David Bolinsky: Visualizing the wonder of a living cell

209,240 views ใƒป 2007-07-24

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Shlomo Adam ืžื‘ืงืจ: Avigail Burstein
00:25
I'm a medical illustrator,
0
25000
3000
ืื ื™ ืžืื™ื™ืจ ืจืคื•ืื™,
00:28
and I come from a slightly different point of view.
1
28000
3000
ื ืงื•ื“ืช ื”ืฉืงืคื” ืฉืœื™ ืžืขื˜ ืฉื•ื ื”.
00:31
I've been watching, since I grew up,
2
31000
2000
ืžืื– ืฉื’ื“ืœืชื™ ืื ื™ ืžืชื‘ื•ื ืŸ
00:34
the expressions of truth and beauty in the arts
3
34000
4000
ื‘ื‘ื™ื˜ื•ื™ื™ ื”ืืžืช ื•ื”ื™ื•ืคื™ ืฉืœ ื”ืืžื ื•ืช,
00:38
and truth and beauty in the sciences.
4
38000
2000
ื•ื‘ืืžืช ื•ื‘ื™ื•ืคื™ ืฉืœ ื”ืžื“ืขื™ื.
00:40
And while these are both wonderful things in their own right --
5
40000
3000
ื•ื‘ืขื•ื“ ืฉื ื™ ืืœื” ื ื”ื“ืจื™ื ื‘ื–ื›ื•ืช ืขืฆืžื -
00:43
they both have very wonderful things going for them --
6
43000
3000
ื•ืœืฉื ื™ื”ื ื™ืฉ ื“ื‘ืจื™ื ื ืคืœืื™ื ืฉืžื“ื‘ืจื™ื ื‘ืขื“ื -
00:46
truth and beauty as ideals that can be looked at by the sciences
7
46000
6000
ื”ืจื™ ืฉืืžืช ื•ื™ื•ืคื™ ื›ืื™ื“ืืœื™ื ืฉื ื™ืชืŸ ืœืจืื•ืชื ื‘ืขื–ืจืช ื”ืžื“ืข
00:52
and by math are almost like the ideal conjoined twins
8
52000
5000
ื•ืข"ื™ ื”ืžืชืžื˜ื™ืงื”, ื”ื ื›ืžื• ืชืื•ืžื™ื ืกื™ืืžื™ื™ื ืžื•ืฉืœืžื™ื
00:57
that a scientist would want to date.
9
57000
1000
ืฉื”ืžื“ืข ื”ื™ื” ืจื•ืฆื” ืœื”ืคื’ื™ืฉ ื‘ื™ื ื™ื”ื.
01:00
(Laughter)
10
60000
2000
[ืฆื—ื•ืง]
01:02
These are expressions of truth as awe-full things,
11
62000
5000
ืืœื• ื”ื ื‘ื™ื˜ื•ื™ื™ื ืฉืœ ืืžืช ื›ื“ื‘ืจื™ื ืžืขื•ืจืจื™ ื™ืจืืช-ื›ื‘ื•ื“,
01:07
by meaning they are things you can worship.
12
67000
2000
ืžื‘ื—ื™ื ืช ืžืฉืžืขื•ืชื, ืืœื” ื“ื‘ืจื™ื ืฉืืคืฉืจ ืœืกื’ื•ื“ ืœื”ื.
01:10
They are ideals that are powerful. They are irreducible.
13
70000
4000
ืืœื• ืื™ื“ืืœื™ื ืจื‘ื™-ืขื•ืฆืžื” ืฉืื™-ืืคืฉืจ ื‘ืœืขื“ื™ื”ื,
01:15
They are unique. They are useful --
14
75000
2000
ื”ื ื™ื™ื—ื•ื“ื™ื™ื, ื”ื ืฉื™ืžื•ืฉื™ื™ื -
01:17
sometimes, often a long time after the fact.
15
77000
2000
ื•ืœืขืชื™ื ืงืจื•ื‘ื•ืช, ื–ืžืŸ ืจื‘ ืœืื—ืจ ืžืขืฉื”.
01:20
And you can actually roll some of the pictures now,
16
80000
2000
ืืคืฉืจ ืœื”ืจื™ืฅ ื›ืขืช ื›ืžื” ืžื”ืชืžื•ื ื•ืช,
01:22
because I don't want to look at me on the screen.
17
82000
3000
ื›ื™ ืื ื™ ืœื ืจื•ืฆื” ืœืจืื•ืช ืืช ืขืฆืžื™ ืขืœ ื”ืžืกืš.
01:26
Truth and beauty are things
18
86000
2000
ื”ืืžืช ื•ื”ื™ื•ืคื™ ื”ื ื“ื‘ืจื™ื
01:28
that are often opaque to people who are not in the sciences.
