Beau Lotto + Amy O'Toole: Science is for everyone, kids included

183,904 views ใƒป 2012-10-17

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Ariella Cwikel ืžื‘ืงืจ: Ido Dekkers
00:16
Beau Lotto: So, this game is very simple.
1
16747
2169
ื‘ื• ืœื•ื˜ื•: ืื–, ื”ืžืฉื—ืง ื”ื–ื” ืžืื“ ืคืฉื•ื˜.
00:18
All you have to do is read what you see. Right?
2
18916
4047
ื›ืœ ืžื” ืฉืฆืจื™ืš ืœืขืฉื•ืช ื–ื” ืœืงืจื•ื ืืช ืžื” ืฉืืชื ืจื•ืื™ื. ื˜ื•ื‘.
00:22
So, I'm going to count to you, so we don't all do it together.
3
22963
3201
ืื– ืื ื™ ื”ื•ืœืš ืœืกืคื•ืจ ื‘ืฉื‘ื™ืœื›ื, ื›ื“ื™ ืฉืœื ื ืขืฉื” ืืช ื–ื” ื‘ื™ื—ื“.
00:26
Okay, one, two, three.Audience: Can you read this?
4
26164
2499
ืื•ืงื™ื™, ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ. ืงื”ืœ: "ืืชื ื™ื›ื•ืœื™ื ืœืงืจื•ื ืืช ื–ื”?"
00:28
BL: Amazing. What about this one? One, two, three.Audience: You are not reading this.
5
28663
4379
ื‘"ืœ: ืžื“ื”ื™ื. ืžื” ืขื ื–ื”? ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ. ืงื”ืœ: "ืืชื” ืœื ืงื•ืจื ืืช ื–ื”".
00:33
BL: All right. One, two, three. (Laughter)
6
33042
5316
ื‘"ืœ: ื˜ื•ื‘. ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ. (ืฆื—ื•ืง)
00:38
If you were Portuguese, right? How about this one? One, two, three.
7
38358
4797
ืื ื”ื™ื™ืชื ืคื•ืจื˜ื•ื’ื–ื™ื, ื ื›ื•ืŸ? ื•ืžื” ืขื ื–ื”? ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ.
00:43
Audience: What are you reading?
8
43155
1978
ืงื”ืœ: "ืžื” ืืชื ืงื•ืจืื™ื?"
00:45
BL: What are you reading? There are no words there.
9
45133
3458
ื‘"ืœ: ืžื” ืืชื ืงื•ืจืื™ื? ืื™ืŸ ื›ืืŸ ืฉื•ื ืžื™ืœื™ื.
00:48
I said, read what you're seeing. Right?
10
48591
2537
ืืžืจืชื™ ืœืงืจื•ื ืžื” ืฉืืชื ืจื•ืื™ื. ื ื›ื•ืŸ?
00:51
It literally says, "Wat ar ou rea in?" (Laughter) Right?
11
51128
3850
ื•ื›ืชื•ื‘ ืคื” "ืž ื ื ืจื• ื™ื?" (ืฆื—ื•ืง) ื ื›ื•ืŸ?
00:54
That's what you should have said. Right? Why is this?
12
54978
3828
ื–ื” ืžื” ืฉื”ื™ื™ืชื ืฆืจื™ื›ื™ื ืœืขื ื•ืช. ื ื›ื•ืŸ? ืœืžื” ื–ื” ื›ื›ื”?
00:58
It's because perception is grounded in our experience.
13
58806
3536
ื‘ื’ืœืœ ืฉืชืคื™ืกื” ื”ื™ื ื‘ืกื™ืกื™ืช ื‘ื—ื•ื•ื™ื” ืฉืœื ื•.
01:02
Right? The brain takes meaningless information
14
62342
2897
ื ื›ื•ืŸ? ื”ืžื•ื— ืœื•ืงื— ืžื™ื“ืข ื—ืกืจ ืคืฉืจ
01:05
and makes meaning out of it, which means we never see
15
65239
2959
ื•ืžื•ืฆื ืืช ื”ืžืฉืžืขื•ืช ืฉื™ืฉ ื‘ื•, ื›ืœื•ืžืจ, ืื ื• ืœืขื•ืœื ืœื ืจื•ืื™ื
01:08
what's there, we never see information,
16
68198
2256
ืžื” ืฉื™ืฉ, ืื™ื ื ื• ืจื•ืื™ื ืžื™ื“ืข,
01:10
we only ever see what was useful to see in the past.
17
70454
3275
ืื ื—ื ื• ืจืง ืจื•ืื™ื ืžื” ืฉื”ื™ื” ืฉื™ืžื•ืฉื™ ืœื ื• ืœืจืื•ืช ื‘ืขื‘ืจ.
01:13
All right? Which means, when it comes to perception,
18
73729
2736
ื‘ืกื“ืจ? ื”ืžืฉืžืขื•ืช, ื‘ื”ืงืฉืจ ืฉืœ ืชืคื™ืกื”,
01:16
we're all like this frog.
19
76465
6795
ื”ื™ื ืฉื›ื•ืœื ื• ื“ื•ืžื™ื ืœืฆืคืจื“ืข ื”ื–ื•.
01:23
(Laughter)
20
83260
912
(ืฆื—ื•ืง)
01:24
Right? It's getting information. It's generating behavior
21
84172
3395
ื”ื™ื ืžืฉื™ื’ื” ืžื™ื“ืข. ื”ื™ื ืžื™ื™ืฆืจืช ื”ืชื ื”ื’ื•ืช
01:27
that's useful. (Laughter)
22
87567
4468
ืฉื™ืžื•ืฉื™ืช ื‘ืฉื‘ื™ืœื”. (ืฆื—ื•ืง)
01:32
(Laughter)
23
92035
7032
(ืฆื—ื•ืง)
01:39
(Video) Man: Ow! Ow! (Laughter) (Applause)
24
99067
5982
(ื•ื•ื™ื“ืื•) ืื™ืฉ: ืื™ื™! ืื™ื™! (ืฆื—ื•ืง) (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
01:45
BL: And sometimes, when things don't go our way,
25
105049
2712
ื‘"ืœ: ื•ืœืคืขืžื™ื, ื›ืฉื“ื‘ืจื™ื ืœื ื”ื•ืœื›ื™ื ื›ืžื• ืฉืจืฆื™ื ื•,
01:47
we get a little bit annoyed, right?
