Paul Rothemund: Casting spells with DNA

42,076 views ใƒป 2007-10-18

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Yifat Adler ืžื‘ืงืจ: Ido Dekkers
00:26
There's an ancient and universal concept that words have power,
0
26000
3976
ื™ืฉื ื• ืจืขื™ื•ืŸ ืขืชื™ืง ื•ืื•ื ื™ื‘ืจืกืืœื™ ืฉืœืžื™ืœื™ื ื™ืฉ ื›ื•ื—,
00:30
that spells exist,
1
30000
1334
ืฉืงืกืžื™ื ืงื™ื™ืžื™ื, ื•ืฉืื ืจืง ื”ื™ื™ื ื• ื™ื›ื•ืœื™ื ืœื‘ื˜ื ืืช ื”ืžื™ืœื™ื ื”ื ื›ื•ื ื•ืช,
00:31
and that if we could only pronounce the right words,
2
31358
2697
00:34
then -- whoosh! -- you know, an avalanche would come
3
34079
2829
ืื–, ื•ื•ื•ื•ื•ื•ืฉ! ืชื’ื™ืข ืžืคื•ืœืช ืฉืœื’ื™ื
00:36
and wipe out the hobbits, right?
4
36932
2005
ืฉืชื—ืกืœ ืืช ื”ื”ื•ื‘ื™ื˜ื™ื. ื ื›ื•ืŸ? ื–ื”ื• ืจืขื™ื•ืŸ ืžืื•ื“ ืžื•ืฉืš
00:38
So this is a very attractive idea,
5
38961
1987
00:40
because we're very lazy, like the Sorcerer's Apprentice,
6
40972
2627
ื›ื™ ืื ื—ื ื• ืžืื•ื“ ืขืฆืœื ื™ื, ื›ืžื• ืฉื•ืœื™ื™ืช ื”ืงื•ืกื,
00:43
or the world's greatest computer programmer.
7
43623
2071
ืื• ืžืชื›ื ืช ื”ืžื—ืฉื‘ื™ื ื”ื’ื“ื•ืœ ื‘ืขื•ืœื.
00:45
This idea has a lot of traction with us.
8
45718
1910
ืื ื›ืš, ืื ื—ื ื• ืžืื•ื“ ืื•ื”ื‘ื™ื ืืช ื”ืจืขื™ื•ืŸ
00:47
We love the idea that words, when pronounced,
9
47652
2138
ืฉืžื™ืœื™ื, ื›ืืฉืจ ืžื‘ื˜ืื™ื ืื•ืชืŸ -
00:49
are little more than pure information,
10
49814
1818
ืœืžืจื•ืช ืฉื”ืŸ ืœื ื”ืจื‘ื” ื™ื•ืชืจ ืžื ืชื•ื ื™ื ื˜ื”ื•ืจื™ื,
00:51
but they evoke physical action in the real world
11
51656
2259
ืžืขื•ืจืจื•ืช ืคืขื•ืœื” ืคื™ื–ื™ืช ื‘ืขื•ืœื ื”ืืžื™ืชื™
00:53
that helps us do work.
12
53939
1159
ืฉืžืกื™ื™ืขืช ืœื ื• ืœื‘ืฆืข ืืช ืขื‘ื•ื“ืชื ื•.
ื•ืžื›ื™ื•ื•ืŸ ืฉืื ื• ืžื•ืงืคื™ื ื‘ืžื—ืฉื‘ื™ื ื”ื ื™ืชื ื™ื ืœืชื›ื ื•ืช
00:55
So, of course, with lots of programmable computers
13
55122
2408
00:57
and robots around,
14
57554
1151
ื•ื‘ืจื•ื‘ื•ื˜ื™ื, ืงืœ ืœื“ืžื™ื™ืŸ ืชืžื•ื ื” ื–ื•.
00:58
this is an easy thing to picture.
15
58729
1832
01:00
How many of you know what I'm talking about?
