Ellen Jorgensen: Biohacking -- you can do it, too

186,929 views ใƒป 2013-01-15

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:15
It's a great time to be a molecular biologist. (Laughter)
1
15816
3438
ื–ื” ื–ืžืŸ ืžืฆื•ื™ืŸ ืœื”ื™ื•ืช ื‘ื™ื•ืœื•ื’ ืžื•ืœืงื•ืœืจื™. (ืฆื—ื•ืง)
00:19
Reading and writing DNA code is getting easier
2
19254
2882
ืœืงืจื•ื ื•ืœื›ืชื•ื‘ ืงื•ื“ื™ื ืฉืœ ื“ื "ื ื”ื•ืœืš ื•ื ืขืฉื” ืงืœ ื™ื•ืชืจ
00:22
and cheaper.
3
22136
1532
ื•ื–ื•ืœ ื™ื•ืชืจ.
00:23
By the end of this year, we'll be able to sequence
4
23668
2170
ื‘ืกื•ืฃ ืฉื ื” ื–ื•, ื ื”ื™ื” ืžืกื•ื’ืœื™ื ืœื™ืฆื•ืจ ืจืฆืฃ
00:25
the three million bits of information
5
25838
1704
ืฉืœ 3 ืžื™ืœื™ื•ืŸ ืจืกื™ืกื™ ืžื™ื“ืข
00:27
in your genome in less than a day
6
27542
2970
ื‘ื’ื ื•ื ืฉืœื›ื ื‘ืคื—ื•ืช ืžื™ื•ื
00:30
and for less than 1,000 euros.
7
30512
2410
ื•ื‘ืขืœื•ืช ื ืžื•ื›ื” ืž-1000 ืื™ืจื•.
00:32
Biotech is probably the most powerful
8
32922
2830
ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ื›ื ืจืื” ื”ืžื’ื–ืจ
00:35
and the fastest-growing technology sector.
9
35752
3024
ื”ื˜ื›ื ื•ืœื•ื’ื™ ื”ื—ื–ืง ื‘ื™ื•ืชืจ ืฉื’ื“ืœ ื‘ืžื”ื™ืจื•ืช ื”ืจื‘ื” ื‘ื™ื•ืชืจ.
00:38
It has the power, potentially,
10
38776
3302
ื™ืฉ ืœื• ื”ื›ื•ื—, ื”ืคื•ื˜ื ืฆื™ืืœื™,
00:42
to replace our fossil fuels,
11
42078
2217
ืœื”ื—ืœื™ืฃ ืืช ื“ืœืง ื”ืžืื•ื‘ื ื™ื ืฉืœื ื•,
00:44
to revolutionize medicine,
12
44295
2217
ืœื—ื•ืœืœ ืžื”ืคื›ื” ื‘ืจืคื•ืื”,
00:46
and to touch every aspect of our daily lives.
13
46512
4211
ื•ืœื’ืขืช ื‘ื›ืœ ื”ื™ื‘ื˜ ืฉืœ ื—ื™ื™ื ื• ื”ื™ื•ืžื™ื•ืžื™ื™ื.
00:50
So who gets to do it?
14
50723
3832
ืื– ืžื™ ื”ื ืืœื” ืฉืขื•ืฉื™ื ื–ืืช?
00:54
I think we'd all be pretty comfortable with
15
54555
2495
ืื ื™ ื—ื•ืฉื‘ืช ืฉื”ื™ื™ื ื• ืžืจื’ื™ืฉื™ื ื“ื™ ื‘ื ื•ื— ืขื
00:57
this guy doing it.
16
57050
3272
ื”ืื“ื ื”ื–ื” ืฉืขื•ืฉื” ื–ืืช.
01:00
But what about
17
60322
1915
ืื‘ืœ ืžื” ืขื
01:02
that guy? (Laughter)
18
62237
2872
ื”ืื“ื ื”ื–ื”? (ืฆื—ื•ืง)
01:05
(Laughter)
19
65109
1870
(ืฆื—ื•ืง)
01:06
In 2009, I first heard about DIYbio.
20
66979
5474
ื‘-2009 ืฉืžืขืชื™ ืœืจืืฉื•ื ื” ืขืœ DIYbio (ื‘ื™ื• -ืขืฉื” ื–ืืช ื‘ืขืฆืžืš).
01:12
It's a movement that -- it advocates making biotechnology
21
72453
4113
ื–ื•ื”ื™ ืชื ื•ืขื” ืฉื“ื•ื’ืœืช ื‘ื”ืคื™ื›ืช ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื”
01:16
accessible to everyone,
22
76566
2081
ืœื ื’ื™ืฉื” ืœื›ื•ืœื.
01:18
not just scientists and people in government labs.
23
78647
3639
ืœื ืจืง ืœืžื“ืขื ื™ื ื•ืื ืฉื™ื ื‘ืžืขื‘ื“ื•ืช ืžืžืฉืœืชื™ื•ืช.
01:22
The idea is that if you open up the science
24
82286
3540
ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉืื ืืชื ืคื•ืชื—ื™ื ืืช ื”ืžื“ืข
01:25
and you allow diverse groups to participate,
25
85826
2803
ื•ืžืืคืฉืจื™ื ืœืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช ืœื”ืฉืชืชืฃ,
01:28
it could really stimulate innovation.
26
88629
1693
ื–ื” ื‘ืืžืช ื™ื•ื›ืœ ืœืขื•ื“ื“ ื—ื“ืฉื ื•ืช.
01:30
Putting technology in the hands of the end user
27
90322
2806
ื”ืคืงื“ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ื™ื“ื™ื• ืฉืœ ืžืฉืชืžืฉ ื”ืงืฆื”
01:33
is usually a good idea because they've got the best idea
28
93128
3189
ืžื•ืžืœืฆืช ื‘ื“ืจืš ื›ืœืœ ืžืฉื•ื ืฉืืœื” ื™ื•ื“ืขื™ื ื”ื›ื™ ื˜ื•ื‘
01:36
of what their needs are.