19
88000
4000
ืฉืœืขืชื™ื ืงืจื•ื‘ื•ืช ืื™ื ื ื‘ืจื•ืจื™ื ืœืžื™ ืฉืื™ื ื• ืžืฆื•ื™ ื‘ืžื“ืข.
01:33
They are things that describe beauty in a way
20
93000
6000
ืืœื” ื“ื‘ืจื™ื ืฉืžืชืืจื™ื ื™ื•ืคื™
01:39
that is often only accessible if you understand the language
21
99000
5000
ื‘ื“ืจืš ืฉืคืขืžื™ื ืจื‘ื•ืช ื ื’ื™ืฉื” ืจืง ืœืžื™ ืฉืžื‘ื™ืŸ ืืช ื”ืฉืคื”
01:44
and the syntax of the person
22
104000
2000
ื•ืืช ื”ืชื—ื‘ื™ืจ ืฉืœ ื”ืื“ื
01:46
who studies the subject in which truth and beauty is expressed.
23
106000
3000
ืฉื—ื•ืงืจ ืืช ื”ื ื•ืฉื ื‘ื• ืžื•ื‘ืขื™ื ื”ืืžืช ื•ื”ื™ื•ืคื™.
01:49
If you look at the math, E=mc squared,
24
109000
3000
ืœืžืฉืœ ื‘ืžืชืžื˜ื™ืงื”, "ืื™ ืฉื•ื•ื” ืื-ืกื™ ื‘ืจื™ื‘ื•ืข",
01:52
if you look at the cosmological constant,
25
112000
3000
ืื ืžืชื‘ื•ื ื ื™ื ื‘ืงื‘ื•ืข ื”ืงื•ืกืžื™,
01:55
where there's an anthropic ideal, where you see that life had to evolve
26
115000
5000
ืฉื‘ื• ื™ืฉ ืื™ื“ืืœ ืื ืชืจื•ืคื™, ื•ืจื•ืื™ื ืฉื”ื—ื™ื™ื ื”ื™ื• ื—ื™ื™ื‘ื™ื
02:00
from the numbers that describe the universe --
27
120000
3000
ืœื”ืชืคืชื— ืžื”ืžืกืคืจื™ื ื”ืžืชืืจื™ื ืืช ื”ื™ืงื•ื -
02:03
these are things that are really difficult to understand.
28
123000
3000
ืืœื” ื“ื‘ืจื™ื ืฉื‘ืืžืช ืงืฉื” ืœื”ื‘ื™ื ื.
02:06
And what I've tried to do
29
126000
1000
ื•ืžื” ืฉื ื™ืกื™ืชื™ ืœืขืฉื•ืช
02:07
since I had my training as a medical illustrator --
30
127000
2000
ืžืื– ืฉื”ื•ื›ืฉืจืชื™ ื›ืžืื™ื™ืจ ืจืคื•ืื™ -
02:09
since I was taught animation by my father,
31
129000
3000
ืžืื– ืฉืœืžื“ืชื™ ืื ื™ืžืฆื™ื” ืืฆืœ ืื‘ื™,
02:12
who was a sculptor and my visual mentor --
32
132000
3000
ืฉื”ื™ื” ืคืกืœ, ื•ืžื•ืจื™ ื”ืจื•ื—ื ื™ ืžื‘ื—ื™ื ื” ื•ื™ื–ื•ืืœื™ืช -
02:16
I wanted to figure out a way to help people
33
136000
3000
ืจืฆื™ืชื™ ืœืžืฆื•ื ื“ืจืš ืœืกื™ื™ืข ืœืื ืฉื™ื
02:20
understand truth and beauty in the biological sciences
34
140000
3000
ืœื”ื‘ื™ืŸ ืืช ื”ืืžืช ื•ื”ื™ื•ืคื™ ืฉื‘ืžื“ืขื™ ื”ื‘ื™ื•ืœื•ื’ื™ื”
02:24
by using animation, by using pictures, by telling stories
35
144000
3000
ื‘ืขื–ืจืช ืื ื™ืžืฆื™ื”, ื‘ืขื–ืจืช ืชืžื•ื ื•ืช, ื‘ืขื–ืจืช ืกื™ืคื•ืจื™ื.
02:28
so that the things that are not necessarily evident to people
36
148000
4000
ื›ื“ื™ ืฉื”ื“ื‘ืจื™ื ืฉืื™ื ื ื‘ื”ื›ืจื— ื’ืœื•ื™ื™ื ืœืขื™ืŸ
02:32
can be brought forth, and can be taught, and can be understood.
37
152000
4000
ื™ื•ื›ืœื• ืœื”ื™ืจืื•ืช, ื•ื ื™ืชืŸ ื™ื”ื™ื” ืœืœืžื“ื ื•ืœื”ื‘ื™ื ื.
