ื ื“ื™ ืจืข.
15:43
So in second grade, all the kids are interested in science,
358
943493
2974
ื‘ื›ื™ืชื” ื‘', ื›ืœ ื”ื™ืœื“ื™ื ืžืชืขื ื™ื™ื ื™ื ื‘ืžื“ืข,
15:46
the girls and the boys.
359
946467
1263
ื”ื‘ื ื•ืช ื•ื”ื‘ื ื™ื.
15:47
They like to take stuff apart. They have great curiosity.
360
947730
3974
ื”ื ืื•ื”ื‘ื™ื ืœืคืจืง ื“ื‘ืจื™ื. ื™ืฉ ืœื”ื ื”ืžื•ืŸ ืกืงืจื ื•ืช.
15:51
They like to investigate things. They go to science museums.
361
951704
2499
ื”ื ืื•ื”ื‘ื™ื ืœื—ืงื•ืจ ื“ื‘ืจื™ื. ื”ื ื”ื•ืœื›ื™ื ืœืžื•ื–ื™ืื•ื ื™ ืžื“ืข.
15:54
They like to play around. They're in second grade.
362
954203
6188
ื”ื ืื•ื”ื‘ื™ื ืœื”ืฉืชื•ื‘ื‘. ื”ื ื‘ื›ื™ืชื” ื‘'.
16:00
They're interested.
363
960407
1494
ื”ื ืžืชืขื ื™ื™ื ื™ื.
16:01
But by 11th or 12th grade, fewer than 10 percent
364
961901
2934
ืื‘ืœ ื‘ื›ื™ืชื” ื™"ื ืื• ื™"ื‘, ืคื—ื•ืช ืž-10 ืื—ื•ื–
16:04
of them have any interest in science whatsoever,
365
964835
3075
ืžื”ื ืžืชืขื ื™ื™ื ื™ื ื‘ืžื“ืข ื›ืœืฉื”ื•,
16:07
let alone a desire to go into science as a career.
366
967910
2945
ืฉืœื ืœื“ื‘ืจ ืขืœ ื”ืจืฆื•ืŸ ืœื‘ื—ื•ืจ ื‘ืžื“ืข ื‘ืชื•ืจ ืงืจื™ื™ืจื”.
16:10
So we have this remarkably efficient system
367
970855
2982
ื›ืš ืฉื™ืฉ ืœื ื• ืืช ื”ืžืขืจื›ืช ื”ืžื•ืขื™ืœื” ืœื”ืคืœื™ื
16:13
for beating any interest in science out of everybody's head.
368
973837
3973
ืฉืžื“ื›ืืช ื›ืœ ืขื ื™ื™ืŸ ื‘ืžื“ืข ื‘ืจืืฉื™ื ืฉืœ ื›ื•ืœื.
16:17
Is this what we want?
369
977810
1914
ื”ืื ื–ื” ืžื” ืฉืื ื• ืจื•ืฆื™ื?
16:19
I think this comes from what a teacher colleague of mine
370
979724
2342
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืงื•ืจื” ื‘ื’ืœืœ ืžื” ืฉืžื•ืจื” ืขืžื™ืช ืฉืœื™
16:22
calls "the bulimic method of education."
371
982066
2722
ืงื•ืจื ืœื• "ื”ืฉื™ื˜ื” ื”ื‘ื•ืœื™ืžื™ืช ืฉืœ ื”ื—ื™ื ื•ืš".
16:24
You know. You can imagine what it is.
372
984788
1373
ืืชื ื‘ื˜ื— ืžื‘ื™ื ื™ื ืžื” ื–ื”.
16:26
We just jam a whole bunch of facts down their throats over here
373
986161
2948
ืื ื• ืžืื‘ื™ืกื™ื ืขืจื™ืžื•ืช ืฉืœ ืขื•ื‘ื“ื•ืช ืœืชื•ืš ื’ืจื•ื ื (ืฉืœ ืชืœืžื™ื“ื™ื)
16:29
and then they puke it up on an exam over here
374
989109
2354
ื•ืื– ื”ื ืคื•ืœื˜ื™ื ืื•ืชืŸ ืœืชื•ืš ื”ื‘ื—ื™ื ื”
16:31
and everybody goes home with no added intellectual heft whatsoever.
375
991463
4579
ื•ื›ื•ืœื ื—ื•ื–ืจื™ื ื”ื‘ื™ืชื” ืœืœื ืฉื•ื ืžื˜ืขืŸ ื ื•ืกืฃ ืฉืœ ืื™ื ื˜ืœืงื˜ื•ืืœื™ื•ืช.
16:36
This can't possibly continue to go on.
376
996042
2081
ืœื ื ื™ืชืŸ ืœื”ืžืฉื™ืš ืขื ื–ื” ื™ื•ืชืจ.