29
96317
2103
ืžื”ื ื”ืฆืจื›ื™ื ืฉืœื”ื.
01:38
And here's this really sophisticated technology
30
98420
3137
ื•ื”ื ื” ื›ืืŸ ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืชื•ื—ื›ืžืช ื‘ืืžืช ื–ื•
01:41
coming down the road, all these associated
31
101557
2744
ืฉืžื’ื™ืขื” ืžื›ืœ ื”ื›ื™ื•ื•ื ื™ื, ื›ืœ ื”ืฉืืœื•ืช ื”ื—ื‘ืจืชื™ื•ืช,
01:44
social, moral, ethical questions,
32
104301
2697
ื”ืžื•ืกืจื™ื•ืช, ื•ื”ืืชื™ื•ืช, ื”ืœืœื• ืฉืงืฉื•ืจื•ืช,
01:46
and we scientists are just lousy at explaining to the public
33
106998
3391
ื•ืื ื—ื ื• ื”ืžื“ืขื ื™ื ืคืฉื•ื˜ ื’ืจื•ืขื™ื ื‘ืœื”ืกื‘ื™ืจ ืœืฆื™ื‘ื•ืจ
01:50
just exactly what it is we're doing in those labs.
34
110389
3882
ืžื” ื‘ื“ื™ื•ืง ืื ื—ื ื• ืขื•ืฉื™ื ื‘ืžืขื‘ื“ื•ืช ืืœื•.
01:54
So wouldn't it be nice
35
114271
2728
ืื– ื”ืื ืœื ื™ื”ื™ื” ื–ื” ื ื—ืžื“
01:56
if there was a place in your local neighborhood
36
116999
2436
ืœื• ื”ื™ื” ืžืงื•ื ื‘ืฉื›ื•ื ื” ืฉืœื›ื
01:59
where you could go and learn about this stuff,
37
119435
2580
ืฉืืœื™ื• ื™ื›ื•ืœืชื ืœืœื›ืช ื•ืœืœืžื•ื“ ืขืœ ื”ื—ื•ืžืจ ื”ื–ื”,
02:02
do it hands-on?
38
122015
2323
ืœืขืฉื•ืช ืืช ื–ื” ื‘ืื•ืคืŸ ืžื•ื“ืข ื•ืืงื˜ื™ื‘ื™?
02:04
I thought so.
39
124338
1515
ื›ืš ื—ืฉื‘ืชื™.
02:05
So, three years ago, I got together
40
125853
1880
ืื–, ืœืคื ื™ ืฉืœื•ืฉ ืฉื ื™ื ื—ื‘ืจืชื™
02:07
with some friends of mine who had similar aspirations
41
127733
3537
ืœื›ืžื” ื—ื‘ืจื™ื ืฉืœื™ ืฉื”ื™ื• ืœื”ื ืฉืื™ืคื•ืช ื“ื•ืžื•ืช
02:11
and we founded Genspace.
42
131270
2135
ื•ื™ืกื“ื ื• ืืช "ื’ื ืกืคื™ื™ืก".
02:13
It's a nonprofit, a community biotech lab
43
133405
3456
ื”ื™ื ืžืœื›"ืจ, ืžืขื‘ื“ืช ื‘ื™ื•ื˜ืง ืงื”ื™ืœืชื™ืช
02:16
in Brooklyn, New York,
44
136861
1354
ื‘ื‘ืจื•ืงืœื™ืŸ, ื ื™ื• ื™ื•ืจืง,
02:18
and the idea was people could come,
45
138215
1769
ื•ื”ืจืขื™ื•ืŸ ื”ื™ื” ืฉืื ืฉื™ื ื™ื•ื›ืœื• ืœื”ื’ื™ืข,
02:19
they could take classes and putter around in the lab
46
139984
3973
ื™ื•ื›ืœื• ืœืงื‘ืœ ืฉื™ืขื•ืจื™ื, ืœืฉื•ื˜ื˜ ื‘ืžืขื‘ื“ื”
02:23
in a very open, friendly atmosphere.
47
143957
4112
ื‘ืื•ื•ื™ืจื” ืžืื•ื“ ืคืชื•ื—ื” ื•ื™ื“ื™ื“ื•ืชื™ืช.
02:28
None of my previous experience prepared me
48
148069
2641
ืฉื•ื ื“ื‘ืจ ื‘ื ื™ืกื™ื•ืŸ ื”ืงื•ื“ื ืฉืจื›ืฉืชื™ ืœื ื”ื›ื™ืŸ ืื•ืชื™
02:30
for what came next. Can you guess?
49
150710
3345
ืœืžื” ืฉื‘ื ืื—ืจ ื›ืš. ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื ื—ืฉ?
02:34
The press started calling us.
50
154055
2728
ื”ืขื™ืชื•ื ื•ืช ื”ืชื—ื™ืœื” ืœื”ืชืงืฉืจ ืืœื™ื ื•.
02:36
And the more we talked about how great it was to increase
51
156783
3118
ื•ื›ื›ืœ ืฉื“ื™ื‘ืจื ื• ื™ื•ืชืจ ืขืœ ื›ืžื” ื ืคืœื ื–ื” ื”ื™ื” ืœื”ื’ื“ื™ืœ
02:39
science literacy, the more they wanted to talk
52
159901
2672
ืื•ืจื™ื™ื ื•ืช ืžื“ืขื™ืช, ื™ื•ืชืจ ื”ื ืจืฆื• ืœื“ื‘ืจ
02:42
about us creating the next Frankenstein,
53
162573
3128
ืขืœื™ื ื• ื›ืขืœ ืžื™ ืฉืžื™ื™ืฆืจ ืืช ื”ืคืจื ืงื ืฉื˜ื™ื™ืŸ ื”ื‘ื,
02:45
and as a result, for the next six months,
54
165701
3005
ื•ื›ืชื•ืฆืื” ืžื›ืš, ื‘ืžืฉืš ืฉืฉืช ื”ื—ื•ื“ืฉื™ื ื”ื‘ืื™ื,
02:48
when you Googled my name,
55
168706
1777
ืื ื—ื™ืคืฉืชื ืื•ืชื™ ื‘ื’ื•ื’ืœ,
02:50
instead of getting my scientific papers, you got this.