02:36
Students today are often immersed in an environment
38
156000
5000
ื”ืชืœืžื™ื“ื™ื ื›ื™ื•ื ืฉืงื•ืขื™ื ืชื›ื•ืคื•ืช ื‘ืกื‘ื™ื‘ื”
02:42
where what they learn is subjects that have truth and beauty
39
162000
5000
ืฉื‘ื” ืขืœื™ื”ื ืœืœืžื•ื“ ื ื•ืฉืื™ื ืฉื”ืืžืช ื•ื”ื™ื•ืคื™
02:47
embedded in them, but the way they're taught is compartmentalized
40
167000
5000
ื˜ื‘ื•ืขื™ื ื‘ื”ื, ืืš ื”ื ืœื•ืžื“ื™ื ื‘ืื•ืคืŸ ืžืžื•ื“ืจ
02:52
and it's drawn down to the point where the truth and beauty
41
172000
5000
ืขื“ ื›ื“ื™ ื›ืš ืฉื”ืืžืช ื•ื”ื™ื•ืคื™
02:57
are not always evident.
42
177000
1000
ืœื ืชืžื™ื“ ื’ืœื•ื™ื™ื ืœืขื™ืŸ.
02:58
It's almost like that old recipe for chicken soup
43
178000
3000
ื–ื” ื›ืžืขื˜ ื›ืžื• ืื•ืชื• ืžืชื›ื•ืŸ ื™ืฉืŸ ืœืžืจืง-ืขื•ืฃ,
03:01
where you boil the chicken until the flavor is just gone.
44
181000
4000
ืฉื‘ื• ืžืจืชื™ื—ื™ื ืืช ื”ืขื•ืฃ ืขื“ ืฉื›ืœ ื”ื˜ืขื ืคืฉื•ื˜ ื ืขืœื.
03:06
We don't want to do that to our students.
45
186000
2000
ืื™ื ื ื• ืจื•ืฆื™ื ืœืขื•ืœืœ ื–ืืช ืœืชืœืžื™ื“ื™ื ื•.
03:08
So we have an opportunity to really open up education.
46
188000
4000
ืื– ื™ืฉ ืœื ื• ื”ื–ื“ืžื ื•ืช ืฉืœ ืžืžืฉ ืœื”ืจื—ื™ื‘ ืืช ื”ื”ืฉื›ืœื”.
03:12
And I had a telephone call from Robert Lue at Harvard,
47
192000
3000
ืงื™ื‘ืœืชื™ ืฉื™ื—ืช-ื˜ืœืคื•ืŸ ืžืจื•ื‘ืจื˜ ืœื™ื•ึผ ืžื”ืจื•ื•ืืจื“,
03:15
in the Molecular and Cellular Biology Department,
48
195000
2000
ืžืžื—ืœืงืช ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืžื•ืœืงื•ืœื” ื•ื”ืชื,
03:17
a couple of years ago. He asked me if my team and I
49
197000
3000
ืœืคื ื™ ื›ืฉื ืชื™ื™ื. ื”ื•ื ืฉืืœ ืื ื”ืฆื•ื•ืช ืฉืœื™ ื•ืื ื™
03:21
would be interested and willing to really change
50
201000
4000
ื ื”ื™ื” ืžืขื•ื ื™ื™ื ื™ื ื•ืžื•ื›ื ื™ื ืœื”ื›ื ื™ืก ืฉื™ื ื•ื™ ืืžื™ืชื™
03:25
how medical and scientific education is done at Harvard.
51
205000
3000
ื‘ื—ื™ื ื•ืš ื”ืจืคื•ืื™ ื•ื”ืžื“ืขื™ ื‘ื”ืจื•ื•ืืจื“.
03:28
So we embarked on a project that would explore the cell --
52
208000
5000
ืื– ื”ืชื—ืœื ื• ื‘ืคืจื•ื™ื™ืงื˜ ืœื—ืงืจ ื”ืชื,
03:33
that would explore the truth and beauty inherent
53
213000
3000
ืœื—ืงืจ ื”ืืžืช ื•ื”ื™ื•ืคื™
03:36
in molecular and cellular biology
54
216000
2000
ื”ื˜ื‘ื•ืขื™ื ื‘ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืžื•ืœืงื•ืœื” ื•ื”ืชื
03:38
so that students could understand a larger picture
55
218000
3000
ื›ื“ื™ ืฉื”ืชืœืžื™ื“ื™ื ื™ืงื‘ืœื• ืชืžื•ื ื” ื’ื“ื•ืœื” ื™ื•ืชืจ
03:41
that they could hang all of these facts on.
56
221000
3000
ืืœื™ื” ื™ื•ื›ืœื• ืœื—ื‘ืจ ืืช ื›ืœ ื”ืขื•ื‘ื“ื•ืช.