16:38
So what do we do? Well the geneticists, I have to say,
377
998123
2334
ืื– ืžื” ืื ื• ืขื•ืฉื™ื? ืœื—ื•ืงืจื™ ื”ืชื•ืจืฉื”
16:40
have an interesting maxim they live by.
378
1000457
1983
ื™ืฉ ืคืชื’ื ืœืคื™ื• ื”ื ื—ื™ื™ื.
16:42
Geneticists always say, you always get what you screen for.
379
1002440
5252
ื”ื ืื•ืžืจื™ื, ืืชื” ืชืžื™ื“ ืชืงื‘ืœ ืืช ืžื” ืฉืืชื” ืกื•ืจืง ื‘ืฉื‘ื™ืœื•.
16:47
And that's meant as a warning.
380
1007692
2861
ื•ื”ื›ื•ื•ื ื” ื›ืืŸ ื”ื™ื ืœื”ื–ื”ื™ืจ.
16:50
So we always will get what we screen for,
381
1010553
2319
ืื ื• ืชืžื™ื“ ืžืงื‘ืœื™ื ืืช ืžื” ืฉืื ื• ืกื•ืจืงื™ื ื‘ืฉื‘ื™ืœื•,
16:52
and part of what we screen for is in our testing methods.
382
1012872
3455
ื•ื—ืœืง ืžืžื” ืฉืื ื• ืกื•ืจืงื™ื ื‘ืฉื‘ื™ืœื• ื ืžืฆื ื‘ืฉื™ื˜ื•ืช ื”ื‘ื—ื™ื ื” ืฉืœื ื•.
16:56
Well, we hear a lot about testing and evaluation,
383
1016327
3243
ืื ื• ืฉื•ืžืขื™ื ื”ืจื‘ื” ืขืœ ื‘ื—ื™ื ื” ื•ื”ืขืจื›ื”,
16:59
and we have to think carefully when we're testing
384
1019570
2187
ื•ืขืœื™ื ื• ืœื—ืฉื•ื‘ ื‘ื–ื”ื™ืจื•ืช ื›ืืฉืจ ืื ื• ื‘ื•ื—ื ื™ื,
17:01
whether we're evaluating or whether we're weeding,
385
1021757
3087
ื”ืื ืื ื• ืžืขืจื™ื›ื™ื ืื• ื”ืื ืขื•ืงืจื™ื,
17:04
whether we're weeding people out,
386
1024844
1459
ื”ืื ืื ื• ืขื•ืงืจื™ื ืื ืฉื™ื ื”ื—ื•ืฆื”,
17:06
whether we're making some cut.
387
1026303
3134
ื”ืื ืื ื• ืžืงืฆืฆื™ื.
17:09
Evaluation is one thing. You hear a lot about evaluation
388
1029437
2641
ื”ืขืจื›ื” ื–ื” ื“ื‘ืจ ืื—ื“. ืžื“ื‘ืจื™ื ื”ืจื‘ื” ืขืœ ื”ืขืจื›ื”
17:12
in the literature these days, in the educational literature,
389
1032078
2910
ื‘ื™ืžื™ื ืืœื” ื‘ืกืคืจื™ื, ื‘ืกืคืจื•ืช ื”ื—ื™ื ื•ื›ื™ืช,
17:14
but evaluation really amounts to feedback and it amounts
390
1034988
2958
ืื‘ืœ ื”ืขืจื›ื” ืืžื™ืชื™ืช ืžืกืชื›ืžืช ื‘ืžืฉื•ื‘
17:17
to an opportunity for trial and error.
391
1037946
2154
ื•ื‘ืžืชืŸ ื”ื–ื“ืžื ื•ืช ืœื ื™ืกื•ื™ ื•ื˜ืขื™ื”.
17:20
It amounts to a chance to work over a longer period of time
392
1040100
4494
ื”ื™ื ืžืกืชื›ืžืช ื‘ืžืชืŸ ื”ื–ื“ืžื ื•ืช ืœืขื‘ื•ื“ื” ื‘ืžืฉืš ืชืงื•ืคืช ื–ืžืŸ ื™ื•ืชืจ ืืจื•ื›ื”
17:24
with this kind of feedback.
393
1044594
1910
ืขื ืžืฉื•ื‘ ืžืŸ ื”ืกื•ื’ ื”ื–ื”.
17:26
That's different than weeding, and usually, I have to tell you,
394
1046504
2938
ื–ื” ืฉื•ื ื” ืžืขืงื™ืจื”, ื•ื‘ื“ืจืš-ื›ืœืœ, ืขืœื™ื™ ืœื•ืžืจ,
17:29
when people talk about evaluation, evaluating students,
395
1049442
2726
ืฉื›ืืฉืจ ืื ืฉื™ื ืžื“ื‘ืจื™ื ืขืœ ื”ืขืจื›ื”, ื”ืขืจื›ืช ืชืœืžื™ื“ื™ื,
17:32
evaluating teachers, evaluating schools,
396
1052168
2787
ื”ืขืจื›ืช ืžื•ืจื™ื, ื”ืขืจื›ืช ื‘ืชื™-ืกืคืจ,
17:34
evaluating programs, that they're really talking about weeding.