56
170483
4053
ื‘ืžืงื•ื ืœืงื‘ืœ ืืช ื”ืžืืžืจื™ื ื”ืžื“ืขื™ื™ื, ืงื™ื‘ืœืชื ืืช ื–ื”.
02:54
["Am I a biohazard?"]
57
174536
1578
["ื”ืื ืื ื™ ืžืคื’ืข ื‘ื™ื•ืœื•ื’ื™?"]
02:56
(Laughter)
58
176114
2133
(ืฆื—ื•ืง)
02:58
It was pretty depressing.
59
178247
1791
ื–ื” ื”ื™ื” ื“ื™ ืžื“ื›ื.
03:00
The only thing that got us through that period
60
180038
2960
ื”ื“ื‘ืจ ื”ื™ื—ื™ื“ ืฉืขื–ืจ ืœื ื• ืœืขื‘ื•ืจ ืืช ืื•ืชื” ืชืงื•ืคื”
03:02
was that we knew that all over the world,
61
182998
1861
ื”ื™ื” ืฉื™ื“ืขื ื• ืฉื‘ื›ืœ ื”ืขื•ืœื,
03:04
there were other people that were trying to do
62
184859
1586
ื”ื™ื• ืื ืฉื™ื ืื—ืจื™ื ืฉื ื™ืกื• ืœืขืฉื•ืช
03:06
the same thing that we were.
63
186445
1936
ืืช ืื•ืชื• ื“ื‘ืจ ืฉืื ื—ื ื• ืขืฉื™ื ื•.
03:08
They were opening biohacker spaces, and some of them
64
188381
2504
ื”ื ืคืชื—ื• ืžืจื—ื‘ื™ื ืฉืœ ื‘ื™ื•-ื”ืืงืจื™ื , ื•ื›ืžื” ืžื”ื
03:10
were facing much greater challenges than we did,
65
190885
2641
ืžืฆืื• ืขืฆืžื ืขื•ืžื“ื™ื ื‘ืคื ื™ ืืชื’ืจื™ื ื’ื“ื•ืœื™ื ื‘ื”ืจื‘ื” ืžืฉื”ื™ื• ืœื ื•,
03:13
more regulations, less resources.
66
193526
4117
ื™ื•ืชืจ ืชืงื ื•ืช , ืคื—ื•ืช ืžืฉืื‘ื™ื.
03:17
But now, three years later, here's where we stand.
67
197643
4199
ืื‘ืœ ืขื›ืฉื™ื•, ืฉืœื•ืฉ ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ, ื”ื ื” ื”ื™ื›ืŸ ืฉืื ื—ื ื• ืขื•ืžื“ื™ื.
03:21
It's a vibrant, global community of hackerspaces,
68
201842
4418
ื–ื•ื”ื™ ืงื”ื™ืœื” ื’ืœื•ื‘ืœื™ืช ืชื•ืกืกืช, ืฉืœ ืžืจื—ื‘ื™ ื”ืืงืจื™ื,
03:26
and this is just the beginning.
69
206260
1902
ื•ื–ื•ื”ื™ ืจืง ื”ื”ืชื—ืœื”.
03:28
These are some of the biggest ones,
70
208162
2061
ืืœื” ื”ื ืื—ื“ื™ื ืžื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ,
03:30
and there are others opening every day.
71
210223
2064
ื•ื™ืฉ ืื—ืจื™ื ืฉื ืคืชื—ื™ื ืžื“ื™ ื™ื•ื.
03:32
There's one probably going to open up in Moscow,
72
212287
2871
ื™ืฉ ืื—ื“ ืฉื›ื ืจืื” ืขื•ืžื“ ืœื”ื™ืคืชื— ื‘ืžื•ืกืงื‘ื”,
03:35
one in South Korea,
73
215158
1299
ืื—ื“ ื‘ื“ืจื•ื ืงื•ืจื™ืื”,
03:36
and the cool thing is they each have their own
74
216457
2326
ื•ืžื” ืฉืžื’ื ื™ื‘ ื”ื•ื ืฉืœื›ืœ ืื—ื“ ืžื”ื ื™ืฉ
03:38
individual flavor
75
218783
1783
ื ื™ื—ื•ื— ืื™ืฉื™
03:40
that grew out of the community they came out of.
76
220566
2324
ืฉืฆืžื— ืžืชื•ืš ื”ืงื”ื™ืœื” ืฉืžืžื ื” ื”ื ื™ืฆืื•.
03:42
Let me take you on a little tour.
77
222890
3139
ื”ืจืฉื• ืœื™ ืœืงื—ืช ืืชื›ื ืœืกื™ื•ืจ ืงื˜ืŸ.
03:46
Biohackers work alone.
78
226029
2448
ื‘ื™ื•-ื”ืืงืจื™ื ืขื•ื‘ื“ื™ื ืœื‘ื“.
03:48
We work in groups,
79
228477
2560
ืื ื—ื ื• ืขื•ื‘ื“ื™ื ื‘ืงื‘ื•ืฆื•ืช,
03:51
in big cities โ€” (Laughter) โ€”
80
231037
4385
ื‘ืขืจื™ื ื”ื’ื“ื•ืœื•ืช โ€” (ืฆื—ื•ืง) โ€”
03:55
and in small villages.
81
235422
2670
ื•ื‘ื›ืคืจื™ื ืงื˜ื ื™ื.
03:58
We reverse engineer lab equipment.
82
238092
2768
ืื ื—ื ื• ืžื”ื ื“ืกื™ื ืื—ื•ืจื ื™ืช ืฆื™ื•ื“ ืžืขื‘ื“ื”.