16
60585
2065
ื›ืžื” ืžื›ื ื™ื•ื“ืขื™ื ืขืœ ืžื” ืื ื™ ืžื“ื‘ืจ?
01:02
Raise your right hand.
17
62674
1151
ื”ืจื™ืžื• ืืช ื™ื“ ื™ืžื™ืŸ.
01:03
How many don't know what I'm talking about?
18
63849
2003
ื›ืžื” ืžื›ื ืœื ื™ื•ื“ืขื™ื ืขืœ ืžื” ืื ื™ ืžื“ื‘ืจ? ื”ืจื™ืžื• ืืช ื™ื“ ืฉืžืืœ.
01:05
Raise your left hand.
19
65876
1151
ื ื”ื“ืจ. ื–ื” ื”ื™ื” ืงืœ ืžื“ื™.
01:07
So that's great. So that was too easy.
20
67051
2879
01:09
You guys have very insecure computers, OK?
21
69954
3119
ื”ืžื—ืฉื‘ื™ื ืฉืœื›ื ืžืื•ื“ ืœื ื‘ื˜ื•ื—ื™ื.
ืื ื™ ืžื“ื‘ืจ ืขืœ ืกื•ื’ ืฉื•ื ื” ืฉืœ ืงืกื.
01:13
So now the thing is, this is a different kind of spell.
22
73097
3628
01:16
This is a computer program made of zeros and ones.
23
76749
2357
ื–ื•ื”ื™ ืชื•ื›ื ืช ืžื—ืฉื‘ ื”ื‘ื ื•ื™ื” ืžืืคืกื™ื ื•ืื—ื“ื™ื.
ื ื™ืชืŸ ืœื‘ื˜ื ืื•ืชื” ืขืœ ื’ื‘ื™ ืžื—ืฉื‘. ื”ื™ื ืขื•ืฉื” ืžืฉื”ื• ื›ืžื• ื–ื”.
01:19
It can be pronounced on a computer, does something like this.
24
79130
2858
ื”ื“ื‘ืจ ื”ื—ืฉื•ื‘ ื”ื•ื ืฉื ื™ืชืŸ ืœื›ืชื•ื‘ ืื•ืชื” ื‘ืฉืคื” ืขื™ืœื™ืช.
01:22
The important thing is we can write it in a high-level language.
25
82012
3010
ืงื•ืกื ืžื—ืฉื‘ื™ื ื™ื›ื•ืœ ืœื›ืชื•ื‘ ืืช ื”ื“ื‘ืจ ื”ื–ื”,
01:25
A computer magician can write this thing.
26
85046
1962
ื•ืืคืฉืจ ืœื”ื“ืจ ืื•ืชื• ืœื–ื” - ืืคืกื™ื ื•ืื—ื“ื™ื
01:27
It can be compiled into zeros and ones and pronounced by a computer.
27
87032
3214
ื›ืš ืฉืžื—ืฉื‘ ื™ื›ื•ืœ ืœื‘ื˜ื ืื•ืชื•.
01:30
And that's what makes computers powerful,
28
90270
1999
ืžื—ืฉื‘ื™ื ื”ื ืจื‘ื™ ืขื•ืฆืžื”
01:32
these high-level languages that can be compiled.
29
92293
2260
ื‘ื–ื›ื•ืช ื”ืฉืคื•ืช ื”ืขื™ืœื™ื•ืช ื”ื ื™ืชื ื•ืช ืœื”ื™ื“ื•ืจ.
01:34
And so, I'm here to tell you, you don't need a computer
30
94577
2856
ืื‘ืœ, ืืชื ืœื ื–ืงื•ืงื™ื ืœืžื—ืฉื‘
01:37
to actually have a spell.
