Stuart Firestein: The pursuit of ignorance

1,346,709 views ・ 2013-09-24

TED


請雙擊下方英文字幕播放視頻。

譯者: Peggy Tsai 審譯者: Karen SONG
00:12
There is an ancient proverb that says
0
12495
3558
有句古老的諺語這麼說:
00:16
it's very difficult to find a black cat in a dark room,
1
16053
4062
「在一片漆黑的房間裡,是很難找出一隻黑貓的,
00:20
especially when there is no cat.
2
20115
2788
特別當房間裡根本沒有貓的時候。」
00:22
I find this a particularly apt description of science
3
22903
3329
我覺得將這句話用來形容科學
00:26
and how science works --
4
26232
2136
和科學運作的方式,是非常貼切的。
00:28
bumbling around in a dark room, bumping into things,
5
28368
3320
科學探索就像在漆黑的房間裡亂竄, 然後撞到了某些東西,
00:31
trying to figure out what shape this might be,
6
31688
2302
試圖了解這個東西是什麼形態,
00:33
what that might be,
7
33990
1444
那個東西又可能是什麼。
00:35
there are reports of a cat somewhere around,
8
35434
2489
有報告說一隻貓就在附近,
00:37
they may not be reliable, they may be,
9
37923
1793
這消息可能不是真的,也可能是真的,
00:39
and so forth and so on.
10
39716
1520
就這樣反反覆覆。
00:41
Now I know this is different than the way most people
11
41236
1976
這樣的說法跟大多數人
00:43
think about science.
12
43212
1552
對科學的印象不一樣。
00:44
Science, we generally are told,
13
44764
1554
一般我們對「科學」的理解,
00:46
is a very well-ordered mechanism for
14
46318
2750
就是一套高度秩序化的機制,
00:49
understanding the world,
15
49068
1301
用以解釋世界的種種現象,
00:50
for gaining facts, for gaining data,
16
50369
2286
得到事實和數據。
00:52
that it's rule-based,
17
52655
1553
一切都有規則,
00:54
that scientists use this thing called the scientific method
18
54208
3241
科學家們運用「科學方法」做研究,
00:57
and we've been doing this for 14 generations or so now,
19
57449
2839
至今已有約14代人 (420年),
01:00
and the scientific method is a set of rules
20
60288
2571
而「科學方法」就是「一套規則,
01:02
for getting hard, cold facts out of the data.
21
62859
4192
用來從數據中得到客觀確鑿的事實。」
01:07
I'd like to tell you that's not the case.
22
67051
2095
這裡我告訴大家,並不是這麼回事。
01:09
So there's the scientific method,
23
69146
1832
「科學方法」是存在的,
01:10
but what's really going on is this. (Laughter)
24
70978
2319
但實際發生的事情是…...(笑聲)
01:13
[The Scientific Method vs. Farting Around]
25
73297
958
[科學方法 vs 狗屁瞎扯]
01:14
And it's going on kind of like that.
26
74255
3104
實際的狀況大概像這樣:
01:17
[... in the dark] (Laughter)
27
77359
1421
[.....在黑暗中放狗屁](笑聲)
01:18
So what is the difference, then,
28
78780
4541
所以,差別在哪裡呢?
01:23
between the way I believe science is pursued
29
83321
3816
我所相信的科學真諦,
01:27
and the way it seems to be perceived?
30
87137
2861
為何與科學在人們心目中的印象如此不同?
01:29
So this difference first came to me in some ways
31
89998
2715
我第一次意識到兩者的差異,
01:32
in my dual role at Columbia University,
32
92713
2097
是在哥倫比亞大學身兼兩職的時候。
01:34
where I'm both a professor and run a laboratory in neuroscience
33
94810
4155
我當時既當教授, 也主持神經科學的實驗室研究,
01:38
where we try to figure out how the brain works.
34
98965
2195
研究目的是找出腦部運作的原理。
01:41
We do this by studying the sense of smell,
35
101160
2371
我們的實驗室以研究氣味感知
01:43
the sense of olfaction, and in the laboratory,
36
103531
2531
和人類嗅覺為切入點。在實驗室,
01:46
it's a great pleasure and fascinating work
37
106062
2634
這可是非常吸引人而有趣的工作,
01:48
and exciting to work with graduate students and post-docs
38
108696
2871
我很高興能與那些 碩士研究生和博士後共事,
01:51
and think up cool experiments to understand how this
39
111567
2611
一起設計有趣的實驗方法 來去瞭解嗅覺如何運作,
01:54
sense of smell works and how the brain might be working,
40
114178
2386
以及去瞭解大腦相應地如何運作。
01:56
and, well, frankly, it's kind of exhilarating.
41
116564
2802
老實說,這项研究相當振奮我心。
01:59
But at the same time, it's my responsibility
42
119366
2718
但同時我也身兼教職,
02:02
to teach a large course to undergraduates on the brain,
43
122084
2949
我要教本科生關於腦科學的一門大課,
02:05
and that's a big subject,
44
125033
1075
這可是個大工程,
02:06
and it takes quite a while to organize that,
45
126108
2391
我花了很多工夫設計課程內容,
02:08
and it's quite challenging and it's quite interesting,
46
128499
2811
是個很有挑戰性也很有趣的工作。
02:11
but I have to say, it's not so exhilarating.
47
131310
3557
但我得說,設計課程並沒有為我帶來振奮感。
02:14
So what was the difference?
48
134867
1396
為什麼呢?差別在哪?
02:16
Well, the course I was and am teaching
49
136263
2069
那時到現在我一直在教的這門課,
02:18
is called Cellular and Molecular Neuroscience - I. (Laughs)
50
138332
6464
叫做「細胞和分子神經學」——壹。(笑聲)
02:24
It's 25 lectures full of all sorts of facts,
51
144796
4555
25堂課,介紹各種研究結果,
02:29
it uses this giant book called "Principles of Neural Science"
52
149351
4317
教材是這本鴻篇巨制:「神經科學原理」,
02:33
by three famous neuroscientists.