26
107761
2259
ืื ื—ื ื• ืžืชืจื’ื–ื™ื ืงืฆืช, ื ื›ื•ืŸ?
01:50
But we're talking about perception here, right?
27
110020
2730
ืื‘ืœ ืื ื—ื ื• ืžื“ื‘ืจื™ื ืคื” ืขืœ ืชืคื™ืกื”, ื˜ื•ื‘?
01:52
And perception underpins everything we think, we know,
28
112750
4365
ื•ืชืคื™ืกื” ืžืืฉืจืช ืืช ื›ืœ ืžื” ืฉืื ื—ื ื• ื—ื•ืฉื‘ื™ื, ื™ื•ื“ืขื™ื
01:57
we believe, our hopes, our dreams, the clothes we wear,
29
117115
2871
ืžื” ืฉืื ื—ื ื• ืžืืžื™ื ื™ื, ืžืงื•ื•ื™ื, ื—ื•ืœืžื™ื, ืœื•ื‘ืฉื™ื
01:59
falling in love, everything begins with perception.
30
119986
3743
ืื™ืš ืื ื—ื ื• ืžืชืื”ื‘ื™ื, ื”ื›ืœ ืžืชื—ื™ืœ ื‘ืชืคื™ืกื”.
02:03
Now if perception is grounded in our history, it means
31
123729
2945
ืื ืชืคื™ืกื” ื”ื™ื ื‘ืกื™ืกื™ืช ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœื ื•, ืคื™ืจื•ืฉื• ืฉืœ ื“ื‘ืจ
02:06
we're only ever responding according to what we've done before.
32
126674
3459
ืฉืื ื—ื ื• ืชืžื™ื“ ืžื’ื™ื‘ื™ื ื‘ื”ืชืื ืœืžื” ืฉืขืฉื™ื ื• ื‘ืขื‘ืจ.
02:10
But actually, it's a tremendous problem,
33
130133
3076
ืื‘ืœ ื‘ืขืฆื, ื–ื• ื‘ืขื™ื” ืขื ืงื™ืช,
02:13
because how can we ever see differently?
34
133209
3617
ื‘ื’ืœืœ ืฉื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ืชืžื™ื“ ื ืจืื” ื“ื‘ืจื™ื ื‘ืื•ืชื” ื”ืฆื•ืจื”.
02:16
Now, I want to tell you a story about seeing differently,
35
136826
4063
ืื– ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ืกื™ืคื•ืจ ืขืœ ืจืื™ื™ื” ืžื—ื•ื“ืฉืช,
02:20
and all new perceptions begin in the same way.
36
140889
3988
ื•ื›ืœ ื”ืชืคื™ืกื•ืช ื”ื—ื“ืฉื•ืช ืžืชื—ื™ืœื•ืช ื‘ืฆื•ืจื” ื“ื•ืžื”.
02:24
They begin with a question.
37
144877
2582
ื”ืŸ ืžืชื—ื™ืœื•ืช ื‘ืฉืืœื”.
02:27
The problem with questions is they create uncertainty.
38
147459
3238
ื”ื‘ืขื™ื” ืขื ืฉืืœื•ืช ื”ื™ื ืฉื”ืŸ ื™ื•ืฆืจื•ืช ื—ื•ืกืจ ื•ื•ื“ืื•ืช.
02:30
Now, uncertainty is a very bad thing. It's evolutionarily
39
150697
2729
ื•ื—ื•ืกืจ ื•ื•ื“ืื•ืช ื–ื” ื“ื‘ืจ ืจืข. ืžื‘ื—ื™ื ื” ืื‘ื•ืœื•ืฆื™ื•ื ื™ืช
02:33
a bad thing. If you're not sure that's a predator, it's too late.
40
153426
3601
ื–ื” ื“ื‘ืจ ืจืข. ืื ืืชื” ื—ืกืจ ื•ื•ื“ืื•ืช ืœื’ื‘ื™ ื˜ื•ืจืฃ, ื–ื” ืžืื•ื—ืจ ืžื“ื™.
02:37
Okay? (Laughter)
41
157027
1360
ืื•ืงื™ื™? (ืฆื—ื•ืง)
02:38
Even seasickness is a consequence of uncertainty.
42
158387
3160
ืืคื™ืœื• ืžื—ืœืช ื™ื ื”ื™ื ืชื•ืฆืื” ืฉืœ ื—ื•ืกืจ ื•ื•ื“ืื•ืช.
02:41
Right? If you go down below on a boat, your inner ears
43
161547
2252
ืื ืืชื” ื‘ื‘ื˜ืŸ ืื ื™ื™ื”, ื”ืื•ื–ืŸ ื”ืคื ื™ืžื™ืช ืฉืœืš
02:43
are you telling you you're moving. Your eyes, because
44
163799
2176
ืื•ืžืจืช ืฉืืชื” ื–ื–. ื”ืขื™ื ื™ื™ื ืฉืœืš, ื‘ื’ืœืœ
02:45
it's moving in register with the boat, say I'm standing still.
45
165975
2316
ืฉื”ืŸ ื–ื–ื•ืช ื‘ืชืื•ื ืœืกืคื™ื ื”, ืื•ืžืจื•ืช ืฉืืชื” ืขื•ืžื“ ืžื‘ืœื™ ืœื–ื•ื–.