31
97457
1894
ื›ื“ื™ ืœื”ื˜ื™ืœ ืงืกืžื™ื. ืœืžืขืฉื”, ืืชื ื™ื›ื•ืœื™ื ืœืคืขื•ืœ
01:39
In fact, what you can do at the molecular level
32
99375
2285
ื‘ืจืžื” ื”ืžื•ืœืงื•ืœืจื™ืช ืื ืืชื ืžืงื•ื“ื“ื™ื ื ืชื•ื ื™ื -
01:41
is that if you encode information --
33
101684
1974
01:43
you encode a spell or program as molecules --
34
103682
2190
ืืชื ืžืงื•ื“ื“ื™ื ืงืกื ืื• ืชื•ื›ื ื™ืช ื›ืžื•ืœืงื•ืœื•ืช -
01:45
then physics can actually directly interpret that information
35
105896
3619
ื•ืื– ื”ืคื™ื–ื™ืงื” ื™ื›ื•ืœื” ืœืคืขื ื— ื‘ืื•ืคืŸ ื™ืฉื™ืจ ืืช ื”ื ืชื•ื ื™ื ื”ืืœื”
01:49
and run a program.
36
109539
1151
ื•ืœื”ืจื™ืฅ ืืช ื”ืชื•ื›ื ื™ืช. ื–ื” ืžื” ืฉืงื•ืจื” ื‘ื—ืœื‘ื•ื ื™ื.
01:50
It's what happens in proteins.
37
110714
1432
01:52
When this amino-acid sequence gets pronounced as atoms,
38
112170
2621
ื›ืืฉืจ ื”ืจืฆืฃ ื”ื–ื” ืฉืœ ื—ื•ืžืฆื•ืช ืืžื™ื ื• ืžืชื‘ื˜ื ื›ืื˜ื•ืžื™ื,
01:54
these little letters are sticky for each other.
39
114815
2220
ื”ืื•ืชื™ื•ืช ื”ืงื˜ื ื•ืช ื ื“ื‘ืงื•ืช ื–ื• ืœื–ื•,
01:57
It collapses into a three-dimensional shape that turns it into a nanomachine
40
117059
3884
ื•ื ื•ืฆืจืช ืฆื•ืจื” ืชืœืช-ืžื™ืžื“ื™ืช
02:00
that actually cuts DNA.
41
120967
1570
ืฉื”ื•ืคื›ืช ืœื ืื ื•-ืžื›ื•ื ื” ืฉื—ื•ืชื›ืช DNA.
02:02
The interesting thing is that if you change the sequence,
42
122561
2753
ืื ืžืฉื ื™ื ืืช ื”ืจืฆืฃ,
02:05
you change the three-dimensional folding.
43
125338
2008
ื”ืงื™ืคื•ืœ ื”ืชืœืช-ืžื™ืžื“ื™ ืžืฉืชื ื”.
02:07
You get, now, a DNA stapler, instead.
44
127370
1960
ื•ืขื›ืฉื™ื• ืžืงื‘ืœื™ื ืžื”ื“ืง DNA.
02:09
These are the kind of molecular programs we want to be able to write.
45
129354
3262
ื–ื”ื• ืกื•ื’ ื”ืชื•ื›ื ื™ื•ืช ื”ืžื•ืœืงื•ืœืจื™ื•ืช ืฉืื ื• ืจื•ืฆื™ื ืœื“ืขืช ืœื›ืชื•ื‘,
02:12
The problem is, we don't know
46
132640
1386
ืื‘ืœ, ืื ื—ื ื• ืœื ืžื›ื™ืจื™ื ืืช ืฉืคืช ื”ืžื›ื•ื ื”
02:14
the machine language of proteins or have a compiler for proteins.
47
134050
3129
ืฉืœ ื—ืœื‘ื•ื ื™ื; ืื™ืŸ ืœื ื• ืžื”ื“ืจ ืœื—ืœื‘ื•ื ื™ื.
02:17
So I've joined a growing band of people
48
137203
1866
ืื– ื”ืฆื˜ืจืคืชื™ ืœื—ื‘ื•ืจื” ื”ื•ืœื›ืช ื•ื’ื“ืœื” ืฉืœ ืื ืฉื™ื
02:19
that try to make molecular spells using DNA.