53
153668
2334
由三位著名的神經科學家共同編撰。
02:36
This book comes in at 1,414 pages,
54
156002
3781
全書共1414頁,
02:39
it weighs a hefty seven and a half pounds.
55
159783
2736
重達7.6英磅,
02:42
Just to put that in some perspective,
56
162519
1927
給大家一個概念,
02:44
that's the weight of two normal human brains.
57
164446
3455
這本書的重量相當於兩個正常人類的大腦。
02:47
(Laughter)
58
167901
3283
(笑聲)
02:51
So I began to realize, by the end of this course,
59
171184
3267
於是我開始意識到, 當學生們修完了這門課,
02:54
that the students maybe were getting the idea
60
174451
2248
他們也許會認為,
02:56
that we must know everything there is to know about the brain.
61
176699
3031
要瞭解大腦, 得先把現有知識全吸收盡才行。
02:59
That's clearly not true.
62
179730
1762
這想法顯然是不對的。
03:01
And they must also have this idea, I suppose,
63
181492
2698
我猜他們一定也有這個想法,
03:04
that what scientists do is collect data and collect facts
64
184190
3381
科學家的工作就只是收集數據和事實,
03:07
and stick them in these big books.
65
187571
2089
再訂到這樣的厚重教科書裡。
03:09
And that's not really the case either.
66
189660
1407
這同樣也不是事實。
03:11
When I go to a meeting, after the meeting day is over
67
191067
3303
我去參加研討會,會議結束之後,
03:14
and we collect in the bar over a couple of beers with my colleagues,
68
194370
3097
我和同事們一起 聚在酒吧裡喝上幾瓶啤酒,
03:17
we never talk about what we know.
69
197467
2201
我們談論的話題, 從來就不是已知的研究成果,
03:19
We talk about what we don't know.
70
199668
2166
而是那些我們還不知道的東西。
03:21
We talk about what still has to get done,
71
201834
2285
我們討論還有什麼問題需要研究,
03:24
what's so critical to get done in the lab.
72
204119
2825
什麼是實驗室下一步的重點工作。
03:26
Indeed, this was, I think, best said by Marie Curie
73
206944
2557
事實上,我認為,居里夫人給出了最好的詮釋:
03:29
who said that one never notices what has been done
74
209501
2419
「不應該只著眼於自己完成了什麼,
03:31
but only what remains to be done.
75
211920
1461
而應該看到還有什麼需要完成。」
03:33
This was in a letter to her brother after obtaining
76
213381
2225
這句話出自居里夫人寫給哥哥的信中,
03:35
her second graduate degree, I should say.
77
215606
3718
那時她剛拿到第二個碩士學位。
03:39
I have to point out this has always been one of my favorite pictures of Marie Curie,
78
219324
2813
我要指出,這一直是 我最喜愛的居里夫人的照片之一。
03:42
because I am convinced that that glow behind her
79
222137
2303
原因是,我確信她身後的光芒
03:44
is not a photographic effect. (Laughter)
80
224440
2738
不是電腦特效。(笑聲)
03:47
That's the real thing.
81
227178
1800
那一定是真的在發光。
03:48
It is true that her papers are, to this day,
82
228978
4380
居里夫人的手稿,直到現在都
03:53
stored in a basement room in the Bibliothèque Française
83
233358
2879
還保存在法國國家圖書館的地下貯藏室裡。
03:56
in a concrete room that's lead-lined,
84
236237
2197
貯藏室的牆壁以水泥砌成, 中間埋鉛以防輻射。
03:58
and if you're a scholar and you want access to these notebooks,
85
238434
2652
如果你以學者的身份申請查閱這些筆記,
04:01
you have to put on a full radiation hazmat suit,
86
241086
2749
就得先穿上全套的輻射防護服,
04:03
so it's pretty scary business.
87
243835
2351
這是頗嚇人的過程。
04:06
Nonetheless, this is what I think we were leaving out
88
246186
2796
不過,我認為她的精神恰恰是
04:08
of our courses
89
248982
1626
我們的課程所欠缺的,
04:10
and leaving out of the interaction that we have
90
250608
2526
也是我們這些科學家 在與大眾互動時所欠缺的,
04:13
with the public as scientists, the what-remains-to-be-done.
91
253134
2973
即「還有什麼需要完成」。
04:16
This is the stuff that's exhilarating and interesting.
92
256107
2634
這是令人振奮和有趣的東西。
04:18
It is, if you will, the ignorance.
93
258741
2910
如果你願意,可以叫它「無知」。
04:21
That's what was missing.
94
261651
979
這就是我們目前欠缺的。
04:22
So I thought, well, maybe I should teach a course
95
262630
2860
於是我想,或許我應該開一門課
04:25
on ignorance,
96
265490
2100
來討論「無知」,
04:27
something I can finally excel at, perhaps, for example.
97
267590
3629
或許,這才是我真正擅長的。
04:31
So I did start teaching this course on ignorance,
98
271219
1878
於是我真的去開了這門討論「無知」的課,
04:33
and it's been quite interesting
99
273097
1096
得到很有趣的結果。
04:34
and I'd like to tell you to go to the website.
100
274193
2086
我架設了網站,大家可以去看看,
04:36
You can find all sorts of information there. It's wide open.
101
276279
3636
你能在網站裡找到各式各樣的資訊, 它是完全開放的。
04:39
And it's been really quite an interesting time for me
102
279915
3523
我很享受在網站上
04:43
to meet up with other scientists who come in and talk
103
283438
1841
和其他科學家一起切磋
04:45
about what it is they don't know.
104
285279
1548
討論這些未知的、等待探索的領域。
04:46
Now I use this word "ignorance," of course,
105
286827
1985
當然,我現在使用「無知」這個詞,
04:48
to be at least in part intentionally provocative,
106
288812
3158
聽起來好像有些惡意挑釁的意味,
04:51
because ignorance has a lot of bad connotations
107
291970
2390
因為「無知」有很多負面意思,
04:54
and I clearly don't mean any of those.