02:48
Your brain cannot deal with the uncertainty of that information, and it gets ill.
46
168291
4655
ื”ืžื•ื— ืœื ืžืกื•ื’ืœ ืœื”ืชืžื•ื“ื“ ืขื ื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช ืฉืœ ื”ืžื™ื“ืข ื”ื–ื”, ื•ื ื”ื™ื” ื—ื•ืœื”.
02:52
The question "why?" is one of the most dangerous things you can do,
47
172946
3929
ื”ืฉืืœื” "ืœืžื”?" ื”ื™ื ืื—ื“ ื”ื“ื‘ืจื™ื ื”ืžืกื•ื›ื ื™ื ื‘ื™ื•ืชืจ,
02:56
because it takes you into uncertainty.
48
176875
2992
ื‘ื’ืœืœ ืฉื”ื™ื ืžื•ื‘ื™ืœื” ืื•ืชืš ืœื—ื•ืกืจ ื•ื•ื“ืื•ืช.
02:59
And yet, the irony is, the only way we can ever
49
179867
2879
ื•ืขื ื–ืืช, ื‘ืื•ืคืŸ ืื™ืจื•ื ื™, ื”ืฆื•ืจื” ื”ื™ื—ื™ื“ื” ืฉืืคืฉืจ ืื™ ืคืขื
03:02
do anything new is to step into that space.
50
182746
3536
ืœืขืฉื•ืช ืžืฉื”ื• ื—ื“ืฉ ื”ื™ื ืœืคืกื•ืข ืœืชื•ืš ื”ืžืจื—ื‘ ื”ื–ื”.
03:06
So how can we ever do anything new? Well fortunately,
51
186282
3224
ืื™ืš ืื ื—ื ื• ืื™ ืคืขื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืžืฉื”ื• ื—ื“ืฉ?
03:09
evolution has given us an answer, right?
52
189506
3584
ืœืžืจื‘ื” ื”ืžื–ืœ, ื”ืื‘ื•ืœื•ืฆื™ื” ืžืกืคืงืช ืœื ื• ืชืฉื•ื‘ื”, ื ื›ื•ืŸ?
03:13
And it enables us to address even the most difficult
53
193090
3595
ื•ื”ื™ื ืžืืคืฉืจืช ืœื ื• ืœื”ืชืžื•ื“ื“ ืืคื™ืœื• ืขื ื”ืฉืืœื•ืช ื”ื›ื™ ืงืฉื•ืช .
03:16
of questions. The best questions are the ones that create the most uncertainty.
54
196685
4679
ื”ืฉืืœื•ืช ื”ื›ื™ ื˜ื•ื‘ื•ืช ื”ืŸ ื›ืืœื” ืฉื™ื•ืฆืจื•ืช ืืช ื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ.
03:21
They're the ones that question the things we think to be true already. Right?
55
201364
3956
ืืœื• ื”ืฉืืœื•ืช ืฉืžืขืจืขืจื•ืช ืขืœ ืืžื™ืชื•ืช ืงื™ื™ืžื•ืช. ื ื›ื•ืŸ?
03:25
It's easy to ask questions about how did life begin,
56
205320
1989
ืงืœ ืœืฉืื•ืœ ืฉืืœื•ืช ืขืœ ืื™ืš ื”ื—ื™ื™ื ื”ืชื—ื™ืœื”,
03:27
or what extends beyond the universe, but to question what you think to be true already
57
207309
3308
ืื• ืžื” ื™ืฉ ืžืขื‘ืจ ืœื™ืงื•ื, ืื‘ืœ ืœืฉืื•ืœ ืœื’ื‘ื™ ืžื” ืฉืืชื” ื—ื•ืฉื‘ ืฉืืชื” ื›ื‘ืจ ื™ื•ื“ืข
03:30
is really stepping into that space.
58
210617
3001
ื–ื” ืžืžืฉ ืœืงื—ืช ืกื™ื›ื•ืŸ.
03:33
So what is evolution's answer to the problem of uncertainty?
59
213618
4810
ืื– ืžื” ื”ืชืฉื•ื‘ื” ืฉืœ ื”ืื‘ื•ืœื•ืฆื™ื” ืœื‘ืขื™ื™ืช ื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช?
03:38
It's play.
60
218428
1773
ืžืฉื—ืง.
03:40
Now play is not simply a process. Experts in play will tell you
61
220201
4193
ืžืฉื—ืง ื”ื•ื ืœื ืจืง ืชื”ืœื™ืš. ืžื•ืžื—ื™ื ื‘ืžืฉื—ืง ื™ื’ื™ื“ื•
03:44
that actually it's a way of being.
62
224394
2615
ืฉื–ื• ืฆื•ืจืช ื”ื•ื•ื™ื”.
03:47
Play is one of the only human endeavors where uncertainty
63
227009
2891
ืžืฉื—ืง ื”ื•ื ื”ืขื™ืกื•ืง ื”ืื ื•ืฉื™ ื”ื™ื—ื™ื“ื™ ื‘ื• ื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช
03:49
is actually celebrated. Uncertainty is what makes play fun.
64
229900
4326
ื”ื™ื ืžื‘ื•ืจื›ืช. ื—ื•ืกืจ ื•ื•ื“ืื•ืช ื”ื™ื ืžื” ืฉื”ื•ืคืš ืžืฉื—ืง ืœื›ื™ืฃ.
03:54
Right? It's adaptable to change. Right? It opens possibility,
65
234226
4275
ืžืฉื—ืง ืžื•ืชืื ืœืฉื™ื ื•ื™ื™ื, ื ื›ื•ืŸ? ื”ื•ื ืคืชื•ื— ืœืืคืฉืจื•ื™ื•ืช,
03:58
and it's cooperative. It's actually how we do our social bonding,
66
238501
4109
ื•ื”ื•ื ืžืฉืชืฃ. ืžืฉื—ืง ื–ื” ื‘ืขืฆื ื”ื“ืจืš ืฉืœื ื• ืœื™ืฆื•ืจ ื—ื™ื‘ื•ืจื™ื ื—ื‘ืจืชื™ื™ื,
04:02
and it's intrinsically motivated. What that means
67
242610
1726
ื•ื”ื•ื ืžื•ื ืข ืขืœ ื™ื“ื™ ืขืฆืžื•. ื›ืœื•ืžืจ
04:04
is that we play to play. Play is its own reward.