03:44
They could have a mental image of the cell
57
224000
3000
ื”ื ื™ื•ื›ืœื• ืœืงื‘ืœ ื“ื™ืžื•ื™ ืžื ื˜ืœื™ ืฉืœ ื”ืชื
03:47
as a large, bustling, hugely complicated city
58
227000
7000
ื›ืขื™ืจ ื’ื“ื•ืœื”, ืคืขืœืชื ื™ืช ื•ืžื•ืจื›ื‘ืช ืœื”ืคืœื™ื
03:55
that's occupied by micro-machines.
59
235000
2000
ื”ืžืื•ื›ืœืกืช ื‘ืžื™ืงืจื•-ืžื›ื•ื ื•ืช.
03:57
And these micro-machines really are at the heart of life.
60
237000
3000
ื•ืžื™ืงืจื•-ืžื›ื•ื ื•ืช ืืœื” ืžืฆื•ื™ื•ืช ื‘ืขืฆื ื‘ืœื‘ ื”ื—ื™ื™ื.
04:00
These micro-machines,
61
240000
1000
ืžื™ืงืจื•-ืžื›ื•ื ื•ืช ืืœื”,
04:01
which are the envy of nanotechnologists the world over,
62
241000
3000
ืฉื”ืŸ ืžื•ืฉื ืœืงื ืืช ื”ื ื ื•-ื˜ื›ื ื•ืœื•ื’ื™ื ื‘ื›ืœ ื”ืขื•ืœื ื›ื•ืœื•,
04:05
are self-directed, powerful, precise, accurate devices
63
245000
7000
ื”ืŸ ืžืชืงื ื™ื ื—ื–ืงื™ื ื•ืžื“ื•ื™ืงื™ื ื‘ืขืœื™ ื”ื›ื•ื•ื ื”-ืขืฆืžื™ืช,
04:12
that are made out of strings of amino acids.
64
252000
3000
ื”ืขืฉื•ื™ื™ื ืžืžื™ืชืจื™ ื—ื•ืžืฆื•ืช-ืืžื™ื ื•.
04:15
And these micro-machines power how a cell moves.
65
255000
4000
ื•ืžื™ืงืจื•-ืžื›ื•ื ื•ืช ืืœื” ืžืกืคืงื•ืช ื›ื•ื— ืœืชื ื•ืขืช ื”ืชื,
04:19
They power how a cell replicates. They power our hearts.
66
259000
5000
ืžืกืคืงื•ืช ื›ื•ื— ืœืฉื›ืคื•ืœ ื”ืชื, ืžืกืคืงื•ืช ื›ื•ื— ืœืœื‘ื‘ื•ืชื™ื ื•,
04:24
They power our minds.
67
264000
1000
ื”ืŸ ืžืกืคืงื•ืช ื›ื•ื— ืœืžื•ื—ื•ืชื™ื ื•.
04:26
And so what we wanted to do was to figure out
68
266000
3000
ื›ืš ืฉืžื” ืฉืจืฆื™ื ื• ืœืขืฉื•ืช ื”ื•ื ืœืžืฆื•ื
04:30
how we could make this story into an animation
69
270000
2000
ืื™ืš ืœื”ืคื•ืš ืกื™ืคื•ืจ ื–ื” ืœืื ื™ืžืฆื™ื”
04:33
that would be the centerpiece of BioVisions at Harvard,
70
273000
3000
ืฉืชื”ื™ื” ื”ืžื•ืฆื’ ื”ืžืจื›ื–ื™ ื‘"ื‘ื™ื•-ื•ื™ื–'ืŸ" ืฉืœ ื”ืจื•ื•ืืจื“ -
04:37
which is a website that Harvard has
71
277000
4000
ืฉื”ื•ื ืืชืจ ืฉืœ ื”ืจื•ื•ืืจื“
04:41
for its molecular and cellular biology students
72
281000
2000
ืขื‘ื•ืจ ืชืœืžื™ื“ื™ ื”ื‘ื™ื•ืœื•ื’ื™ื” ืฉืœ ื”ืžื•ืœืงื•ืœื” ื•ื”ืชื
04:43
that will -- in addition to all the textual information,
73
283000
4000
ืืฉืจ ื‘ื ื•ืกืฃ ืœื›ืœ ื”ืžื™ื“ืข ื”ื˜ืงืกื˜ื•ืืœื™,
04:48
in addition to all the didactic stuff --
74
288000
1000
ื ื•ืกืฃ ืขืœ ื›ืœ ื”ื—ื•ืžืจ ื”ื“ื™ื“ืงื˜ื™ -
04:50
put everything together visually, so that these students
75
290000
2000
ื™ื—ื‘ืจ ื”ื›ืœ ืžื‘ื—ื™ื ื” ื•ื™ื–ื•ืืœื™ืช, ื›ื“ื™ ืฉืชืœืžื™ื“ื™ื ืืœื”
04:53
would have an internalized view of what a cell really is
76
293000
4000
ื™ืงื‘ืœื• ืžื‘ื˜ ืžื‘ืคื ื™ื ืขืœ ืžื”ื•ืชื• ื”ืืžื™ืชื™ืช ืฉืœ ื”ืชื
04:57
in all of its truth and beauty, and be able to study
77
297000
4000
ื‘ื›ืœ ืืžื™ืชื•ืชื• ื•ื™ื•ืคื™ื•, ื•ื™ื•ื›ืœื• ืœืœืžื•ื“
05:01
with this view in mind, so that their imaginations would be sparked,
78
301000
4000
ื›ืฉืžืจืื” ื–ื” ื‘ืจืืฉื, ื›ื“ื™ ืฉื“ืžื™ื•ื ื ื™ื•ืฆืช,
05:05
so that their passions would be sparked
79
305000
2000
ื›ื“ื™ ืฉื”ืœื”ื˜ ืฉืœื”ื ื™ื•ืฆืช
05:08
and so that they would be able to go on
80
308000
1000
ื•ื›ื“ื™ ืฉื™ื•ื›ืœื• ืœื”ืžืฉื™ืš ื”ืœืื”,
05:10
and use these visions in their head to make new discoveries
81
310000
4000
ื•ืœื”ืฉืชืžืฉ ื‘ืžืจืื•ืช ืฉื‘ืขื™ื ื™-ืจื•ื—ื ืœื’ื™ืœื•ื™ ืชื’ืœื™ื•ืช ื—ื“ืฉื•ืช
05:14
and to be able to find out, really, how life works.