108
294360
2005
但它們都不是我的本意。
04:56
So I don't mean stupidity, I don't mean a callow indifference
109
296365
3505
我指的不是愚笨,
04:59
to fact or reason or data.
110
299870
2308
也並非是指冷漠看待事實、推理或數據。
05:02
The ignorant are clearly unenlightened, unaware,
111
302178
3271
這種「無知」是未被啟蒙的,沒意識到的,
05:05
uninformed, and present company today excepted,
112
305449
3307
不接收資訊,像今日大家認為的大公司
05:08
often occupy elected offices, it seems to me.
113
308756
2908
裡頭坐滿我們選出的官員,我是這麼想的。
05:11
That's another story, perhaps.
114
311664
1806
這大概又是另一個議題了。
05:13
I mean a different kind of ignorance.
115
313470
1633
我所指的「無知」是另一種意義的無知。
05:15
I mean a kind of ignorance that's less pejorative,
116
315103
2268
它不包含那麼多的負面意義,
05:17
a kind of ignorance that comes from a communal gap in our knowledge,
117
317371
3487
而是說我們在知識上共同的差距,
05:20
something that's just not there to be known
118
320858
1865
一些我們還沒有瞭解的東西,
05:22
or isn't known well enough yet or we can't make predictions from,
119
322723
2821
或者瞭解得還不夠的東西, 或者我們無法預知的東西。
05:25
the kind of ignorance that's maybe best summed up
120
325544
2318
用一言以蔽之,
05:27
in a statement by James Clerk Maxwell,
121
327862
1845
這句話是詹姆士‧克拉克‧麥斯威爾說的,
05:29
perhaps the greatest physicist between Newton and Einstein,
122
329707
3449
他大概是牛頓和愛因斯坦之間 最偉大的物理學家,
05:33
who said, "Thoroughly conscious ignorance
123
333156
2301
他說過:「完全自覺自醒的無知
05:35
is the prelude to every real advance in science."
124
335457
2568
是每一次科學的實質性進步的前奏。」
05:38
I think it's a wonderful idea:
125
338025
1388
我認為他提出了很棒的看法:
05:39
thoroughly conscious ignorance.
126
339413
3147
「完全自覺自醒的無知」
05:42
So that's the kind of ignorance that I want to talk about today,
127
342560
2421
也是我今天要探討的「無知」。
05:44
but of course the first thing we have to clear up
128
344981
1519
不過首先我們得弄清楚
05:46
is what are we going to do with all those facts?
129
346500
2103
該如何對待現有的研究成果?
05:48
So it is true that science piles up at an alarming rate.
130
348603
3674
各式各樣的科學研究成果 以驚人的速率被提出,
05:52
We all have this sense that science is this mountain of facts,
131
352277
2810
讓我們覺得科學似乎 就等於這座研究成果堆成的高山。
05:55
this accumulation model of science, as many have called it,
132
355087
4036
科學的這種積累模式,就象很多人說的,
05:59
and it seems impregnable, it seems impossible.
133
359123
2451
它似乎堅不可摧,也似乎不可企及
06:01
How can you ever know all of this?
134
361574
1314
一個人怎麼能完全瞭解這裡頭所有的知識?
06:02
And indeed, the scientific literature grows at an alarming rate.
135
362888
3581
事實上,科學文獻在以驚人的速度增長。
06:06
In 2006, there were 1.3 million papers published.
136
366469
3654
2006年發表的科學論文總計130萬篇,
06:10
There's about a two-and-a-half-percent yearly growth rate,
137
370123
2632
年增長率約2.5%。
06:12
and so last year we saw over one and a half million papers being published.
138
372755
4390
去年,我們看到有150萬篇論文發表,
06:17
Divide that by the number of minutes in a year,
139
377145
2230
這個數值除以一年的總分鐘數,
06:19
and you wind up with three new papers per minute.
140
379375
3138
意味著每分鐘就有三篇論文發表。
06:22
So I've been up here a little over 10 minutes,
141
382513
1482
我站在這裡超過十分鐘了,
06:23
I've already lost three papers.
142
383995
1776
已經錯過了三篇論文沒讀 (*講者計算有誤 他會錯過三十篇)
06:25
I have to get out of here actually. I have to go read.
143
385771
2840
我得離開這裡,趕緊去讀那些論文呢。
06:28
So what do we do about this? Well, the fact is
144
388611
3446
我們拿這些研究成果怎麼辦呢?事實上,
06:32
that what scientists do about it is a kind of a controlled neglect, if you will.
145
392057
4509
科學家的工作也是 某種程度的控制下的忽視。
06:36
We just don't worry about it, in a way.
146
396566
2664
可以說,我們根本不去操這份心。
06:39
The facts are important. You have to know a lot of stuff
147
399230
2243
研究成果固然重要,你要知道很多東西,
06:41
to be a scientist. That's true.
148
401473
1810
才能成為科學家,這點沒錯。
06:43
But knowing a lot of stuff doesn't make you a scientist.
149
403283
2927
但知識淵博並不能使你成為科學家。
06:46
You need to know a lot of stuff to be a lawyer
150
406210
2665
要作律師也得掌握很多知識,
06:48
or an accountant or an electrician or a carpenter.
151
408875
3892
作會計師、電工、木匠亦然。
06:52
But in science, knowing a lot of stuff is not the point.
152
412767
3610
在科學領域裡,知識淵博並不是重點。
06:56
Knowing a lot of stuff is there to help you get
153
416377
3556
知道的多是為了讓你
06:59
to more ignorance.
154
419933
1388
更好地去探索「無知」。
07:01
So knowledge is a big subject, but I would say
155
421321
2510
我要說,知識是個重要的議題,
07:03
ignorance is a bigger one.