68
244336
4606
ืื ื—ื ื• ืžืฉื—ืงื™ื ื›ื“ื™ ืœืฉื—ืง. ืขืฆื ื”ืžืฉื—ืง ื”ื•ื ื”ื’ืžื•ืœ ืขืœ ืขืฆืžื•.
04:08
Now if you look at these five ways of being,
69
248942
3891
ืื ืชืกืชื›ืœื• ืขืœ ื—ืžืฉ ืฆื•ืจื•ืช ื”ื”ื•ื•ื™ื” ื”ืืœื•,
04:12
these are the exact same ways of being you need
70
252833
2721
ืชื‘ื—ื™ื ื• ืฉืืœื• ืื•ืชืŸ ืฆื•ืจื•ืช ื”ื•ื•ื™ื” ื‘ื“ื™ื•ืง ืฉื ื—ื•ืฆื•ืช
04:15
in order to be a good scientist.
71
255554
2036
ื›ื“ื™ ืœื”ื™ื•ืช ืžื“ืขืŸ ื˜ื•ื‘.
04:17
Science is not defined by the method section of a paper.
72
257590
3027
ืžื“ืข ืœื ืžื•ื’ื“ืจ ืขืœ ื™ื“ื™ ื—ืœืง ื”ืžืชื•ื“ื” ืฉืœ ืžืืžืจ.
04:20
It's actually a way of being, which is here, and this is true
73
260617
3140
ื”ื•ื ื‘ืขืฆื ืžื•ื’ื“ืจ ืขืœ ื™ื“ื™ ืฆื•ืจืช ื”ื•ื•ื™ื”, ื–ืืช ืฉื›ืืŸ, ื•ื–ื” ืชื•ืคืก
04:23
for anything that is creative.
74
263757
2653
ืœื’ื‘ื™ ื›ืœ ื“ื‘ืจ ื™ืฆื™ืจืชื™.
04:26
So if you add rules to play, you have a game.
75
266410
4203
ืื ืžื•ืกื™ืคื™ื ื—ื•ืงื™ื ืœืฉืขืฉื•ืข, ื™ืฉ ืœื ื• ืžืฉื—ืง.
04:30
That's actually what an experiment is.
76
270613
2790
ื–ื” ื”ืžื”ื•ืช ืฉืœ ื ื™ืกื•ื™ ืžื“ืขื™.
04:33
So armed with these two ideas,
77
273403
1919
ืื–, ื‘ืขื–ืจืช ืฉื ื™ ื”ืจืขื™ื•ื ื•ืช ื”ืืœื•,
04:35
that science is a way of being and experiments are play,
78
275322
4322
ืฉืžื“ืข ื”ื•ื ื”ื•ื•ื™ื” ื•ืฉื ื™ืกื•ื™ื™ื ื”ื ืžืฉื—ืง,
04:39
we asked, can anyone become a scientist?
79
279644
3453
ืฉืืœื ื•, ื”ืื ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื“ืขืŸ?
04:43
And who better to ask than 25 eight- to 10-year-old children?
80
283097
3500
ื•ืืช ืžื™ ื™ื•ืชืจ ื˜ื•ื‘ ืœืฉืื•ืœ ืžืืฉืจ 25 ื™ืœื“ื™ื ื‘ื’ื™ืœ 8-10?
04:46
Because they're experts in play. So I took my bee arena
81
286597
3507
ื›ื™ ื”ื ืžื•ืžื—ื™ื ื‘ืžืฉื—ืงื™ื. ืื– ืœืงื—ืชื™ ืืช ื–ื™ืจืช ื”ื“ื‘ื•ืจื™ื ืฉืœื™
04:50
down to a small school in Devon, and the aim of this
82
290104
3547
ืœื‘ื™"ืก ืงื˜ืŸ ื‘ื“ื‘ื•ืŸ, ื•ื”ืžื˜ืจื” ืฉืœ ื–ื”
04:53
was to not just get the kids to see science differently,
83
293651
4244
ื”ื™ื™ืชื” ืœื ืจืง ืœื’ืจื•ื ืœื™ืœื“ื™ื ืœืจืื•ืช ืืช ื”ืžื“ืข ื‘ืื•ืจ ืื—ืจ,
04:57
but, through the process of science, to see themselves differently. Right?
84
297895
4598
ืืœื, ื‘ืืžืฆืขื•ืช ืชื”ืœื™ืš ืžื“ืขื™, ืœืจืื•ืช ืืช ืขืฆืžื ืื—ืจืช. ื˜ื•ื‘?
05:02
The first step was to ask a question.
85
302493
3408
ื”ืฉืœื‘ ื”ืจืืฉื•ืŸ ื”ื™ื” ืœืฉืื•ืœ ืฉืืœื”.
05:05
Now, I should say that we didn't get funding for this study
86
305901
2880
ืคื” ืื ื™ ื—ื™ื™ื‘ ืœื•ืžืจ ืฉืœื ืงื™ื‘ืœื ื• ืžื™ืžื•ืŸ ืœืžื—ืงืจ ื”ื–ื”
05:08
because the scientists said small children couldn't make
87
308781
3330
ื‘ื’ืœืœ ืฉื”ืžื“ืขื ื™ื ืืžืจื• ืฉื™ืœื“ื™ื ืงื˜ื ื™ื ืœื ื™ื›ืœื• ืœื”ื•ืกื™ืฃ
05:12
a useful contribution to science, and the teachers said kids couldn't do it.