49
139093
2214
ืฉืžื ืกื” ืœื”ื˜ื™ืœ ืงืกืžื™ื ืžื•ืœืงื•ืœืจื™ื™ื ื‘ืืžืฆืขื•ืช DNA, ืฉื”ื•ื ื–ื•ืœ ื™ื•ืชืจ,
02:21
We use DNA because it's cheaper, it's easier to handle,
50
141331
2604
02:23
it's something we understand really well --
51
143959
2071
ืงืœ ื™ื•ืชืจ ืœื˜ืคืœ ื‘ื•, ื•ืื ื—ื ื• ืžื‘ื™ื ื™ื ืื•ืชื• ื”ื™ื˜ื‘.
ืœืžืขืฉื”, ืื ื—ื ื• ืžื‘ื™ื ื™ื ืื•ืชื• ื›ืœ ื›ืš ืœืขื•ืžืง ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื
02:26
so well, in fact, that we think we can actually write
52
146054
3083
02:29
programming languages for DNA and have molecular compilers.
53
149161
3413
ืœื›ืชื•ื‘ ืฉืคื•ืช ืชื›ื ื•ืช ืขื‘ื•ืจ DNA ื•ืœื™ืฆื•ืจ ืžื”ื“ืจื™ื ืžื•ืœืงื•ืœืจื™ื™ื.
02:32
So then, we think we can do that.
54
152598
1581
ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื–ืืช, ื•ืื—ืช ื”ืฉืืœื•ืช ืฉืœื™ ื”ื™ื™ืชื”:
02:34
One of my first questions doing this was:
55
154203
3485
ืื™ืš ืืคืฉืจ ืœื™ืฆื•ืจ
02:37
How can you make an arbitrary shape or pattern out of DNA?
56
157712
2771
ืฆื•ืจื” ืื• ื“ืคื•ืก ื›ืœืฉื”ื ืžื”-DNA? ื”ื—ืœื˜ืชื™ ืœื”ืฉืชืžืฉ
02:40
I decided to use a type of DNA origami,
57
160507
2211
ื‘ืกื•ื’ ืฉืœ ืื•ืจื™ื’ืžื™ ืฉืœ DNA ื‘ื• ืœื•ืงื—ื™ื ื’ื“ื™ืœ ืืจื•ืš ืฉืœ DNA
02:42
where you take a long strand of DNA
58
162742
1705
02:44
and fold it into whatever shape or pattern you might want.
59
164471
2809
ื•ืžืงืคืœื™ื ืื•ืชื• ืœืฆื•ืจื” ืื• ืœื“ืคื•ืก ืฉืจื•ืฆื™ื ื‘ื”ื.
02:47
So here's a shape.
60
167304
1163
ื”ื ื” ืฆื•ืจื”. ืœืžืขืฉื”, ื‘ื™ืœื™ืชื™ ืฉื ื” ื‘ื‘ื™ืช,
02:48
I actually spent about a year in my home in my underwear, coding,
61
168491
3360
ื‘ื‘ื’ื“ื™ ื”ืชื—ืชื•ื ื™ื, ื•ืงื•ื“ื“ืชื™, ื›ืžื• ืœื™ื ื•ืก [ื˜ื•ืจื‘ืืœื“ืก] ื‘ืชืžื•ื ื” ืฉืจืื™ืชื ืงื•ื“ื.
02:51
like Linus [Torvalds], in that picture before.
62
171875
2152
02:54
This program takes a shape and spits out 250 DNA sequences.
63
174051
3545
ื”ืชื•ื›ื ื™ืช ื”ื–ืืช ืœื•ืงื—ืช ืฆื•ืจื”, ื•ืคื•ืœื˜ืช 250 ืจืฆืคื™ื ืฉืœ DNA.
02:57
These short DNA sequences are what are going to fold the long strand
64
177620
3197
ืจืฆืคื™ ื”-DNA ื”ืงืฆืจื™ื ื”ืืœื” ื™ืงืคืœื• ืืช ื”ื’ื“ื™ืœ ื”ืืจื•ืš
03:00
into this shape that we want to make.