156
423831
2487
但「無知」更為重要。
07:06
So this leads us to maybe think about, a little bit
157
426318
2194
這或許能讓我們想到,多多少少
07:08
about, some of the models of science that we tend to use,
158
428528
2883
想到一些常用來類比科學的模型。
07:11
and I'd like to disabuse you of some of them.
159
431411
1825
我要糾正你們對這些模型的錯誤看法。
07:13
So one of them, a popular one, is that scientists
160
433236
2313
當中一個很受歡迎的理論是,
07:15
are patiently putting the pieces of a puzzle together
161
435549
2628
科學家們將一片片拼圖耐心組合,
07:18
to reveal some grand scheme or another.
162
438177
2773
去揭示一個又一個重大的發現。
07:20
This is clearly not true. For one, with puzzles,
163
440950
2558
這顯然不是那麼回事。首先,說到拼圖,
07:23
the manufacturer has guaranteed that there's a solution.
164
443508
3499
廠家能保證你一定能做出完整的圖案。
07:27
We don't have any such guarantee.
165
447007
1749
而我們對科學研究卻沒法打保票。
07:28
Indeed, there are many of us who aren't so sure about the manufacturer.
166
448756
3155
事實上,我們中的很多人對廠家也不太有信心。
07:31
(Laughter)
167
451911
3063
(笑聲)
07:34
So I think the puzzle model doesn't work.
168
454974
1757
所以我認為拼圖模型是說不通的。
07:36
Another popular model is that science is busy unraveling things
169
456731
3514
另一個受歡迎的模型是, 科學就是忙著解開層層謎題,
07:40
the way you unravel the peels of an onion.
170
460245
2196
就像剝洋蔥一樣。
07:42
So peel by peel, you take away the layers of the onion
171
462441
2989
一層接著一層,你剝開洋蔥的皮,
07:45
to get at some fundamental kernel of truth.
172
465430
2319
最後得到核心真相。
07:47
I don't think that's the way it works either.
173
467749
2187
我也不認為科學是這樣運作的。
07:49
Another one, a kind of popular one, is the iceberg idea,
174
469936
2934
另一種理論,也蠻有名的,就是冰山模型:
07:52
that we only see the tip of the iceberg but underneath
175
472870
2460
我們所見只是冰山一角,
07:55
is where most of the iceberg is hidden.
176
475330
2185
水面之下隱藏的冰山才占絕大部分。
07:57
But all of these models are based on the idea of a large body of facts
177
477515
3554
這些模型都基於同一個理念, 即存在一個龐大的知識體系,
08:01
that we can somehow or another get completed.
178
481069
2420
我們能夠通過這樣那樣的方法使之完善。
08:03
We can chip away at this iceberg and figure out what it is,
179
483489
3343
我們可以鏟開冰山,去研究它究竟是怎麼回事,
08:06
or we could just wait for it to melt, I suppose, these days,
180
486832
2605
或者以現今的氣候,等它融化就好。
08:09
but one way or another we could get to the whole iceberg. Right?
181
489437
3227
但不論如何我們都能看透冰山的全貌,對吧?
08:12
Or make it manageable. But I don't think that's the case.
182
492664
2467
或讓它變得可控。但我不這麼認為。
08:15
I think what really happens in science
183
495131
2399
我認為科學真正的模型
08:17
is a model more like the magic well,
184
497530
1830
更接近一座魔法水井,
08:19
where no matter how many buckets you take out,
185
499360
1837
不論你從井中打了多少桶水,
08:21
there's always another bucket of water to be had,
186
501197
2112
都還能再打出一桶。
08:23
or my particularly favorite one,
187
503309
2127
還有一個我特別鍾愛的模型,
08:25
with the effect and everything, the ripples on a pond.
188
505436
2939
考慮到種種影響和元素,科學就像是池塘裡的漣漪。
08:28
So if you think of knowledge being this ever-expanding ripple on a pond,
189
508375
3127
如果把知識比作池塘裡不斷漾開的漣漪,
08:31
the important thing to realize is that our ignorance,
190
511502
3382
那麼重要的是要意識到我們的「無知」,
08:34
the circumference of this knowledge, also grows with knowledge.
191
514884
3382
就像漣漪的圓周長一樣, 隨著知識的擴大而不斷擴展。
08:38
So the knowledge generates ignorance.
192
518266
2763
知識產生「無知」。
08:41
This is really well said, I thought, by George Bernard Shaw.
193
521029
2915
蕭伯納說過一句很棒的話,
08:43
This is actually part of a toast that he delivered
194
523944
2677
他在慶祝愛因斯坦工作成績的晚宴上
08:46
to celebrate Einstein at a dinner celebrating Einstein's work,
195
526621
3677
為愛因斯坦致祝酒詞,
08:50
in which he claims that science
196
530298
1414
他認為,與其說科學在解決問題,
08:51
just creates more questions than it answers. ["Science is always wrong. It never solves a problem without creating 10 more."]
197
531712
2265
不如說是在製造問題。 [科學總是錯的。每當解決了一個問題,它總是製造出十個新的問題。]
08:53
I find that kind of glorious, and I think he's precisely right,
198
533977
3542
我覺得這真是至理名言了。 他說的一點沒錯。
08:57
plus it's a kind of job security.
199
537519
2526
這也說明了我們永遠不會失業。
09:00
As it turns out, he kind of cribbed that
200
540045
2726
後來發現,這可能是借鑒了
09:02
from the philosopher Immanuel Kant
201
542771
1852
哲學家康德的理念。
09:04
who a hundred years earlier had come up with this idea
202
544623
2645
早在一百年前, 康德就提出了「問題相生」的概念,
09:07
of question propagation, that every answer begets more questions.
203
547268
3808
每個答案都會帶來更多的問題。
09:11
I love that term, "question propagation,"
204
551076
2199
我喜歡「 問題相生」這個術語,
09:13
this idea of questions propagating out there.