04:00
We genetically engineer bacteria.
83
240860
2536
ืื ื• ืžื”ื ื“ืกื™ื ื—ื™ื™ื“ืงื™ื ื‘ืื•ืคืŸ ื’ื ื˜ื™ืช
04:03
We hack hardware,
84
243396
2227
ืื ื• ืคื•ืจืฆื™ื ืœื—ื•ืžืจื”,
04:05
software,
85
245623
2245
ืชื•ื›ื ื”,
04:07
wetware,
86
247868
2424
ื•ื—ืžืจื™ื ื‘ื™ื•ืœื•ื’ื™ื™ื,
04:10
and, of course, the code of life.
87
250292
2936
ื•-, ื›ืžื•ื‘ืŸ, ืœืงื•ื“ ื”ื—ื™ื™ื.
04:13
We like to build things.
88
253228
2935
ืื ื—ื ื• ืจื•ืฆื™ื ืœื‘ื ื•ืช ื“ื‘ืจื™ื.
04:16
Then we like to take things apart.
89
256163
6387
ื•ืœืื—ืจ ืžื›ืŸ ืื ื—ื ื• ืื•ื”ื‘ื™ื ืœืคืจืง ื“ื‘ืจื™ื.
04:22
We make things grow.
90
262550
2116
ืื ื—ื ื• ื’ื•ืจืžื™ื ืœื“ื‘ืจื™ื ืœื’ื“ื•ืœ.
04:24
We make things glow.
91
264666
1802
ืื ื—ื ื• ื’ื•ืจืžื™ื ืœื“ื‘ืจื™ื ืœื–ื”ื•ืจ.
04:26
And we make cells dance.
92
266468
3967
ื•ืื ื—ื ื• ื’ื•ืจืžื™ื ืœืชืื™ื ืœืจืงื•ื“,
04:30
The spirit of these labs, it's open, it's positive,
93
270435
3791
ืจื•ื— ื”ืžืขื‘ื“ื•ืช ื”ืืœื•, ื–ื” ืคืชื•ื—, ื–ื” ื—ื™ื•ื‘ื™,
04:34
but, you know, sometimes when people think of us,
94
274226
2441
ืื‘ืœ, ืืชื ื™ื•ื“ืขื™ื, ืœืคืขืžื™ื ื›ืืฉืจ ืื ืฉื™ื ื—ื•ืฉื‘ื™ื ืขืœื™ื ื•,
04:36
the first thing that comes to mind is bio-safety,
95
276667
4027
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืขื•ืœื” ืขืœ ื”ื“ืขืช ื”ื•ื ื‘ื™ื•-ื‘ื˜ื™ื—ื•ืช,
04:40
bio-security, all the dark side stuff.
96
280694
3077
ื‘ื™ื•-ืื‘ื˜ื—ื”, ื›ืœ ื”ื“ื‘ืจื™ื ืฉืœ ื”ืฆื“ ื”ืืคืœ.
04:43
I'm not going to minimize those concerns.
97
283771
2608
ืื ื™ ืœื ื”ื•ืœื›ืช ืœืžื–ืขืจ ื—ืฉืฉื•ืช ืืœื”.
04:46
Any powerful technology is inherently dual use,
98
286379
3797
ื‘ื›ืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ืจื‘ืช-ืขื•ืฆืžื” ื™ืฉื ื• ืฉื™ืžื•ืฉ ื“ื•ืืœื™ ืžื™ืกื•ื“ื•,
04:50
and, you know, you get something like
99
290176
1217
ื•ืืชื ื™ื•ื“ืขื™ื, ืืชื ืžืงื‘ืœื™ื ืžืฉื”ื• ื›ืžื•
04:51
synthetic biology, nanobiotechnology,
100
291393
3850
ื‘ื™ื•ืœื•ื’ื™ื” ืกื™ื ืชื˜ื™ืช, ื ื ื•ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื™ื”,
04:55
it really compels you, you have to look at both
101
295243
2624
ื–ื” ื‘ืืžืช ื›ื•ืคื” ืขืœื™ื›ื, ืืชื ืฆืจื™ื›ื™ื ืœื”ืกืชื›ืœ ืขืœ ืฉื ื™ื”ื
04:57
the amateur groups but also the professional groups,
102
297867
3413
ืขืœ ืงื‘ื•ืฆื•ืช ื”ื—ื•ื‘ื‘ื™ื, ืื‘ืœ ื’ื ืขืœ ื”ืงื‘ื•ืฆื•ืช ื”ืžืงืฆื•ืขื™ื•ืช,
05:01
because they have better infrastructure,
103
301280
2451
ื›ื™ ื™ืฉ ืœื”ื ืชืฉืชื™ืช ื˜ื•ื‘ื” ื™ื•ืชืจ,
05:03
they have better facilities,
104
303731
1548
ื™ืฉ ืœื”ื ืžืชืงื ื™ื ื˜ื•ื‘ื™ื ื™ื•ืชืจ,
05:05
and they have access to pathogens.
105
305279
2499
ื•ื™ืฉ ืœื”ื ื’ื™ืฉื” ืœืคืชื•ื’ื ื™ื.
05:07
So the United Nations did just that, and they recently
106
307778
3280
ืื– ื”ืื•"ื ืขืฉื” ื‘ื“ื™ื•ืง ืืช ื–ื”, ื•ื”ื ืœืื—ืจื•ื ื”
05:11
issued a report on this whole area,
107
311058
2608
ื”ื ืคื™ืงื• ื“ื•"ื— ืขืœ ื›ืœ ื”ืชื—ื•ื ื”ื–ื” ื›ื•ืœื•.