65
180841
1769
ืœืฆื•ืจื” ื”ืžื‘ื•ืงืฉืช. ืœืื—ืจ ืžื›ืŸ, ืฉื•ืœื—ื™ื ื“ื•ื"ืœ
03:02
So you send an e-mail with these sequences in it
66
182634
2247
ืขื ื”ืจืฆืคื™ื ืœื—ื‘ืจื”, ื•ื”ื—ื‘ืจื” ืžื‘ื˜ืืช ืื•ืชื
03:04
to a company,
67
184905
1152
03:06
and the company pronounces them on a DNA synthesizer,
68
186081
2679
ื‘ืกื™ื ื˜ื™ืกื™ื™ื–ืจ ืฉืœ DNA.
03:08
a machine about the size of a photocopier.
69
188784
2490
ื–ื•ื”ื™ ืžื›ื•ื ื” ื‘ืขืจืš ื‘ื’ื•ื“ืœ ืฉืœ ืžื›ื•ื ืช ืฆื™ืœื•ื.
03:11
And they take your e-mail,
70
191298
1976
ื”ื ืœื•ืงื—ื™ื ืืช ื”ื“ื•ื"ืœ ื•ืžื—ืœื™ืคื™ื ื›ืœ ืื•ืช
03:13
and every letter in your e-mail, they replace with a 30-atom cluster --
71
193298
3361
ื‘ืืฉื›ื•ืœ ืฉืœ 30 ืื˜ื•ืžื™ื, ืืฉื›ื•ืœ ืื—ื“ ืขื‘ื•ืจ ื›ืœ ืื•ืช,
03:16
one for each letter, A, T, C and G in DNA.
72
196683
2406
C, T, A ื•-G ื‘-DNA. ื”ื ืžืฉืจืฉืจื™ื ืื•ืชื ื‘ืจืฆืฃ ื”ื ื›ื•ืŸ,
03:19
They string them up in the right sequence,
73
199113
2011
03:21
and then they send them back to you via FedEx.
74
201148
2161
ื•ืฉื•ืœื—ื™ื ื“ืจืš ืคื“ืงืก.
03:23
So you get 250 of these in the mail in little tubes.
75
203333
2441
ืžื’ื™ืขื™ื 250 ืจืฆืคื™ื ื‘ืžื‘ื—ื ื•ืช ืงื˜ื ื•ืช.
03:25
I mix them together, add a little bit of salt water,
76
205798
2443
ืžืขืจื‘ื‘ื™ื ืื•ืชื ื‘ื™ื—ื“, ืžื•ืกื™ืคื™ื ืงืฆืช ืžื™ ืžืœื—,
03:28
and then add this long strand I was telling you about,
77
208265
2536
ื•ืžื•ืกื™ืคื™ื ืืช ื”ื’ื“ื™ืœ ื”ืืจื•ืš ืฉืกื™ืคืจืชื™ ืœื›ื ืขืœื™ื•,
03:30
that I've stolen from a virus.
78
210825
1460
ืื•ืชื• ื’ื ื‘ืชื™ ืžื•ื™ืจื•ืก.
03:32
And then what happens is,
79
212309
1223
03:33
you heat this whole thing up to about boiling.
80
213556
2154
ืœืื—ืจ ืžื›ืŸ, ืžื—ืžืžื™ื ืืช ื›ืœ ื”ืขืกืง ืขื“ ืœืจืชื™ื—ื”. ืžืงืจืจื™ื ืื•ืชื•
03:35
You cool it down to room temperature,
81
215734
2062
03:37
and as you do, those short strands do the following thing:
82
217820
3162
ืœื˜ืžืคืจื˜ื•ืจืช ื”ื—ื“ืจ,
ื•ืื– ื”ื’ื“ื™ืœื™ื ื”ืงืฆืจื™ื ืขื•ืฉื™ื ืืช ื”ื“ื‘ืจ ื”ื‘ื:
03:41
each one of them binds that long strand in one place,
83
221006
3396
ื›ืœ ืื—ื“ ืžื”ื ืงื•ืฉืจ ืืช ื”ื’ื“ื™ืœ ื”ืืจื•ืš ื‘ืžืงื•ื ืื—ื“,
03:44
and then has a second half that binds that long strand in a distant place,
84
224426
3548
ื•ื”ื—ืฆื™ ื”ืฉื ื™ ืฉืœื• ืงื•ืฉืจ ืืช ื”ื’ื“ื™ืœ ื”ืืจื•ืš
03:47
and brings those two parts of the long strand
85
227998
2269
ื‘ืžืงื•ื ืžืจื•ื—ืง, ื•ื›ืš ืฉื ื™ ื—ืœืงื™ ื”ื’ื“ื™ืœ ื”ืืจื•ืš
03:50
close together so they stick together.