205
553275
2739
這個「問題會衍生問題」的概念。
09:16
So I'd say the model we want to take is not
206
556014
1887
所以我要說,我們想採用的模型,並不是
09:17
that we start out kind of ignorant and we get some facts together
207
557901
3509
要從無知開始,共同找到一些現象,
09:21
and then we gain knowledge.
208
561410
2143
然後獲得獲得某種知識。
09:23
It's rather kind of the other way around, really.
209
563553
2379
實際情況正好相反。
09:25
What do we use this knowledge for?
210
565932
1907
現有的知識有什麼用?
09:27
What are we using this collection of facts for?
211
567839
2528
至今收集到的事實有什麼用?
09:30
We're using it to make better ignorance,
212
570367
2857
我們要用它們來得到更好的「無知」,
09:33
to come up with, if you will, higher-quality ignorance.
213
573224
3079
得到「高品質的無知」。
09:36
Because, you know, there's low-quality ignorance
214
576303
1872
因為有低品質的無知,
09:38
and there's high-quality ignorance. It's not all the same.
215
578175
2413
相對也有高品質的,兩者並不相同。
09:40
Scientists argue about this all the time.
216
580588
2370
科學家們總是為此爭論。
09:42
Sometimes we call them bull sessions.
217
582958
1965
有時我們稱它為鬥牛大會,
09:44
Sometimes we call them grant proposals.
218
584923
1918
有時我們稱它為申請研究基金。
09:46
But nonetheless, it's what the argument is about.
219
586841
3508
無論是哪個,我們爭論的點都是相同的,
09:50
It's the ignorance. It's the what we don't know.
220
590349
1844
那就是「無知」,什麼是我們不知道的,
09:52
It's what makes a good question.
221
592193
2690
怎樣才是一個好問題。
09:54
So how do we think about these questions?
222
594883
1630
我們又怎麼看待這些問題呢?
09:56
I'm going to show you a graph that shows up
223
596513
1952
給大家看一張圖,
09:58
quite a bit on happy hour posters in various science departments.
224
598465
3867
它經常被各個科學部門用來做聚會的海報。
10:02
This graph asks the relationship between what you know
225
602332
4221
這個圖表探討「你知道什麼」和「你瞭解多少」
10:06
and how much you know about it.
226
606553
2190
兩者之間的關係。
10:08
So what you know, you can know anywhere from nothing to everything, of course,
227
608743
3515
「你知道什麼」,你可以從一無所知到無所不知;
10:12
and how much you know about it can be anywhere
228
612258
1683
「你瞭解多少」,則可以從只瞭解一點點
10:13
from a little to a lot.
229
613941
2423
到瞭解很多。
10:16
So let's put a point on the graph. There's an undergraduate.
230
616364
4232
讓我們在這張圖表上畫一個點,這是一名大學生。
10:20
Doesn't know much but they have a lot of interest.
231
620596
2364
瞭解程度不高,但有很多的興趣。
10:22
They're interested in almost everything.
232
622960
1691
他們幾乎對什麼事都感興趣。
10:24
Now you look at a master's student, a little further along in their education,
233
624651
3454
現在來看一個碩士生, 因為他受教育的時間更長,
10:28
and you see they know a bit more,
234
628105
1351
所以他們瞭解程度更高,
10:29
but it's been narrowed somewhat.
235
629456
1890
但知識面變窄了。
10:31
And finally you get your Ph.D., where it turns out
236
631346
2719
接下來終於你拿到博士學位了,結果…
10:34
you know a tremendous amount about almost nothing. (Laughter)
237
634065
5105
瞭解很深,但知識面近乎為零。(笑聲)
10:39
What's really disturbing is the trend line that goes through that
238
639170
3781
令人困擾的是穿越這些點的趨勢線,
10:42
because, of course, when it dips below the zero axis, there,
239
642951
3775
因為當它達到零以下,這個地方,
10:46
it gets into a negative area.
240
646726
2262
它就進入了負值區域,
10:48
That's where you find people like me, I'm afraid.
241
648988
2915
恐怕我這樣的人都在那兒了。
10:51
So the important thing here is that this can all be changed.
242
651903
3368
不過,重要的是這都可以改變。
10:55
This whole view can be changed
243
655271
1804
整個觀點可以變得截然不同,
10:57
by just changing the label on the x-axis.
244
657075
3161
只要把 X 軸的標籤改掉就好了。
11:00
So instead of how much you know about it,
245
660236
1917
我們把「你瞭解多少」的標籤
11:02
we could say, "What can you ask about it?"
246
662153
3541
換成「你能問出什麼」。
11:05
So yes, you do need to know a lot of stuff as a scientist,
247
665694
2867
當然,作為一名科學家確實需要知識淵博,
11:08
but the purpose of knowing a lot of stuff
248
668561
2629
但吸收大量知識的目的
11:11
is not just to know a lot of stuff. That just makes you a geek, right?
249
671190
2587
並不在於獲得各種知識,以致成為技客。
11:13
Knowing a lot of stuff, the purpose is
250
673777
2138
吸收大量知識是為了
11:15
to be able to ask lots of questions,
251
675915
1676
能提出很多問題,
11:17
to be able to frame thoughtful, interesting questions,
252
677591
3088
能架構出深思熟慮的、有趣的問題,
11:20
because that's where the real work is.
253
680679
1725
而才是真正的科學工作。
11:22
Let me give you a quick idea of a couple of these sorts of questions.
254
682404
2552
我給大家舉兩個例子。
11:24
I'm a neuroscientist, so how would we come up
255
684956
2163
我是一名神經科學家, 在神經學這個領域,
11:27
with a question in neuroscience?
256
687119
1431
我們是如何提出問題的呢?
11:28
Because it's not always quite so straightforward.
257
688550
2669
情況並不是總是直截了當的。
11:31
So, for example, we could say, well what is it that the brain does?
258
691219
2559
比如,我們可以問,大腦到底起什麼作用?