88
312111
4302
ืชืจื•ืžื” ืžืฉืžืขื•ืชื™ืช ืœืžื“ืข, ื•ื”ืžื•ืจื™ื ืืžืจื• ืืช ืื•ืชื• ื”ื“ื‘ืจ.
05:16
So we did it anyway. Right? Of course.
89
316413
3734
ืื– ืขืฉื™ื ื• ืืช ื–ื” ืœืžืจื•ืช ื–ืืช. ื ื›ื•ืŸ? ื‘ืจื•ืจ.
05:20
So, here are some of the questions. I put them in small print
90
320147
2819
ืื– ื”ื ื” ื—ืœืง ืžื”ืฉืืœื•ืช. ื›ืชื‘ืชื™ ืื•ืชืŸ ื‘ื›ืชื‘ ืงื˜ืŸ
05:22
so you wouldn't bother reading it. Point is that five of the questions that the kids came up with
91
322966
4440
ื›ื“ื™ ืฉืœื ืชื˜ืจื—ื• ืœืงืจื•ื ืืช ื–ื”. ื”ื ืงื•ื“ื” ื”ื™ื ืฉ-5 ืžื”ืฉืืœื•ืช ืฉืœ ื”ื™ืœื“ื™ื
05:27
were actually the basis of science publication the last five to 15 years. Right?
92
327406
4618
ื”ื™ื• ืœืžืขืฉื” ื”ื‘ืกื™ืก ืœืคืจืกื•ืžื™ื ืžื“ืขื™ื™ื ื‘5-15 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช. ื”ื‘ื ืชื?
05:32
So they were asking questions that were significant
93
332024
2660
ืื– ื”ื ืฉืืœื• ืฉืืœื•ืช ืฉื”ื™ื• ืžืฉืžืขื•ืชื™ื•ืช
05:34
to expert scientists.
94
334684
2130
ืขื‘ื•ืจ ืžื“ืขื ื™ื ืžื•ืžื—ื™ื.
05:36
Now here, I want to share the stage with someone quite special. Right?
95
336814
4134
ืขื›ืฉื™ื• ืื ื™ ืจื•ืฆื” ืœื—ืœื•ืง ืืช ื”ื‘ืžื” ืขื ืžื™ืฉื”ื™ ื“ื™ ืžื™ื•ื—ื“ืช. ื˜ื•ื‘?
05:40
She was one of the young people who was involved in this study,
96
340948
2612
ื”ื™ื ืื—ืช ืžื”ืื ืฉื™ื ื”ืฆืขื™ืจื™ื ืฉื”ื™ื• ืžืขื•ืจื‘ื™ื ื‘ืžื—ืงืจ ื”ื–ื”,
05:43
and she's now one of the youngest published scientists
97
343560
2334
ื•ื”ื™ื ื›ื™ื•ื ืื—ืช ื”ืžื“ืขื ื™ื•ืช ื”ืฆืขื™ืจื•ืช ื‘ืขื•ืœื
05:45
in the world. Right? She will now, once she comes onto stage,
98
345894
3883
ืฉืคืจืกืžื• ืืช ืขื‘ื•ื“ืชื. ื•ื‘ืจื’ืข ืฉืชืขืœื” ืขืœ ื”ื‘ืžื”,
05:49
will be the youngest person to ever speak at TED. Right?
99
349777
3698
ื”ื™ื ืชื”ืคื•ืš ืœื“ื•ื‘ืจืช ื”ืฆืขื™ืจื” ื‘ื™ื•ืชืจ ืฉื”ืจืฆืชื” ื‘TED. ื”ื‘ื ืชื?
05:53
Now, science and asking questions is about courage.
100
353475
2875
ืขื›ืฉื™ื•, ืžื“ืข ื•ืฉืื™ืœืช ืฉืืœื•ืช ื–ื” ืขื ื™ื™ืŸ ืฉืœ ืื•ืžืฅ.
05:56
Now she is the personification of courage, because she's
101
356350
3200
ื•ื”ื™ื ื”ื‘ื™ื˜ื•ื™ ื”ืื ื•ืฉื™ ืฉืœ ืื•ืžืฅ,
05:59
going to stand up here and talk to you all.
102
359550
1387
ื›ื™ ื”ื™ื ื”ื•ืœื›ืช ืœืขืžื•ื“ ื›ืืŸ ืขื›ืฉื™ื• ื•ืœื“ื‘ืจ ืืชื›ื.
06:00
So Amy, would you please come up? (Applause)
103
360937
5254
ืื– ืื™ื™ืžื™, ืืช ืžื•ื›ื ื” ืœืขืœื•ืช ืœื›ืืŸ ื‘ื‘ืงืฉื”? (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
06:06
(Applause)
104
366191
7185
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
06:13
So Amy's going to help me tell the story of what we call
105
373376
2519
ืื™ื™ืžื™ ืขื•ืžื“ืช ืœืขื–ื•ืจ ืœื™ ืœืกืคืจ ืืช ื”ืกื™ืคื•ืจ ืขืœ ืžื” ืฉื ืงืจื
06:15
the Blackawton Bees Project, and first she's going to tell you
106
375895
2666
"ืคืจื•ื™ืงื˜ ื”ื“ื‘ื•ืจื™ื ืฉืœ ื‘ืœืืงืื˜ื•ืŸ", ื•ืงื•ื“ื ื”ื™ื ืชืกืคืจ ืœื›ื ืขืœ
06:18
the question that they came up with. So go ahead, Amy.
107
378561
2545
ื”ืฉืืœื” ืฉื”ื ื—ืฉื‘ื• ืขืœื™ื”. ืื– ืงื“ื™ืžื”, ืื™ื™ืžื™.