82
314000
3000
ื•ื™ื•ื›ืœื• ืœื’ืœื•ืช ืื™ืš ื‘ืืžืช ืคื•ืขืœื™ื ื”ื—ื™ื™ื.
05:17
So we set out by looking at how these molecules are put together.
83
317000
6000
ื”ืชื—ืœื ื• ื‘ื›ืš ืฉื‘ื“ืงื ื• ื›ื™ืฆื“ ืžื•ืœืงื•ืœื•ืช ืืœื” ืžืฆื˜ืจืคื•ืช ื™ื—ื“.
05:24
We worked with a theme, which is, you've got macrophages
84
324000
5000
ื”ืชื—ืœื ื• ืขื ื ื•ืฉื, ืฉื”ื•ื... ื™ืฉ ืžืงืจื•ืคืื’ื™ื
05:30
that are streaming down a capillary,
85
330000
1000
ื”ื ื–ื•ืจืžื™ื ื‘ื ื™ืžื™ื,
05:32
and they're touching the surface of the capillary wall,
86
332000
2000
ื•ื ื•ื’ืขื™ื ื‘ืคื ื™ ื”ืฉื˜ื— ืฉืœ ื“ื•ืคืŸ ื”ื ื™ื,
05:35
and they're picking up information from cells
87
335000
2000
ื”ื ืื•ืกืคื™ื ืžื™ื“ืข ืžื”ืชืื™ื
05:37
that are on the capillary wall, and they are given this information
88
337000
4000
ืฉืขืœ ื“ื•ืคืŸ ื”ื ื™ื, ื•ืžืงื‘ืœื™ื ืžื™ื“ืข ืขืœ ื›ืš
05:41
that there's an inflammation somewhere outside,
89
341000
3000
ืฉื™ืฉ ื“ืœืงืช ืื™ืคืฉื”ื• ื‘ื—ื•ืฅ,
05:44
where they can't see and sense.
90
344000
2000
ื‘ืžืงื•ื ืฉืื™ื ื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื• ืœื—ื•ืฉ.
05:46
But they get the information that causes them to stop,
91
346000
3000
ืืš ื”ื ืžืงื‘ืœื™ื ืืช ื”ืžื™ื“ืข ืฉื’ื•ืจื ืœื”ื ืœืขืฆื•ืจ,
05:49
causes them to internalize that they need to make
92
349000
4000
ื’ื•ืจื ืœื”ื ืœื”ืคื ื™ื ืฉืขืœื™ื”ื ืœื™ื™ืฆืจ
05:53
all of the various parts that will cause them to change their shape,
93
353000
4000
ืืช ื›ืœ ื”ื—ืœืงื™ื ื”ืฉื•ื ื™ื ืฉื™ื’ืจืžื• ืœื”ื ืœืฉื ื•ืช ืฆื•ืจื”,
05:58
and try to get out of this capillary and find out what's going on.
94
358000
4000
ื•ืœื ืกื•ืช ืœืฆืืช ืžื”ื ื™ืžื™ื ื”ืืœื” ื•ืœื’ืœื•ืช ืžื” ืงื•ืจื”.
06:03
So these molecular motors -- we had to work
95
363000
2000
ืื– ื”ืžื ื•ืขื™ื ื”ืžื•ืœืงื•ืœืจื™ื™ื ื”ืืœื”-- ื”ื™ื” ืขืœื™ื ื• ืœืขื‘ื•ื“
06:05
with the Harvard scientists and databank models
96
365000
5000
ืขื ืžื“ืขื ื™ ื”ืจื•ื•ืืจื“ ื•ืขื ืžืื’ืจื™ ื ืชื•ื ื™ื
06:11
of the atomically accurate molecules
97
371000
3000
ืฉืœ ืžื•ืœืงื•ืœื•ืช ื‘ืจืžืช ื“ื™ื•ืง ืื˜ื•ืžื™ืช
06:14
and figure out how they moved, and figure out what they did.