11:33
Well, one thing the brain does, it moves us around.
259
693778
1814
大腦的一項功能是指揮身體行動,
11:35
We walk around on two legs.
260
695592
2005
讓我們以雙腳行走。
11:37
That seems kind of simple, somehow or another.
261
697597
1851
這似乎太簡單了。
11:39
I mean, virtually everybody over 10 months of age
262
699448
2725
幾乎每個年齡超過10個月的人
11:42
walks around on two legs, right?
263
702173
2172
都能以雙腳行走,對吧?
11:44
So that maybe is not that interesting.
264
704345
1391
所以說這個問題沒什麼意思。
11:45
So instead maybe we want to choose something a little more complicated to look at.
265
705736
3148
所以我們可能會選擇 提出一些更複雜些的問題去研究。
11:48
How about the visual system?
266
708884
2775
視覺系統怎麼樣?
11:51
There it is, the visual system.
267
711659
1627
好,就選視覺系統了。
11:53
I mean, we love our visual systems. We do all kinds of cool stuff.
268
713286
3248
我們喜歡視覺系統,可以搞很酷的研究。
11:56
Indeed, there are over 12,000 neuroscientists
269
716534
3391
事實上,有超過一萬兩千名神經學家
11:59
who work on the visual system,
270
719925
1580
以視覺系統為研究對象,
12:01
from the retina to the visual cortex,
271
721505
2081
從視網膜到視覺皮層,
12:03
in an attempt to understand not just the visual system
272
723586
2565
這些研究不僅僅是局限在視覺系統,
12:06
but to also understand how general principles
273
726151
3024
還包括如何通過視覺系統研究去瞭解
12:09
of how the brain might work.
274
729175
1951
大腦是如何運作的普遍原理。
12:11
But now here's the thing:
275
731126
1660
但目前的情況是:
12:12
Our technology has actually been pretty good
276
732786
2480
我們現在擁有很好的
12:15
at replicating what the visual system does.
277
735266
2590
複製視覺系統的技術。
12:17
We have TV, we have movies,
278
737856
3023
我們有電視,我們有電影,
12:20
we have animation, we have photography,
279
740879
2495
我們有動畫,我們有攝影,
12:23
we have pattern recognition, all of these sorts of things.
280
743374
3151
我們有模型識別技術, 很多其他的這一類技術。
12:26
They work differently than our visual systems in some cases,
281
746525
2646
有些視覺技術的工作原理 和視覺系統不大一樣。
12:29
but nonetheless we've been pretty good at
282
749171
1591
儘管如此,我們現有的視覺技術
12:30
making a technology work like our visual system.
283
750762
3476
已經與視覺系統非常近似了。
12:34
Somehow or another, a hundred years of robotics,
284
754238
2936
但是,機器人技術的發展已經有一百年了,
12:37
you never saw a robot walk on two legs,
285
757174
2266
你還沒見過一個用兩條腿走路的機器人。
12:39
because robots don't walk on two legs
286
759440
2163
因為機器人不是用兩條腿走路的,
12:41
because it's not such an easy thing to do.
287
761603
2390
這可不是一件易事。
12:43
A hundred years of robotics,
288
763993
1528
一百年的機器人技術發展,
12:45
and we can't get a robot that can move more than a couple steps one way or the other.
289
765521
3367
我們甚至不能讓機器人走上一兩步。
12:48
You ask them to go up an inclined plane, and they fall over.
290
768888
2572
你讓機器人走個斜面試試,它們肯定會摔倒。
12:51
Turn around, and they fall over. It's a serious problem.
291
771460
2004
讓它們轉身,它們也會摔倒。 這是個科技上的難題。
12:53
So what is it that's the most difficult thing for a brain to do?
292
773464
3547
那麼,對大腦來說, 什麼是最難完成的任務呢?
12:57
What ought we to be studying?
293
777011
1623
我們必需要研究的是什麼?
12:58
Perhaps it ought to be walking on two legs, or the motor system.
294
778634
4295
或許是研究以雙腳走路,或動力系統。
13:02
I'll give you an example from my own lab,
295
782929
1735
我給你們舉個我自己實驗室的例子,
13:04
my own particularly smelly question,
296
784664
1725
我的實驗小組研究嗅覺系統,
13:06
since we work on the sense of smell.
297
786389
2099
於是設法找出嗅覺方面的問題。
13:08
But here's a diagram of five molecules
298
788488
3228
這張圖裡有五個分子,
13:11
and sort of a chemical notation.
299
791716
1510
和它們的化學式。
13:13
These are just plain old molecules, but if you sniff those molecules
300
793226
2996
這都是些最普通的分子了,但如果你
13:16
up these two little holes in the front of your face,
301
796222
2470
用你臉上這兩個小洞洞 來聞聞那些分子的話,
13:18
you will have in your mind the distinct impression of a rose.
302
798692
3874
你的腦海中會出現 一朵玫瑰的鮮明印象。
13:22
If there's a real rose there, those molecules will be the ones,
303
802566
2158
如果說真的有玫瑰的話, 那些分子就是「玫瑰」。
13:24
but even if there's no rose there,
304
804724
1560
但即使沒有玫瑰,
13:26
you'll have the memory of a molecule.
305
806284
1591
你也會有關於這些分子的記憶。
13:27
How do we turn molecules into perceptions?
306
807875
3104
我們怎麼將這些分子轉化為知覺?
13:30
What's the process by which that could happen?
307
810979
1857
會發生什麼樣的轉變過程?
13:32
Here's another example: two very simple molecules, again in this kind of chemical notation.
308
812836
3960
再舉一個例子,這是兩個簡單的分子化學式。
13:36
It might be easier to visualize them this way,
309
816796
2077
或許這樣看比較容易想像,
13:38
so the gray circles are carbon atoms, the white ones
310
818873
2794
灰色圓圈代表碳原子, 白色圓圈代表氫原子,
13:41
are hydrogen atoms and the red ones are oxygen atoms.