06:21
Amy O'Toole: Thank you, Beau. We thought
108
381106
1719
ืื™ื™ืžื™ ืื•ื˜ื•ืœ: ืชื•ื“ื” ืจื‘ื”, ื‘ื•. ื—ืฉื‘ื ื•
06:22
that it was easy to see the link between humans and apes
109
382825
3401
ืฉืงืœ ืœืจืื•ืช ืืช ื”ืงืฉืจ ื‘ื™ืŸ ื‘ื ื™ ืื“ื ืœื‘ื™ืŸ ืงื•ืคื™ ืื“ื
06:26
in the way that we think, because we look alike.
110
386226
3024
ื‘ืื•ืคืŸ ืฉื‘ื• ืื ื—ื ื• ื—ื•ืฉื‘ื™ื, ื‘ื’ืœืœ ืฉืื ื• ื“ื•ืžื™ื ื–ื” ืœื–ื”.
06:29
But we wondered if there's a possible link
111
389250
2689
ืื‘ืœ ืชื”ื™ื ื• ืื ื™ืชื›ืŸ ืฉื™ืฉ ืงืฉืจ
06:31
with other animals. It'd be amazing if humans and bees
112
391939
4704
ืœื—ื™ื•ืช ืื—ืจื•ืช. ื™ื”ื™ื” ืžื“ื”ื™ื ืœื’ืœื•ืช ืฉื‘ื ื™ ืื“ื ื•ื“ื‘ื•ืจื™ื
06:36
thought similar, since they seem so different from us.
113
396643
4113
ื—ื•ืฉื‘ื™ื ื‘ืฆื•ืจื” ื“ื•ืžื”, ื‘ื’ืœืœ ืฉื”ื ื ืจืื™ื ื›ืœ ื›ืš ืฉื•ื ื™ื ืžืื™ืชื ื•.
06:40
So we asked if humans and bees might solve
114
400756
3053
ืื– ืฉืืœื ื• ืื ื™ืชื›ืŸ ืฉื‘ื ื™ ืื“ื ื•ื“ื‘ื•ืจื™ื ืคื•ืชืจื™ื
06:43
complex problems in the same way.
115
403809
2407
ื‘ืขื™ื•ืช ืžืกื•ื‘ื›ื•ืช ื‘ืฆื•ืจื” ื“ื•ืžื”.
06:46
Really, we wanted to know if bees can also adapt
116
406216
3287
ื‘ืขืฆื, ืจืฆื™ื ื• ืœื“ืขืช ืื ื’ื ื“ื‘ื•ืจื™ื ื™ื›ื•ืœื•ืช ืœื”ืกืชื’ืœ
06:49
themselves to new situations using previously learned rules
117
409503
3707
ืœืžืฆื‘ื™ื ื—ื“ืฉื™ื ื‘ืืžืฆืขื•ืช ื—ื•ืงื™ื ื•ืชื ืื™ื
06:53
and conditions. So what if bees can think like us?
118
413210
4214
ืฉื ืœืžื“ื• ื‘ืขื‘ืจ. ืื– ืžื” ืื ื“ื‘ื•ืจื™ื ืžืกื•ื’ืœื•ืช ืœื—ืฉื•ื‘ ื›ืžื•ื ื•?
06:57
Well, it'd be amazing, since we're talking about an insect
119
417424
2552
ื˜ื•ื‘, ื–ื” ื™ื”ื™ื” ืžื“ื”ื™ื, ื›ื™ ืžื“ื•ื‘ืจ ืคื” ื‘ื—ืจืง
06:59
with only one million brain cells.
120
419976
2525
ืขื ืžื™ืœื™ื•ืŸ ืชืื™ ืžื•ื— ื‘ืœื‘ื“.
07:02
But it actually makes a lot of sense they should,
121
422501
2142
ืื‘ืœ ื–ื” ื“ื™ ื”ื’ื™ื•ื ื™ ืฉื”ืŸ ื™ื•ื›ืœื•,
07:04
because bees, like us, can recognize a good flower
122
424643
3277
ื‘ื’ืœืœ ืฉื“ื‘ื•ืจื™ื, ื›ืžื•ื ื•, ื™ื›ื•ืœื•ืช ืœื–ื”ื•ืช ืคืจื— ื˜ื•ื‘
07:07
regardless of the time of day, the light, the weather,
123
427920
3613
ื‘ืœื™ ืงืฉืจ ืœืฉืขื” ื‘ื™ื•ื, ืœืื•ืจ, ืžื–ื’ ืื•ื•ื™ืจ,
07:11
or from any angle they approach it from. (Applause)
124
431533
5742
ืื• ื›ืœ ื–ื•ื•ื™ืช ืฉื”ืŸ ื ื™ื’ืฉื•ืช ืžืžื ื• ืืœ ื”ืคืจื—. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
07:17
BL: So the next step was to design an experiment,
125
437275
3782
ื‘"ืœ: ื”ืฉืœื‘ ื”ื‘ื ื”ื™ื” ืœืชื›ื ืŸ ื ื™ืกื•ื™,
07:21
which is a game. So the kids went off and they designed
126
441057
3302
ืฉื–ื” ื‘ืขืฆื ืžืฉื—ืง. ืื– ื”ื™ืœื“ื™ื ื”ืœื›ื• ื•ืชื›ื ื ื•
07:24
this experiment, and so -- well, game -- and so,
127
444359
3301
ืืช ื”ื ื™ืกื•ื™ ื”ื–ื”, ื•ื›ืš- ื˜ื•ื‘, ื”ืžืฉื—ืง- ื•ื›ืš,
07:27
Amy, can you tell us what the game was,
128
447660
1466
ืื™ื™ืžื™, ืืช ื™ื›ื•ืœื” ืœืกืคืจ ืœื ื• ืžื” ื”ืžืฉื—ืง ื”ื™ื”,
07:29
and the puzzle that you set the bees?