05:13
and what they concluded was the power of this technology
108
313666
3072
ื•ืžื” ืฉื”ื ื”ืกื™ืงื• ื”ื™ื” ืฉื›ื•ื—ื” ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ื–ื•
05:16
for positive was much greater than the risk for negative,
109
316738
3852
ืœื—ื™ื•ื‘ื™ ื”ื™ื” ืจื‘ ื™ื•ืชืจ ืžืืฉืจ ื”ืกื™ื›ื•ืŸ ืœืฉืœื™ืœื™,
05:20
and they even looked specifically at the DIYbio community,
110
320590
3529
ื•ื”ื ืืคื™ืœื• ื‘ื—ื ื• ื‘ืžื™ื•ื—ื“ ืืช ืงื”ื™ืœืช ื”- DIYbio,
05:24
and they noted, not surprisingly, that the press
111
324119
3545
ื”ื ืฆื™ื™ื ื•, ื‘ืื•ืคืŸ ืœื ืžืคืชื™ืข, ืฉืœืขื™ืชื•ื ื•ืช
05:27
had a tendency to consistently overestimate our capabilities
112
327664
4024
ื”ื™ื™ืชื” ื ื˜ื™ื™ื” ืžืชืžื“ืช ืœื”ืขืจื™ืš ื™ืชืจ ืขืœ ื”ืžื™ื“ื” ืืช ื”ื™ื›ื•ืœื•ืช ืฉืœื ื•
05:31
and underestimate our ethics.
113
331688
2535
ื•ืœื”ืžืขื™ื˜ ื‘ืขืจื›ื” ืฉืœ ื”ืืชื™ืงื” ืฉืœื ื•.
05:34
As a matter of fact, DIY people from all over the world,
114
334223
3529
ืœืืžื™ืชื• ืฉืœ ื“ื‘ืจ, ืื ืฉื™ DIY ืžื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื,
05:37
America, Europe, got together last year,
115
337752
2730
ืืžืจื™ืงื”, ืื™ืจื•ืคื”, ื”ืชื›ื ืกื• ื‘ืฉื ื” ืฉืขื‘ืจื”,
05:40
and we hammered out a common code of ethics.
116
340482
2549
ื•ื’ื™ื‘ืฉื ื• ืงื•ื“ ืืชื™.
05:43
That's a lot more than conventional science has done.
117
343031
3360
ื–ื” ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืขืฉื” ื”ืžื“ืข ื”ืงื•ื ื‘ื ืฆื™ื•ื ืืœื™.
05:46
Now, we follow state and local regulations.
118
346391
3648
ืขื›ืฉื™ื•, ืื ื—ื ื• ื ื•ื”ื’ื™ื ืขืœ ืคื™ ื”ืชืงื ื•ืช, ื”ืŸ ื”ืžืงื•ืžื™ื•ืช ื•ื”ืŸ ืฉืœ ื”ืžื“ื™ื ื”.
05:50
We dispose of our waste properly, we follow
119
350039
1996
ืื ื• ืžืฉืœื™ื›ื™ื ืืช ื”ืคืกื•ืœืช ืฉืœื ื• ื›ืจืื•ื™, ืื ื• ืžืงื™ื™ืžื™ื
05:52
safety procedures, we don't work with pathogens.
120
352035
3341
ื ื”ืœื™ ื‘ื˜ื™ื—ื•ืช, ืื ื• ืœื ืขื•ื‘ื“ื™ื ืขื ืคืชื•ื’ื ื™ื.
05:55
You know, if you're working with a pathogen,
121
355376
2703
ืืชื ื™ื•ื“ืขื™ื, ืื ืืชื ืขื•ื‘ื“ื™ื ืขื ืคืชื•ื’ืŸ,
05:58
you're not part of the biohacker community,
122
358079
2544
ืื™ื ื›ื ื—ืœืง ืžืงื”ื™ืœืช ื”ื‘ื™ื•-ื”ืืงืจื™ื,
06:00
you're part of the bioterrorist community, I'm sorry.
123
360623
3153
ืืชื ื—ืœืง ืžืงื”ื™ืœืช ื”ื‘ื™ื•ื˜ืจื•ืจื™ืกื˜ื™ื, ืื ื™ ืžืฆื˜ืขืจืช.
06:03
And sometimes people ask me,
124
363776
1923
ื•ืœืคืขืžื™ื ืื ืฉื™ื ืฉื•ืืœื™ื ืื•ืชื™,
06:05
"Well, what about an accident?"
125
365699
1887
"ื•ื‘ื›ืŸ, ืžื” ืœื’ื‘ื™ ืชืื•ื ื”?"
06:07
Well, working with the safe organisms that we normally
126
367586
3558
ื•ื‘ื›ืŸ, ื‘ืขื‘ื•ื“ื” ืขื ืื•ืจื’ื ื™ื–ืžื™ื ื‘ื˜ื•ื—ื™ื ื›ืžื• ืืœื” ืฉืื ื—ื ื• ื‘ื“ืจืš ื›ืœืœ
06:11
work with, the chance of an accident happening
127
371144
3359
ืขื•ื‘ื“ื™ื ืืชื, ื”ืกื™ื›ื•ื™ ืฉืชืงืจื” ืชืื•ื ื”
06:14
with somebody accidentally creating, like,
128
374503
2328
ืขื ืžื™ืฉื”ื• ืฉื‘ื˜ืขื•ืช ื™ื•ืฆืจ, ื›ืื™ืœื•,
06:16
some sort of superbug,
129
376831
1646
ืกื•ื’ ืฉืœ ืกื•ืคืจื‘ืื’,
06:18
that's literally about as probable as a snowstorm
130
378477
4250
ื”ืกื‘ื™ืจื•ืช ืฉืœื• ื”ื™ื ืžืžืฉ ื›ืžื• ืกื•ืคืช ืฉืœื’
06:22
in the middle of the Sahara Desert.
131
382727
2072
ื‘ืืžืฆืข ืžื“ื‘ืจ ืกื”ืจื”.
06:24
Now, it could happen,
132
384799
1354
ื›ืขืช, ื–ื” ื™ื›ื•ืœ ืœืงืจื•ืช,
06:26
but I'm not going to plan my life around it.