311
821667
2775
紅色圓圈代表氧原子。
13:44
Now these two molecules differ by only one carbon atom
312
824442
4298
那麼這兩個分子式的差別 就在於一個碳原子
13:48
and two little hydrogen atoms that ride along with it,
313
828740
2688
和兩個與之相連的氫原子,
13:51
and yet one of them, heptyl acetate,
314
831428
1986
其中一個分子叫乙酸庚酯
13:53
has the distinct odor of a pear,
315
833414
2311
帶著特殊的梨的氣味。
13:55
and hexyl acetate is unmistakably banana.
316
835725
3839
(另一個是)醋酸己酯,卻有一種明顯的香蕉氣味。
13:59
So there are two really interesting questions here, it seems to me.
317
839564
2557
這裡我發現兩個有趣的問題
14:02
One is, how can a simple little molecule like that
318
842121
3215
其一,如此一個簡單的小分子
14:05
create a perception in your brain that's so clear
319
845336
2468
是如何在你的腦海裡 建立起如此清晰的認識
14:07
as a pear or a banana?
320
847804
1742
讓你輕鬆辨別出一顆梨,或一條香蕉?
14:09
And secondly, how the hell can we tell the difference
321
849546
3121
其二,為什麼我們能辨別出兩者的差異
14:12
between two molecules that differ by a single carbon atom?
322
852667
4315
兩個分子僅僅只有一個碳原子鍵的不同而已。
14:16
I mean, that's remarkable to me,
323
856982
1646
這是對我意義重大的發現,
14:18
clearly the best chemical detector on the face of the planet.
324
858628
3032
地球上最精密的化學探測器, 顯然長在我們臉上。
14:21
And you don't even think about it, do you?
325
861660
2776
你甚至從來都沒想過這些,對吧?
14:24
So this is a favorite quote of mine that takes us
326
864436
2617
讓我用我喜愛的名言拉回主題
14:27
back to the ignorance and the idea of questions.
327
867053
1746
「無知」和「提出問題」
14:28
I like to quote because I think dead people
328
868799
2019
我喜愛引用名人名言,因為我覺得
14:30
shouldn't be excluded from the conversation.
329
870818
2543
死者也應該參與這樣的討論。
14:33
And I also think it's important to realize that
330
873361
1939
而我也認為有必要彰顯出
14:35
the conversation's been going on for a while, by the way.
331
875300
2462
這個討論已經存在好一段時間了。
14:37
So Erwin Schrodinger, a great quantum physicist
332
877762
2758
薛定諤,偉大的量子物理學家,
14:40
and, I think, philosopher, points out how you have to
333
880520
2566
我覺得他也是哲學家,他指出你必須
14:43
"abide by ignorance for an indefinite period" of time.
334
883086
3465
「保持無知,以面對浩瀚無垠的時間」
14:46
And it's this abiding by ignorance
335
886551
1987
而我們要學習的課題,
14:48
that I think we have to learn how to do.
336
888538
1666
就是怎麼「保持無知」。
14:50
This is a tricky thing. This is not such an easy business.
337
890204
2977
這是個棘手的問題,並非易事。
14:53
I guess it comes down to our education system,
338
893181
1959
我想得從我們的教育系統探討起,
14:55
so I'm going to talk a little bit about ignorance and education,
339
895140
2457
這裡我談一點「無知」和教育間的關係,
14:57
because I think that's where it really has to play out.
340
897597
2268
因為我認為必需教導「無知」的概念。
14:59
So for one, let's face it,
341
899865
2267
首先,讓我們面對現實,
15:02
in the age of Google and Wikipedia,
342
902132
3352
這是個 Google 和維基百科的時代,
15:05
the business model of the university
343
905484
1793
大學的運營模式,
15:07
and probably secondary schools is simply going to have to change.
344
907277
3421
甚至是我們的中學, 真的都需要一些實質的改變。
15:10
We just can't sell facts for a living anymore.
345
910698
1901
我們真的不能光靠販賣「事實」為生了。
15:12
They're available with a click of the mouse,
346
912599
2050
學生們動一動滑鼠就能得資訊,
15:14
or if you want to, you could probably just ask the wall
347
914649
2496
如果你想,大概敲牆問一問也行。
15:17
one of these days, wherever they're going to hide the things
348
917145
1712
現今社會中,不管你把東西藏在哪裡,
15:18
that tell us all this stuff.
349
918857
1417
科技都能讓你無所遁形。
15:20
So what do we have to do? We have to give our students
350
920274
2883
那我們得做什麼?我們得告訴我們的學生,
15:23
a taste for the boundaries, for what's outside that circumference,
351
923157
3896
探索邊界的滋味,漣漪之外有什麼,
15:27
for what's outside the facts, what's just beyond the facts.
352
927053
4308
事實之外是什麼,事實背後有什麼。
15:31
How do we do that?
353
931361
2157
我們應該怎麼做?
15:33
Well, one of the problems, of course,
354
933518
1508
當然,我們一定會遇到的困難之一
15:35
turns out to be testing.
355
935026
2109
就是考試。
15:37
We currently have an educational system
356
937135
2649
我們目前的教育體系
15:39
which is very efficient but is very efficient at a rather bad thing.
357
939784
3709
很高效,但效率的指向並不好。
15:43
So in second grade, all the kids are interested in science,
358
943493
2974
所有上二年級的孩子都對科學感興趣,
15:46
the girls and the boys.
359
946467
1263
無論女孩還是男孩,
15:47
They like to take stuff apart. They have great curiosity.
360
947730
3974
都喜歡拆解東西來研究,好奇心強烈,
15:51
They like to investigate things. They go to science museums.
361
951704
2499
喜歡做調查,參觀科學博物館,
15:54
They like to play around. They're in second grade.
362
954203
6188
喜歡四處玩耍。這就是二年級生的情況,
16:00
They're interested.