129
449126
2143
ื•ืžื” ื”ื™ื™ืชื” ื”ื—ื™ื“ื” ืฉื”ื›ื ืชื ืœื“ื‘ื•ืจื™ื?
07:31
AO: The puzzle we came up with was an if-then rule.
130
451269
3023
ื"ื: ื”ื—ื™ื“ื” ืฉื—ืฉื‘ื ื• ืขืœื™ื” ื”ื™ื™ืชื” ืœืคื™ ื—ื•ืงื™ื•ืช ืฉืœ ืื-ืื–.
07:34
We asked the bees to learn not just to go to a certain color,
131
454292
3645
ื‘ืงืฉื ื• ืžื”ื“ื‘ื•ืจื™ื ืœืœืžื•ื“ ืœื ืจืง ืœื”ื’ื™ืข ืœืฆื‘ืข ืžืกื•ื™ื,
07:37
but to a certain color flower only
132
457937
2668
ืืœื ืœื”ื’ื™ืข ืœืคืจื— ื‘ืฆื‘ืข ืžืกื•ื™ื ืจืง
07:40
when it's in a certain pattern.
133
460605
1632
ื›ืฉื”ื•ื ื‘ืชื‘ื ื™ืช ืžืกื•ื™ืžืช.
07:42
They were only rewarded if they went to the yellow flowers
134
462237
3259
ื”ืŸ ืงื™ื‘ืœื• ืคืจืก ืจืง ืื ื”ืŸ ื”ืœื›ื• ืœืคืจื—ื™ื ื”ืฆื”ื•ื‘ื™ื
07:45
if the yellow flowers were surrounded by the blue,
135
465496
3060
ืื ื”ืคืจื—ื™ื ื”ืฆื”ื•ื‘ื™ื ื”ื™ื• ืžื•ืงืคื™ื ื‘ื›ื—ื•ืœื™ื,
07:48
or if the blue flowers were surrounded by the yellow.
136
468556
3268
ืื• ืื ื”ืคืจื—ื™ื ื”ื›ื—ื•ืœื™ื ื”ื™ื• ืžื•ืงืคื™ื ื‘ืฆื”ื•ื‘.
07:51
Now there's a number of different rules the bees can learn
137
471824
2585
ื™ืฉ ืžืกืคืจ ื—ื•ืงื™ื ืฉื•ื ื™ื ืฉื“ื‘ื•ืจื™ื ื™ื›ื•ืœื•ืช ืœืœืžื•ื“,
07:54
to solve this puzzle. The interesting question is, which?
138
474409
3425
ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ื—ื™ื“ื” ื”ื–ื•. ื”ืฉืืœื” ื”ืžืขื ื™ื™ื ืช ื”ื™ื, ืื™ืœื•?
07:57
What was really exciting about this project was we,
139
477834
2780
ืžื” ืฉื”ื™ื” ื‘ืืžืช ืžืจื’ืฉ ื‘ืคืจื•ื™ืงื˜ ื”ื–ื”, ื”ื™ื”
08:00
and Beau, had no idea whether it would work.
140
480614
2343
ืฉืœื ื• ื•ืœื‘ื• ืœื ื”ื™ื” ืžื•ืฉื’ ืื ื–ื” ื™ืขื‘ื•ื“.
08:02
It was completely new, and no one had done it before,
141
482957
2454
ื–ื” ื”ื™ื” ื—ื“ืฉ ืœื’ืžืจื™, ื•ืืฃ ืื—ื“ ืœื ืขืฉื” ืืช ื–ื” ื‘ืขื‘ืจ,
08:05
including adults. (Laughter)
142
485411
3723
ื›ื•ืœืœ ืžื‘ื•ื’ืจื™ื. (ืฆื—ื•ืง)
08:09
BL: Including the teachers, and that was really hard for the teachers.
143
489134
3464
ื‘"ืœ: ื›ื•ืœืœ ื”ืžื•ืจื™ื, ื•ื–ื” ื”ื™ื” ืœืžื•ืจื™ื ืžืื“ ืงืฉื”.
08:12
It's easy for a scientist to go in and not have a clue what he's doing,
144
492598
2904
ืงืœ ืœืžื“ืขืŸ ืœืœื›ืช ืžื‘ืœื™ ืฉื™ื”ื™ื” ืœื• ืžื•ืฉื’ ืžื” ื”ื•ื ืขื•ืฉื”,
08:15
because that's what we do in the lab, but for a teacher
145
495502
2544
ื‘ื’ืœืœ ืฉื–ื” ืžื” ืฉืขื•ืฉื™ื ื‘ืžืขื‘ื“ื”, ืื‘ืœ ื‘ืฉื‘ื™ืœ ืžื•ืจื”
08:18
not to know what's going to happen at the end of the day --
146
498046
1625
ืœื ืœื“ืขืช ืžื” ื”ื•ืœืš ืœืงืจื•ืช ื‘ืกื•ืฃ ื”ื™ื•ื-
08:19
so much of the credit goes to Dave Strudwick, who was
147
499671
2599
ืื– ื”ืจื‘ื” ืžื”ืงืจื“ื™ื˜ ืžื’ื™ืข ืœื“ื™ื™ื‘ ืกื˜ืจืื“ื•ื•ื™ืง, ืฉื”ื™ื”
08:22
the collaborator on this project. Okay?
148
502270
2209
ื”ืฉื•ืชืฃ ื‘ืคืจื•ื™ืงื˜ ื”ื–ื”. ื˜ื•ื‘?