133
386153
4156
ืื‘ืœ ืื ื™ ืœื ืžืชื›ื•ื•ื ืช ืœืชื›ื ืŸ ืืช ื”ื—ื™ื™ื ืฉืœื™ ืกื‘ื™ื‘ ื–ื”.
06:30
I've actually chosen to take a different kind of risk.
134
390309
2930
ืœืžืขืฉื”, ื‘ื—ืจืชื™ ืœืงื—ืช ืกื•ื’ ืื—ืจ ืฉืœ ืกื™ื›ื•ืŸ.
06:33
I signed up for something called the Personal Genome Project.
135
393239
3112
ื ืจืฉืžืชื™ ืœืžืฉื”ื• ืฉื ืงืจื ืžื™ื–ื ื”ื’ื ื•ื ื”ืื ื•ืฉื™ ื”ืื™ืฉื™.
06:36
It's a study at Harvard where, at the end of the study,
136
396351
2472
ื–ื”ื• ืžื—ืงืจ ื‘ืื•ื ื™ื‘ืจืกื™ื˜ืช ื”ืจื•ื•ืืจื“, ืฉื‘ืกื•ืคื•,
06:38
they're going to take my entire genomic sequence,
137
398823
2768
ื”ื ื”ื•ืœื›ื™ื ืœืงื—ืช ืจืฆืฃ ื’ื ื•ืžื™ ืžืœื ืฉืœื™,
06:41
all of my medical information, and my identity,
138
401591
3672
ืืช ื›ืœ ื”ืžื™ื“ืข ื”ืจืคื•ืื™ ืฉืœื™, ื•ืืช ื”ื–ื”ื•ืช ืฉืœื™,
06:45
and they're going to post it online for everyone to see.
139
405263
4142
ื•ื”ื ื”ื•ืœื›ื™ื ืœืคืจืกื ืืช ื–ื” ื‘ืื™ื ื˜ืจื ื˜ ื›ืš ืฉื™ื”ื™ื” ืคืชื•ื— ืœื›ื•ืœื.
06:49
There were a lot of risks involved that they talked about
140
409405
2930
ื”ื™ื• ื”ืจื‘ื” ืกื™ื›ื•ื ื™ื ื›ืจื•ื›ื™ื ื‘ื–ื” ืฉื”ื ื“ื™ื‘ืจื• ืขืœื™ื”ื
06:52
during the informed consent portion.
141
412335
1776
ื‘ืžื”ืœืš ื”ืฉืœื‘ ืฉืœ ื”ื”ืกื›ืžื” ืžื“ืขืช.
06:54
The one I liked the best is,
142
414111
1883
ืžื” ืฉื”ื›ื™ ืื”ื‘ืชื™,
06:55
someone could download my sequence, go back to the lab,
143
415994
3845
ืžื™ืฉื”ื• ื™ื•ื›ืœ ืœื”ื•ืจื™ื“ ืืช ื”ืจืฆืฃ ืฉืœื™, ืœื—ื–ื•ืจ ืœืžืขื‘ื“ื”,
06:59
synthesize some fake Ellen DNA,
144
419839
2294
ืœืกื ืชื– DNA ืžื–ื•ื™ืฃ ืฉืœ ืืœืŸ,
07:02
and plant it at a crime scene. (Laughter)
145
422133
4074
ื•ืœืฉืชื•ืœ ืื•ืชื• ื‘ื–ื™ืจืช ืคืฉืข. (ืฆื—ื•ืง)
07:06
But like DIYbio, the positive outcomes and
146
426207
4530
ืื‘ืœ ื›ืžื• ื‘- DIYbio, ื”ืชื•ืฆืื•ืช ื”ื—ื™ื•ื‘ื™ื•ืช
07:10
the potential for good for a study like that
147
430737
3146
ื•ื”ืคื•ื˜ื ืฆื™ืืœ ืœืžื—ืงืจ ื˜ื•ื‘ ื›ืžื• ื–ื”
07:13
far outweighs the risk.
148
433883
2052
ืขื•ืœื™ื ื‘ื”ืจื‘ื” ืขืœ ื”ืกื™ื›ื•ืŸ.
07:15
Now, you might be asking yourself,
149
435935
2401
ืขื›ืฉื™ื•, ืืชื ืขืฉื•ื™ื™ื ืœืฉืื•ืœ ืืช ืขืฆืžื›ื,
07:18
"Well, you know, what would I do in a biolab?"
150
438336
3437
"ื•ื‘ื›ืŸ, ืืชื ื™ื•ื“ืขื™ื, ืžื” ืื ื™ ื”ื™ื™ืชื™ ืขื•ืฉื” ื‘ืžืขื‘ื“ืช ื‘ื™ื•?"
07:21
Well, it wasn't that long ago we were asking, "Well,
151
441773
3329
ื˜ื•ื‘, ืœืคื ื™ ื–ืžืŸ ืœื ืจื‘ ืฉืืœื ื•, "ื•ื‘ื›ืŸ,
07:25
what would anyone do with a personal computer?"
152
445102
3065
ืžื” ื›ืœ ืื—ื“ ื™ืขืฉื” ืขื ืžื—ืฉื‘ ืื™ืฉื™?"
07:28
So this stuff is just beginning.
153
448167
1964
ืื– ื–ื” ืจืง ืžืชื—ื™ืœ.
07:30
We're only seeing just the tip of the DNA iceberg.
154
450131
3876
ืื ื• ืจื•ืื™ื ืจืง ืืช ืงืฆื” ื”ืงืจื—ื•ืŸ ืฉืœ ื”-DNA.
07:34
Let me show you what you could do right now.
155
454007
3085
ื”ืจืฉื• ืœื™ ืœื”ืจืื•ืช ืœื›ื ืžื” ืชื•ื›ืœื• ืœืขืฉื•ืช ืขื›ืฉื™ื•.