363
960407
1494
他們對什麼都感興趣。
16:01
But by 11th or 12th grade, fewer than 10 percent
364
961901
2934
但到了高中二年級或三年級,只剩不到10%的學生
16:04
of them have any interest in science whatsoever,
365
964835
3075
還對科學抱持興趣,
16:07
let alone a desire to go into science as a career.
366
967910
2945
更別提想從事科學方面的工作了。
16:10
So we have this remarkably efficient system
367
970855
2982
我們有個極其高效的系統
16:13
for beating any interest in science out of everybody's head.
368
973837
3973
來打擊孩子們對於科學的興致。
16:17
Is this what we want?
369
977810
1914
這是我們想要的嗎?
16:19
I think this comes from what a teacher colleague of mine
370
979724
2342
我的一位大學老師同事把這
16:22
calls "the bulimic method of education."
371
982066
2722
叫做「填鴨式教育」
16:24
You know. You can imagine what it is.
372
984788
1373
大家都知道,能想像出那是什麼情形。
16:26
We just jam a whole bunch of facts down their throats over here
373
986161
2948
我們只是在把一大堆事實 塞進他們的喉嚨裡,
16:29
and then they puke it up on an exam over here
374
989109
2354
然後在考試的時候讓他們吐出來,
16:31
and everybody goes home with no added intellectual heft whatsoever.
375
991463
4579
沒有一個學生真正帶著知識回家。
16:36
This can't possibly continue to go on.
376
996042
2081
我們不能這樣繼續下去了。
16:38
So what do we do? Well the geneticists, I have to say,
377
998123
2334
那我們該怎麼辦?我得說,遺傳學家
16:40
have an interesting maxim they live by.
378
1000457
1983
他們中流傳著很有趣的格言。
16:42
Geneticists always say, you always get what you screen for.
379
1002440
5252
遺傳學家總說:「你總能得到想要篩選出來的結果。」
16:47
And that's meant as a warning.
380
1007692
2861
我們可以把這句話當成警告。
16:50
So we always will get what we screen for,
381
1010553
2319
我們總能得到想要篩選出來的結果。
16:52
and part of what we screen for is in our testing methods.
382
1012872
3455
我們想要篩選出來的結果 部分存在於考試方法中。
16:56
Well, we hear a lot about testing and evaluation,
383
1016327
3243
我們已經聽過太多的測試呀,評估呀,
16:59
and we have to think carefully when we're testing
384
1019570
2187
當我們實際去測試時,我們得想清楚
17:01
whether we're evaluating or whether we're weeding,
385
1021757
3087
是在做評估還是要做淘汰,
17:04
whether we're weeding people out,
386
1024844
1459
是否在做淘汰,
17:06
whether we're making some cut.
387
1026303
3134
是否在做精簡。
17:09
Evaluation is one thing. You hear a lot about evaluation
388
1029437
2641
評估是一回事。近來在教育學的文獻中,
17:12
in the literature these days, in the educational literature,
389
1032078
2910
有許多關於做評估的,
17:14
but evaluation really amounts to feedback and it amounts
390
1034988
2958
但評估其實意味著回饋,
17:17
to an opportunity for trial and error.
391
1037946
2154
意味著給試驗和犯錯提供機會。
17:20
It amounts to a chance to work over a longer period of time
392
1040100
4494
它意味著在更長的期間裡,
17:24
with this kind of feedback.
393
1044594
1910
利用這些回饋的機會。
17:26
That's different than weeding, and usually, I have to tell you,
394
1046504
2938
這跟淘汰是不同的。我要告訴大家,通常
17:29
when people talk about evaluation, evaluating students,
395
1049442
2726
當人們談到評估,評估學生,
17:32
evaluating teachers, evaluating schools,
396
1052168
2787
評估老師,評估學校,
17:34
evaluating programs, that they're really talking about weeding.
397
1054955
4161
評估專案,他們真正的意思是淘汰。
17:39
And that's a bad thing, because then you will get what you select for,
398
1059116
4210
這就不是什麼好事了。 因為你會得到你想選擇的,
17:43
which is what we've gotten so far.
399
1063326
1958
這也是我們的現狀。
17:45
So I'd say what we need is a test that says, "What is x?"
400
1065284
3441
我認為我們需要這樣的測驗,問「什麼是X」
17:48
and the answers are "I don't know, because no one does,"
401
1068725
3092
回答則是「我不知道,因為沒人知道。」
17:51
or "What's the question?" Even better.
402
1071817
1741
或「問題是什麼?」這樣更好。
17:53
Or, "You know what, I'll look it up, I'll ask someone,
403
1073558
2390
或「知道嗎?我會查一下,我會去問問別人。
17:55
I'll phone someone. I'll find out."
404
1075964
2700
我會打幾個電話。我會找出答案。」
17:58
Because that's what we want people to do,
405
1078664
1550
而這才是我們希望人們去做的,
18:00
and that's how you evaluate them.
406
1080214
1371
這才是做評估的方式。
18:01
And maybe for the advanced placement classes,
407
1081585
1943
對一些優等生班,
18:03
it could be, "Here's the answer. What's the next question?"
408
1083528
3714
答案可能是:「這是答案,下一個問題是什麼?」
18:07
That's the one I like in particular.
409
1087242
1511
這是我特別喜歡的一個問題。
18:08
So let me end with a quote from William Butler Yeats,
410
1088753
2177
請讓我以葉慈的話來結束我的演講。
18:10
who said "Education is not about filling buckets;
411
1090930
3167
他說:「教育並不是注滿水桶,
18:14
it is lighting fires."
412
1094097
2153
而是點燃火種。」
18:16
So I'd say, let's get out the matches.
413
1096250
3875
讓我們拿出火柴吧!
18:20
Thank you.
414
1100125
1208
謝謝大家。
18:21
(Applause)
415
1101333
3227
(掌聲)
18:24
Thank you. (Applause)
416
1104560
3816
謝謝。(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7