98
374000
3000
ื•ืœื”ื‘ื™ืŸ ืื™ืš ื”ื ื ืขื™ื, ื•ืœื”ื‘ื™ืŸ ืžื” ื”ื ืขื•ืฉื™ื.
06:18
And figure out how to do this in a way
99
378000
2000
ื•ืœืžืฆื•ื ืื™ืš ืœืขืฉื•ืช ื–ืืช
06:20
that was truthful in that it imparted what was going on,
100
380000
5000
ื‘ื“ืจืš ืฉืชืžืกื•ืจ ื ืืžื ื” ืืช ืžื” ืฉืžืชืจื—ืฉ,
06:26
but not so truthful that the compact crowding in a cell
101
386000
5000
ืืš ืœื ื ืืžื ื” ืขื“ ื›ื“ื™ ื›ืš ืฉื”ืฆืคื™ืคื•ืช ื”ื“ื—ื•ืกื” ืฉื‘ืชื
06:31
would prevent the vista from happening.
102
391000
3000
ืชืกืชื™ืจ ืืช ืžื” ืฉืงื•ืจื”.
06:34
And so what I'm going to show you is a three-minute
103
394000
4000
ืื– ืžื” ืฉืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื ื”ื•ื 3 ื”ื“ืงื•ืช
06:38
Reader's Digest version of the first aspect of this film
104
398000
3000
ืฉืœ ื”ื’ื™ืจืกื” ื”ืจืืฉื•ื ื” ืฉืœ ืกืจื˜ื•ืŸ ื”-"ืจื™ื“ืจืก ื“ื™ื™ื’'ืกื˜" ืฉื”ืคืงื ื•.
06:41
that we produced. It's an ongoing project
105
401000
3000
ื–ื”ื• ืคืจื•ื™ื™ืงื˜ ืžืชืžืฉืš
06:44
that's going to go another four or five years.
106
404000
2000
ืฉืขืชื™ื“ ืœื”ื™ืžืฉืš ืขื•ื“ 4 ืื• 5 ืฉื ื™ื.
06:47
And I want you to look at this
107
407000
2000
ืื ื™ ืจื•ืฆื” ืฉืชืฆืคื• ื‘ื–ื”
06:49
and see the paths that the cell manufactures --
108
409000
4000
ื•ืชืจืื• ืืช ื”ื ืชื™ื‘ื™ื ืฉืžื™ื™ืฆืจ ื”ืชื -
06:53
these little walking machines, they're called kinesins --
109
413000
3000
ื”ืžื›ื•ื ื•ืช ื”ืžื”ืœื›ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื” ืงืจื•ื™ื•ืช ืงื ืกื™ืื ื™ื -
06:57
that take these huge loads
110
417000
1000
ื”ืŸ ืœื•ืงื—ื•ืช ืžื˜ืขื ื™ื ืขื ืงื™ื™ื
06:59
that would challenge an ant in relative size.
111
419000
2000
ืฉืžื‘ื—ื™ื ื” ื™ื—ืกื™ืช ื™ื”ื•ื• ืืชื’ืจ ืœื ืžืœื”.
07:02
Run the movie, please.
112
422000
3000
ื”ืงืจืŸ ื‘ื‘ืงืฉื” ืืช ื”ืกืจื˜.
07:06
But these machines that power the inside of the cells
113
426000
3000
ืืš ืžื›ื•ื ื•ืช ืืœื” ืฉืžืกืคืงื•ืช ืื ืจื’ื™ื” ืœืคื ื™ืžื™ื•ืชื• ืฉืœ ื”ืชื
07:09
are really quite amazing, and they really are the basis of all life
114
429000
4000
ื”ืŸ ืžื“ื”ื™ืžื•ืช ืœืžื“ื™, ื•ื”ืŸ ื‘ืขืฆื ื™ืกื•ื“ ื›ืœ ื”ื—ื™ื™ื.
07:13
because all of these machines interact with each other.
115
433000
4000
ื›ื™ ื›ืœ ื”ืžื›ื•ื ื•ืช ืคื•ืขืœื•ืช ื‘ืฉื™ืœื•ื‘ ื–ื• ืขื ื–ื•.
07:18
They pass information to each other.
116
438000
1000
ื”ืŸ ืžืขื‘ื™ืจื•ืช ืžื™ื“ืข ื‘ื™ื ื™ื”ืŸ;
07:20
They cause different things to happen inside the cell.