07:37
A biohacker in Germany, a journalist, wanted to know
156
457092
3835
ื‘ื™ื•-ื”ืืงืจ ื‘ื’ืจืžื ื™ื”, ืขื™ืชื•ื ืื™, ืจืฆื” ืœื“ืขืช
07:40
whose dog was leaving little presents on his street?
157
460927
3234
ืœืžื™ ืฉื™ื™ืš ื”ื›ืœื‘ ืฉืžืฉืื™ืจ ืืช ื”"ืžืชื ื•ืช" ื”ืงื˜ื ื•ืช ื‘ืจื—ื•ื‘ ืฉืœื•?
07:44
(Laughter) (Applause)
158
464161
2910
(ืฆื—ื•ืง) (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:47
Yep, you guessed it. He threw tennis balls
159
467071
2706
ื›ืŸ, ื ื™ื—ืฉืชื ื ื›ื•ืŸ. ื”ื•ื ื–ืจืง ื›ื“ื•ืจื™ ื˜ื ื™ืก
07:49
to all the neighborhood dogs, analyzed the saliva,
160
469777
3262
ืœื›ืœ ื”ื›ืœื‘ื™ื ื‘ืฉื›ื•ื ื”, ื‘ื“ืง ืืช ื”ืจื•ืง,
07:53
identified the dog, and confronted the dog owner.
161
473039
3894
ื–ื™ื”ื” ืืช ื”ื›ืœื‘, ื•ื”ืชืขืžืช ืขื ื”ื‘ืขืœื™ื ืฉืœื•.
07:56
(Laughter) (Applause)
162
476933
6276
(ืฆื—ื•ืง) (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
08:03
I discovered an invasive species in my own backyard.
163
483209
3304
ื’ื™ืœื™ืชื™ ื–ืŸ ืคื•ืœืฉ ื‘ื—ืฆืจ ื”ืื—ื•ืจื™ืช ืฉืœื™.
08:06
Looked like a ladybug, right?
164
486513
1940
ื ืจืื” ื›ืžื• ืžื•ืฉื™ืช, ื ื›ื•ืŸ?
08:08
It actually is a Japanese beetle.
165
488453
2048
ื‘ืขืฆื ื–ื•ื”ื™ ื—ื™ืคื•ืฉื™ืช ื™ืคื ื™ืช.
08:10
And the same kind of technology --
166
490501
1911
ื•ืื•ืชื• ืกื•ื’ ืฉืœ ื˜ื›ื ื•ืœื•ื’ื™ื”-
08:12
it's called DNA barcoding, it's really cool --
167
492412
2084
ื–ื” ื ืงืจื ื‘ืจืงื•ื“ DNA, ื–ื” ืžืžืฉ ืžื’ื ื™ื‘-
08:14
You can use it to check if your caviar is really beluga,
168
494496
4866
ื‘ืืคืฉืจื•ืชื›ื ืœื”ืฉืชืžืฉ ื‘ื• ื›ื“ื™ ืœื‘ื“ื•ืง ืื ื”ืงื•ื•ื™ืืจ ืฉืœื›ื ื”ื•ื ืงื•ื•ื™ืืจ ื‘ืœื•ื’ื” ืืžืชื™,
08:19
if that sushi is really tuna, or if that goat cheese
169
499362
3233
ืื ื”ืกื•ืฉื™ ืื›ืŸ ืžื˜ื•ื ื”, ืื• ืื ื’ื‘ื™ื ืช ืขื™ื–ื™ื ื–ื•
08:22
that you paid so much for is really goat's.
170
502595
3414
ืฉืฉื™ืœืžืชื ืขื‘ื•ืจื” ื›ืœ ื›ืš ื”ืจื‘ื” ื”ื™ื ื‘ืืžืช ืžืขื–ื™ื.
08:26
In a biohacker space, you can analyze your genome
171
506009
3901
ื‘ืžืจื—ื‘ ื‘ื™ื•-ื”ืืงืจื™, ื ื™ืชืŸ ืœืื‘ื—ืŸ ืืช ื”ื’ื ื•ื ืฉืœื›ื
08:29
for mutations.
172
509910
1292
ืœืžื•ื˜ืฆื™ื•ืช.
08:31
You can analyze your breakfast cereal for GMO's,
173
511202
3224
ื‘ืืคืฉืจื•ืชื›ื ืœืื‘ื—ืŸ ืืช ื“ื’ื ื™ ื‘ื•ืงืจ ืฉืœื›ื ืœ-ื”ื ื“ืกื” ื’ื ื˜ื™ืช,
08:34
and you can explore your ancestry.
174
514426
2918
ื•ืืชื ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ืืช ื”ืฉื•ืฉืœืช ืฉืœื›ื.
08:37
You can send weather balloons up into the stratosphere,
175
517344
2357
ื‘ืืคืฉืจื•ืชื›ื ืœืฉืœื•ื— ื‘ืœื•ื ื™ ืžื–ื’ ืื•ื•ื™ืจ ืœืกื˜ืจื˜ื•ืกืคืจื”,
08:39
collect microbes, see what's up there.
176
519701
3622
ืœืืกื•ืฃ ื—ื™ื™ื“ืงื™ื, ืœืจืื•ืช ืžื” ืงื•ืจื” ืฉื.
08:43
You can make a biocensor out of yeast
177
523323
2431
ื‘ืืคืฉืจื•ืชื›ื ืœื™ืฆืจ ื‘ื™ื•ืกื ืกื•ืจ ืžืฉืžืจื™ื
08:45
to detect pollutants in water.
178
525754
2187
ืœื–ื”ื•ืช ืžื–ื”ืžื™ื ื‘ืžื™ื.
08:47
You can make some sort of a biofuel cell.
179
527941
3632
ื‘ืืคืฉืจื•ืชื›ื ืœื™ืฆืจ ืกื•ื’ ืฉืœ ืชื ื“ืœืง ื‘ื™ื•ืœื•ื’ื™.
08:51
You can do a lot of things.