397
1054955
4161
ื”ืขืจื›ืช ืชื›ื ื™ื, ื”ื ื‘ืคื•ืขืœ ืžื“ื‘ืจื™ื ืขืœ ืขืงื™ืจื”.
17:39
And that's a bad thing, because then you will get what you select for,
398
1059116
4210
ื•ื–ื” ื“ื‘ืจ ืจืข, ื›ื™ ืื– ืžืงื‘ืœื™ื ืืช ืžื” ืฉืื ื• ืžื›ื•ื•ื ื™ื ืืœื™ื•,
17:43
which is what we've gotten so far.
399
1063326
1958
ืฉื–ื” ืžื” ืฉื™ืฉ ืœื ื• ื›ื™ื•ื.
17:45
So I'd say what we need is a test that says, "What is x?"
400
1065284
3441
ืœื›ืŸ ื”ื™ื™ืชื™ ืื•ืžืจ ืฉืื ื• ื–ืงื•ืงื™ื ืœื‘ื—ื™ื ื” ื”ืฉื•ืืœืช, "ืžื” ื–ื” x?"
17:48
and the answers are "I don't know, because no one does,"
401
1068725
3092
ื•ื”ืชืฉื•ื‘ื•ืช ื”ืŸ, "ืœื ื™ื•ื“ืข ื›ื™ ืืฃ ืื—ื“ ืœื ื™ื•ื“ืข",
17:51
or "What's the question?" Even better.
402
1071817
1741
ืื•, "ืžื” ื”ืฉืืœื”?", ืฉื–ื” ืขื•ื“ ื™ื•ืชืจ ื˜ื•ื‘.
17:53
Or, "You know what, I'll look it up, I'll ask someone,
403
1073558
2390
ืื•, "ืืชื” ื™ื•ื“ืข ืžื”, ืื ื™ ืื—ืคืฉ, ืื ื™ ืืฉืืœ ืžื™ืฉื”ื•,
17:55
I'll phone someone. I'll find out."
404
1075964
2700
ืืชืงืฉืจ ืœืžื™ืฉื”ื•. ืื ื™ ืื’ืœื”".
17:58
Because that's what we want people to do,
405
1078664
1550
ื›ื™ ื–ื” ืžื” ืฉืื ื• ืจื•ืฆื™ื ืฉืื ืฉื™ื ื™ืขืฉื•,
18:00
and that's how you evaluate them.
406
1080214
1371
ื•ื›ืš ืฆืจื™ืš ืœื”ืขืจื™ืš ืื•ืชื.
18:01
And maybe for the advanced placement classes,
407
1081585
1943
ื•ืื•ืœื™ ื‘ืฉื‘ื™ืœ ื”ื›ื™ืชื•ืช ื”ืžืชืงื“ืžื•ืช,
18:03
it could be, "Here's the answer. What's the next question?"
408
1083528
3714
ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช, "ื”ื ื” ื”ืชืฉื•ื‘ื”. ืžื” ื”ืฉืืœื” ื”ื‘ืื”?"
18:07
That's the one I like in particular.
409
1087242
1511
ื•ืืช ื–ื” ืื ื™ ืื•ื”ื‘ ื‘ืžื™ื•ื—ื“.
18:08
So let me end with a quote from William Butler Yeats,
410
1088753
2177
ืืกื™ื™ื ื‘ืฆื™ื˜ื•ื˜ ืžืืช ื•ื™ืœื™ืื ื‘ืื˜ืœืจ ื™ื™ื˜ืก,
18:10
who said "Education is not about filling buckets;
411
1090930
3167
ืฉืืžืจ "ื—ื™ื ื•ืš ืื™ื ื• ืกืชื ืžื™ืœื•ื™ ื“ืœื™ื™ื;
18:14
it is lighting fires."
412
1094097
2153
ื—ื™ื ื•ืš ืฆืจื™ืš ืœื”ืฆื™ืช ืœื”ื‘ื•ืช".
18:16
So I'd say, let's get out the matches.
413
1096250
3875
ืœื›ืŸ ื”ื™ื™ืชื™ ืื•ืžืจ, ื”ื‘ื” ื ืฉืœื•ืฃ ืืช ื”ื’ืคืจื•ืจื™ื.
18:20
Thank you.
414
1100125
1208
ืชื•ื“ื”.
18:21
(Applause)
415
1101333
3227
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
18:24
Thank you. (Applause)
416
1104560
3816
ืชื•ื“ื” ืœื›ื. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7