117
440000
2000
ื”ืŸ ื’ื•ืจืžื•ืช ืœื”ืชืจื—ืฉื•ืชื ืฉืœ ื“ื‘ืจื™ื ืฉื•ื ื™ื ื‘ืชื•ืš ื”ืชื.
07:23
And the cell will actually manufacture the parts that it needs
118
443000
3000
ื•ื”ืชื ืžืžืฉ ืžื™ื™ืฆืจ ืืช ื”ื—ืœืงื™ื ืฉื”ื•ื ื–ืงื•ืง ืœื”ื
07:26
on the fly, from information
119
446000
2000
ืชื•ืš ื›ื“ื™ ืขื‘ื•ื“ื”, ืขืœ ืคื™ ื”ืžื™ื“ืข
07:28
that's brought from the nucleus by molecules that read the genes.
120
448000
4000
ื”ืžื•ื‘ื ืžื”ื’ืจืขื™ืŸ ืข"ื™ ืžื•ืœืงื•ืœื•ืช ืฉืงื•ืจืื•ืช ืืช ื”ื’ื ื™ื.
07:33
No life, from the smallest life to everybody here,
121
453000
4000
ืฉื•ื ื—ื™ื™ื, ืžื”ืงื˜ื ื™ื ื‘ื™ื•ืชืจ ื•ืขื“ ืœื›ืœ ืื—ื“ ืžื”ื ื•ื›ื—ื™ื ื›ืืŸ,
07:38
would be possible without these little micro-machines.
122
458000
2000
ืœื ื™ืชืืคืฉืจื• ืœืœื ื”ืžื™ืงืจื•-ืžื›ื•ื ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื”.
07:41
In fact, it would really, in the absence of these machines,
123
461000
3000
ืœืžืขืฉื”, ื‘ื”ืขื“ืจ ืžื›ื•ื ื•ืช ืืœื”,
07:45
have made the attendance here, Chris, really quite sparse.
124
465000
2000
ื”ื ื•ื›ื—ื•ืช ื›ืืŸ, ื›ืจื™ืก, ื”ื™ืชื” ื“ืœื™ืœื” ืœืžื“ื™.
07:47
(Laughter)
125
467000
4000
[ืฆื—ื•ืง]
07:51
(Music)
126
471000
12000
[ืžื•ืกื™ืงื”]
08:03
This is the FedEx delivery guy of the cell.
127
483000
2000
ื–ื”ื• ื“ื•ืืจ ื”ืฉืœื™ื—ื™ื ืฉืœ ื”ืชื:
08:07
This little guy is called the kinesin,
128
487000
1000
ื”ืงื˜ื ืฆ'ื™ืง ื”ื–ื” ื ืงืจื ืงื ืกื™ืืŸ,
08:09
and he pulls a sack that's full of brand new manufactured proteins
129
489000
4000
ื•ื”ื•ื ื’ื•ืจืจ ืฉืง ืžืœื ื‘ื—ืœื‘ื•ื ื™ื ื—ื“ืฉื™ื ื™ืฉืจ ืžื”ืžืคืขืœ
08:13
to wherever it's needed in the cell --
130
493000
2000
ืœื›ืœ ืžืงื•ื ื‘ืชื ื‘ื• ื”ื ื“ืจื•ืฉื™ื -
08:15
whether it's to a membrane, whether it's to an organelle,
131
495000
3000
ื‘ื™ืŸ ืื ื–ื” ืขื‘ื•ืจ ืงืจื•ืžื™ืช, ืื• ืขื‘ื•ืจ ืื‘ืจื•ืŸ,
08:18
whether it's to build something or repair something.
132
498000
2000
ืื ื›ื“ื™ ืœื‘ื ื•ืช ืžืฉื”ื• ืื• ืœืชืงืŸ ืžืฉื”ื•.
08:20
And each of us has about 100,000 of these things
133
500000
4000
ื•ืœื›ืœ ืื—ื“ ืžืื™ืชื ื• ื™ืฉ ื›-100,000 ื›ืืœื”
08:24
running around, right now,
134
504000
1000
ืฉืžืชืจื•ืฆืฆื™ื ืœื”ื ื‘ื–ื” ื”ืจื’ืข
08:26
inside each one of your 100 trillion cells.
135
506000
3000
ื‘ืชื•ืš ื›ืœ ืื—ื“ ืžืžืื” ื˜ืจื™ืœื™ื•ืŸ ืชืื™ ื”ื’ื•ืฃ.
08:29
So no matter how lazy you feel,
136
509000
2000
ืื– ืœื ืžืฉื ื” ื›ืžื” ืืชื ื—ืฉื™ื ืขืฆืœื™ื,
08:32
you're not really intrinsically doing nothing.
137
512000
2000
ืžื‘ื—ื™ื ื” ืžื”ื•ืชื™ืช, ืื™ื ื›ื ื‘ืืžืช ื‘ื˜ืœื™ื ืžืขืฉื™ื™ื”.