180
531573
2293
ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื”ืจื‘ื” ื“ื‘ืจื™ื.
08:53
You can also do an art science project. Some of these
181
533866
3390
ื‘ืืคืฉืจื•ืชื›ื ื’ื ืœื‘ืฆืข ืžื™ื–ื ืœืืžื ื•ืช ื”ืžื“ืข. ื—ืœืง ืžืืœื”
08:57
are really spectacular, and they look at social,
182
537256
3641
ื”ื ื‘ืืžืช ืžืจื”ื™ื‘ื™ื, ื•ื”ื ื‘ื•ื—ื ื™ื ื‘ืขื™ื•ืช
09:00
ecological problems from a completely different perspective.
183
540897
2686
ื—ื‘ืจืชื™ื•ืช ืืงื•ืœื•ื’ื™ื•ืช ืžื ืงื•ื“ืช ืžื‘ื˜ ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ.
09:03
It's really cool.
184
543583
1562
ื–ื” ืžืžืฉ ืžื’ื ื™ื‘.
09:05
Some people ask me, well, why am I involved?
185
545145
3018
ื›ืžื” ืื ืฉื™ื ืฉื•ืืœื™ื ืื•ืชื™, ื•ื‘ื›ืŸ, ืžื” ื’ืจื ืœื™ ืœื”ื™ื•ืช ืžืขื•ืจื‘ืช?
09:08
I could have a perfectly good career in mainstream science.
186
548163
4095
ื™ื›ืœื” ืœื”ื™ื•ืช ืœื™ ืงืจื™ื™ืจื” ื˜ื•ื‘ื” ื‘ื–ืจื ื”ืžืจื›ื–ื™ ืฉืœ ื”ืžื“ืข
09:12
The thing is, there's something in these labs
187
552258
2528
ื”ืขื ื™ื™ืŸ ื”ื•ื, ื™ืฉ ืžืฉื”ื• ื‘ืžืขื‘ื“ื•ืช ืืœื•
09:14
that they have to offer society that you can't find
188
554786
2659
ืฉืžืืคืฉืจ ืœื”ืŸ ืœื”ืฆื™ืข ืœื—ื‘ืจื” ืžื” ืฉืื™ืŸ ื‘ืืคืฉืจื•ืชื›ื ืœืžืฆื•ื
09:17
anywhere else.
189
557445
1967
ื‘ืฉื•ื ืžืงื•ื ืื—ืจ.
09:19
There's something sacred about a space where
190
559412
2678
ื™ืฉ ืžืฉื”ื• ืงื“ื•ืฉ ื‘ืžืงื•ื ืฉื‘ื•
09:22
you can work on a project, and you don't have to justify
191
562090
2512
ื ื™ืชืŸ ืœืขื‘ื•ื“ ืขืœ ืคืจื•ื™ื™ืงื˜, ื•ืื™ืŸ ืฆื•ืจืš ืœื”ืฆื“ื™ืง
09:24
to anyone that it's going to make a lot of money,
192
564602
2874
ืœืืฃ ืื—ื“ ืฉื–ื” ื”ื•ืœืš ืœืขืฉื•ืช ื”ืจื‘ื” ื›ืกืฃ,
09:27
that it's going to save mankind, or even that it's feasible.
193
567476
3255
ืฉื–ื” ื”ื•ืœืš ืœื”ืฆื™ืœ ืืช ื”ืžื™ืŸ ื”ืื ื•ืฉื™, ืื• ืืคื™ืœื• ืฉื–ื” ื‘ืจ ื‘ื™ืฆื•ืข.
09:30
It just has to follow safety guidelines.
194
570731
2927
ื™ืฉ ืจืง ืœืขืงื•ื‘ ืื—ืจ ื”ื ื—ื™ื•ืช ื‘ื˜ื™ื—ื•ืช.
09:33
If you had spaces like this all over the world,
195
573658
2856
ืื ื”ื™ื• ืžืจื—ื‘ื™ื ื›ืžื• ื–ื” ื‘ื›ืœ ืจื—ื‘ื™ ื”ืขื•ืœื,
09:36
it could really change the perception
196
576514
2232
ื–ื” ื‘ืืžืช ื™ื›ื•ืœ ื”ื™ื” ืœืฉื ื•ืช ืืช ื”ืชืคื™ืกื”
09:38
of who's allowed to do biotech.
197
578746
2532
ืฉืœ ืžื™ ืžื•ืจืฉื” ืœืขืกื•ืง ื‘ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื”.
09:41
It's spaces like these that spawned personal computing.
198
581278
3692
ื‘ื–ื›ื•ืช ืžืจื—ื‘ื™ื ื›ืžื• ืืœื” ื ื•ืœื“ ื”ืžื—ืฉื•ื‘ ืื™ืฉื™.
09:44
Why not personal biotech?
199
584970
2416
ืžื“ื•ืข ืœื ื‘ื™ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ืื™ืฉื™ืช?
09:47
If everyone in this room got involved,
200
587386
2377
ืื ื›ื•ืœื ื‘ื—ื“ืจ ื–ื” ื™ื™ืขืฉื• ืžืขื•ืจื‘ื™ื,
09:49
who knows what we could do?
201
589763
1748
ืžื™ ื™ื•ื“ืข ืžื” ื ื•ื›ืœ ืœืขืฉื•ืช?
09:51
This is such a new area, and as we say back in Brooklyn,
202
591511
3760
ื–ื”ื• ืชื—ื•ื ื›ืœ ื›ืš ื—ื“ืฉ, ื•ื›ืคื™ ืฉืื ื• ืื•ืžืจื™ื ืฉื ื‘ื‘ืจื•ืงืœื™ืŸ,
09:55
you ain't seen nothin' yet. (Laughter)
203
595271
3280
ืืชื ืขื“ื™ื™ืŸ ืœื ืจืื™ืชื ื›ืœื•ื. (ืฆื—ื•ืง)
09:58
(Applause)
204
598551
3970
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7