86
230291
2045
ืžืชืงืจื‘ื™ื ื•ื ื“ื‘ืงื™ื ื–ื” ืœื–ื”.
03:52
So the net effect of all 250 of these strands
87
232360
2687
ื”ืฉื™ืœื•ื‘ ืฉืœ 250 ื”ื’ื“ื™ืœื™ื ื”ืืœื” ื’ื•ืจื
03:55
is to fold the long strand into the shape you're looking for.
88
235071
4327
ืœืงื™ืคื•ืœ ืฉืœ ื”ื’ื“ื™ืœ ื”ืืจื•ืš ืœืฆื•ืจื” ื‘ื” ืจืฆื™ื ื•;
03:59
It'll approximate that shape.
89
239422
1392
ืžืชืงื‘ืœ ืงื™ืจื•ื‘ ืฉืœ ื”ืฆื•ืจื” ื”ื–ืืช. ืื ื—ื ื• ืžื‘ืฆืขื™ื ื–ืืช ื‘ืคื•ืขืœ ื‘ืžื‘ื—ื ืช ื”ื ื™ืกื•ื™.
04:00
We do this for real, in the test tube.
90
240838
1829
04:02
In each little drop of water, you get 50 billion of these guys.
91
242691
2968
ื‘ื›ืœ ื˜ื™ืคืช ืžื™ื ืงื˜ื ื” ืžืงื‘ืœื™ื 50 ืžื™ืœื™ืืจื“ ืžื”ื—ื‘ืจ'ื” ื”ืืœื”.
04:05
With a microscope, you can see them on a surface.
92
245683
2315
ื ื™ืชืŸ ืœื”ืกืชื›ืœ ืขืœื™ื”ื ื‘ืžื™ืงืจื•ืกืงื•ืค ื•ืœืจืื•ืช ืื•ืชื ืขืœ ืคื ื™ ื”ืฉื˜ื—.
04:08
The neat thing is if you change the sequence and change the spell,
93
248022
3115
ืžื” ืฉืžื’ื ื™ื‘ ื–ื”
ืฉืื ืžืฉื ื™ื ืืช ื”ืจืฆืฃ, ื•ืžืฉื ื™ื ืืช ื”ืงืกื - ืžืฉื ื™ื ืืช ื”ืจืฆืฃ ืฉืœ ื”ืžื”ื“ืงื™ื.
04:11
just change the sequence of the staples,
94
251161
1931
04:13
you can make a molecule that looks like this.
95
253116
2802
ืืคืฉืจ ืœื™ืฆื•ืจ ืžื•ืœืงื•ืœื” ืฉื ืจืื™ืช ื›ืš,
04:15
And, you know, he likes to hang out with his buddies.
96
255942
3010
ื•ื”ื•ื ืื•ื”ื‘ ืœื”ืกืชื•ื‘ื‘ ืขื ื”ื—ื‘ืจ'ื” ืฉืœื•.
04:18
A lot of them are actually pretty good.
97
258976
1886
ืจื•ื‘ื ื“ื™ ืžื•ืฆืœื—ื™ื.