08:34
(Laughter)
138
514000
4000
[ืฆื—ื•ืง]
08:38
So what I want you to do when you go home
139
518000
2000
ืžื” ืฉืื ื™ ืจื•ืฆื” ืฉืชืขืฉื•, ื›ืฉืชืœื›ื• ื”ื‘ื™ืชื”,
08:40
is think about this, and think about how powerful our cells are.
140
520000
3000
ื”ื•ื ืœื—ืฉื•ื‘ ืขืœ ื–ื”, ืœื—ืฉื•ื‘ ืขืœ ื›ืžื” ืฉืชืื™ื ื• ื—ื–ืงื™ื,
08:44
And think about some of the things
141
524000
1000
ื•ืœื—ืฉื•ื‘ ืขืœ ื›ืžื” ืžื”ื“ื‘ืจื™ื
08:45
that we're learning about cellular mechanics.
142
525000
4000
ืฉืื ื• ืœื•ืžื“ื™ื ืขืœ ื”ืžื›ื ื™ืงื” ืฉืœ ื”ืชื.
08:49
Once we figure out all that's going on --
143
529000
3000
ื›ืฉื ื’ืœื” ืืช ื›ืœ ืžื” ืฉืžืชืจื—ืฉ -
08:52
and believe me, we know almost a percent of what's going on --
144
532000
3000
ื•ื”ืืžื™ื ื• ืœื™, ืื ื• ื™ื•ื“ืขื™ื ื›ืžืขื˜ ืื—ื•ื– ืื—ื“ ืžืžื” ืฉืžืชืจื—ืฉ -
08:56
once we figure out what's going on,
145
536000
1000
ื›ืฉื ื’ืœื” ืืช ืžื” ืฉืžืชืจื—ืฉ,
08:57
we're really going to be able to have a lot of control
146
537000
3000
ืชื”ื™ื” ืœื ื• ื‘ืืžืช ื”ืจื‘ื” ืฉืœื™ื˜ื”
09:00
over what we do with our health,
147
540000
2000
ืขืœ ืžื” ืฉืื ื• ืขื•ืฉื™ื ื‘ื ื•ื’ืข ืœื‘ืจื™ืื•ืชื ื•,
09:02
with what we do with future generations,
148
542000
3000
ืขืœ ืžื” ืฉืื ื• ืขื•ืฉื™ื ื‘ื ื•ื’ืข ืœื“ื•ืจื•ืช ื”ืขืชื™ื“,
09:05
and how long we're going to live.
149
545000
1000
ืขืœ ืชื•ื—ืœืช ื—ื™ื™ื ื•.
09:07
And hopefully we'll be able to use this
150
547000
2000
ื‘ืชืงื•ื•ื” ืฉื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื›ืš
09:09
to discover more truth, and more beauty.
151
549000
3000
ืœื’ืœื•ืช ืขื•ื“ ืืžืช ื•ืขื•ื“ ื™ื•ืคื™.
09:12
(Music)
152
552000
14000
[ืžื•ืกื™ืงื”]
09:26
But it's really quite amazing that these cells, these micro-machines,
153
566000
4000
ืืš ื–ื” ื‘ืืžืช ื“ื™ ืžื“ื”ื™ื ืฉืชืื™ื ืืœื”, ืžื™ืงืจื•-ืžื›ื•ื ื•ืช ืืœื”,
09:31
are aware enough of what the cell needs that they do their bidding.
154
571000
5000
ื™ื•ื“ืขื™ื ืžื” ืฉื”ืชื ืฆืจื™ืš, ื•ื™ื•ื“ืขื™ื ืœื”ืฆื™ืข ืœื• ื–ืืช.
09:36
They work together. They make the cell do what it needs to do.
155
576000
4000
ื”ื ืคื•ืขืœื™ื ื‘ื™ื—ื“ ื•ื’ื•ืจืžื™ื ืœืชื ืœืขืฉื•ืช ืžื” ืฉืขืœื™ื• ืœืขืฉื•ืช.
09:40
And their working together helps our bodies --
156
580000
6000
ื•ืขื‘ื•ื“ืชื ื‘ื™ื—ื“ ืขื•ื–ืจืช ืœื’ื•ืคื ื• -
09:46
huge entities that they will never see -- function properly.
157
586000
4000
ื™ื™ืฉื•ื™ื•ืช ืขื ืงื™ื•ืช ืฉื”ื ืœืขื•ืœื ืœื ื™ืจืื•-- ืœืชืคืงื“ ื›ื™ืื•ืช.
09:51
Enjoy the rest of the show. Thank you.
158
591000
1000
ืชื™ื”ื ื• ืžื”ื”ืžืฉืš. ืชื•ื“ื” ืจื‘ื”.
09:52
(Applause)
159
592000
2000
[ืžื—ื™ืื•ืช ื›ืคื™ื™ื]
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7