04:20
If you change the spell again, you change the sequence again,
98
260886
2882
ืื ืžืฉื ื™ื ืฉื•ื‘ ืืช ื”ืงืกื, ื”ืจืฆืฃ ืฉื•ื‘ ืžืฉืชื ื”,
04:23
you get really nice, 130-nanometer triangles.
99
263792
2306
ื•ืžืงื‘ืœื™ื ืžืฉื•ืœืฉื™ื ื—ื‘ื™ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ื’ื•ื“ืœ 130 ื ืื ื•-ืžื˜ืจ.
04:26
If you do it again,
100
266122
1363
04:27
you can get arbitrary patterns.
101
267509
2211
ื ื™ืชืŸ ืœืงื‘ืœ ื“ืคื•ืกื™ื ืฉื•ื ื™ื.
04:29
So on a rectangle, you can paint patterns of North and South America,
102
269744
4397
ืืคืฉืจ ืœืฆื™ื™ืจ ืขืœ ืžืœื‘ืŸ ื“ืคื•ืกื™ื ืฉืœ ืฆืคื•ืŸ ื•ื“ืจื•ื ืืžืจื™ืงื”, ืื• ืืช ื”ืžื™ืœื™ื "DNA".
04:34
or the words, "DNA."
103
274165
1181
04:35
So that's DNA origami. That's one way.
104
275370
3013
ื–ื”ื• ืื•ืจื™ื’ืžื™ ืฉืœ DNA. ื–ื•ื”ื™ ื“ืจืš ืื—ืช. ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช
04:38
There are many ways of casting molecular spells using DNA.
105
278407
3943
ืœื”ื˜ื™ืœ ืงืกืžื™ื ืžื•ืœืงื•ืœืจื™ื™ื ื‘ืืžืฆืขื•ืช DNA.
04:42
What we really want to do in the end
106
282374
1742
ื”ืžื˜ืจื” ื”ืืžื™ืชื™ืช ืฉืœื ื• ื”ื™ื ืœืœืžื•ื“ ืื™ืš ืœืชื›ื ืช
04:44
is learn how to program self-assembly so we can build anything, right?
107
284140
3836
ื”ืจื›ื‘ื”-ืขืฆืžื™ืช ื›ืš ืฉื ื•ื›ืœ ืœื‘ื ื•ืช ื›ืœ ื“ื‘ืจ.
04:48
We want to be able to build technological artifacts
108
288000
2390
ืื ื—ื ื• ืจื•ืฆื™ื ืœื“ืขืช ืœื‘ื ื•ืช
04:50
that are maybe good for the world.
109
290414
1661
ื—ืคืฆื™ื ื˜ื›ื ื•ืœื•ื’ื™ื™ื ืฉื™ื•ืขื™ืœื• ืœืขื•ืœื.
04:52
We want to learn how to build biological artifacts,
110
292099
2931
ืื ื—ื ื• ืจื•ืฆื™ื ืœืœืžื•ื“ ืœื‘ื ื•ืช ื—ืคืฆื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื, ื›ืžื• ืื ืฉื™ื ื•ืœื•ื•ื™ืชื ื™ื ื•ืขืฆื™ื.
04:55
like people and whales and trees.
111
295054
1721
04:56
And if it's the case that we can reach that level of complexity,
112
296799
3022
ื•ืื ื ื•ื›ืœ ืœื”ื’ื™ืข ืœืจืžืช ื”ืžื•ืจื›ื‘ื•ืช ื”ื–ืืช,
04:59
if our ability to program molecules gets to be that good,
113
299845
3260
ืื ื”ื™ื›ื•ืœืช ืฉืœื ื• ืœืชื›ื ืช ืžื•ืœืงื•ืœื•ืช ืชื”ื™ื” ื›ืœ ื›ืš ื˜ื•ื‘ื”,
05:03
then that will truly be magic.
114
303129
1784
ืื– ื”ืงืกื ืฉืœื ื• ื™ื”ื™ื” ืืžื™ืชื™. ืชื•ื“ื” ืจื‘ื”.
05:05
Thank you very much.
115
305889
1151
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
05:07
(Applause)
116
307064
1150
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7