08:24
So I'm not going to go through the whole details of the study
149
504479
2732
ืื ื™ ืœื ื”ื•ืœืš ืœืขื‘ื•ืจ ืขื›ืฉื™ื• ืขืœ ื›ืœ ื”ืคืจื˜ื™ื ืฉืœ ื”ืžื—ืงืจ
08:27
because actually you can read about it, but the next step
150
507211
2638
ื‘ื’ืœืœ ืฉืืชื ื‘ืขืฆื ื™ื›ื•ืœื™ื ืœืงืจื•ื ืขืœ ื–ื”, ืื‘ืœ ื”ืฉืœื‘ ื”ื‘ื
08:29
is observation. So here are some of the students
151
509849
3645
ื”ื•ื ืชืฆืคื™ืช. ืื– ื”ื ื” ื›ืžื” ืžื”ืชืœืžื™ื“ื™ื
08:33
doing the observations. They're recording the data
152
513494
2768
ื‘ื–ืžืŸ ื”ืชืฆืคื™ืช. ื”ื ืื•ืกืคื™ื ืžื™ื“ืข ืขืœ
08:36
of where the bees fly.
153
516262
5044
ืœืืŸ ื”ื“ื‘ื•ืจื™ื ืขืคื•ืช.
08:41
(Video) Dave Strudwick: So what we're going to do โ€”Student: 5C.
154
521306
2023
(ื•ื™ื“ืื•) ื“ื™ื™ื‘ ืกื˜ืจืื“ื•ื•ื™ืง: ืžื” ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœืขืฉื•ืช- ืชืœืžื™ื“: 5C.
08:43
Dave Strudwick: Is she still going up here?Student: Yeah.
155
523329
3990
ื“ื™ื™ื‘ ืกื˜ืจืื“ื•ื•ื™ืง: ื”ื™ื ืขื“ื™ื™ืŸ ื”ื•ืœื›ืช ืœื›ืืŸ? ืชืœืžื™ื“: ื›ืŸ.
08:47
Dave Strudwick: So you keep track of each.Student: Henry, can you help me here?
156
527319
3597
ื“ื™ื™ื‘ ืกื˜ืจืื“ื•ื•ื™ืง: ืื– ืชืขืงื•ื‘ ืื—ืจื™ ื›ืœ ืื—ืช. ืชืœืžื™ื“: ื”ื ืจื™, ืืชื” ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื™ ื›ืืŸ?
08:50
BL: "Can you help me, Henry?" What good scientist says that, right?
157
530916
2904
ื‘"ืœ: "ืืชื” ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื™ ื›ืืŸ, ื”ื ืจื™?" ืื™ื–ื” ืžื“ืขืŸ ื˜ื•ื‘ ื”ื™ื” ืื•ืžืจ ืืช ื–ื”, ื”ื?
08:53
Student: There's two up there.
158
533820
4710
ืชืœืžื™ื“: ื™ืฉ ืฉืชื™ื™ื ืฉื ืœืžืขืœื”.
08:58
And three in here.
159
538530
2874
ื•ืฉืœื•ืฉ ื›ืืŸ ื‘ืคื ื™ื.
09:01
BL: Right? So we've got our observations. We've got our data.
160
541404
2275
ื‘"ืœ: ื˜ื•ื‘? ืื– ื™ืฉ ืœื ื• ืชืฆืคื™ื•ืช. ื™ืฉ ืœื ื• ืžื™ื“ืข ื’ื•ืœืžื™.
09:03
They do the simple mathematics, averaging, etc., etc.
161
543679
3773
ื”ื ืขื•ืฉื™ื ืืช ื”ื—ืฉื‘ื•ืŸ ื”ืคืฉื•ื˜, ืžืžื•ืฆืขื™ื, ื•ื›ื•'.
09:07
And now we want to share. That's the next step.
162
547452
1931
ื•ืื ื—ื ื• ื™ื•ื“ืขื™ื ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœื—ืœื•ืง ืืช ื”ืžื™ื“ืข. ื–ื” ื”ืฉืœื‘ ื”ื‘ื.
09:09
So we're going to write this up and try to submit this
163
549383
1608
ืื– ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื›ืชื•ื‘ ืืช ื–ื” ื•ืœื ืกื•ืช ืœื”ื’ื™ืฉ ืืช ื–ื”
09:10
for publication. Right? So we have to write it up.
164
550991
2856
ืœืคืจืกื•ื. ื˜ื•ื‘? ืื– ืฆืจื™ืš ืœื›ืชื•ื‘ ืืช ื–ื”.
09:13
So we go, of course, to the pub. All right? (Laughter)
165
553847
4513
ืื– ืื ื—ื ื• ื”ื•ืœื›ื™ื, ื›ืžื•ื‘ืŸ, ืœืคืื‘. ื ื›ื•ืŸ? (ืฆื—ื•ืง)
09:18
The one on the left is mine, okay? (Laughter)
166
558360
2284
ื”ื›ื•ืก ืžืฉืžืืœ ื”ื™ื ืฉืœื™, ื˜ื•ื‘? (ืฆื—ื•ืง)
09:20
Now, I tell them, a paper has four different sections:
167
560644
2086
ืื ื™ ืื•ืžืจ ืœื”ื, ื‘ืžืืžืจ ื™ืฉ ืืจื‘ืขื” ื—ืœืงื™ื ืฉื•ื ื™ื:
09:22
an introduction, a methods, a results, a discussion.
168
562730
2807
ื”ืงื“ืžื”, ืฉื™ื˜ืช ืžื—ืงืจ, ืชื•ืฆืื•ืช, ื“ื™ื•ืŸ.
09:25
The introduction says, what's the question and why?
169
565537
2604
ื‘ื”ืงื“ืžื” ื›ื•ืชื‘ื™ื ืžื” ื”ืฉืืœื” ื•ืœืžื”?
09:28
Methods, what did you do? Results, what was the observation?
170
568141
3119
ื‘ืฉื™ื˜ืช ื”ืžื—ืงืจ ื›ื•ืชื‘ื™ื ืžื” ืขืฉื™ืชื? ื‘ืชื•ืฆืื•ืช, ืžื” ื”ืชื’ืœื” ื‘ืชืฆืคื™ืช?
09:31
And the discussion is, who cares? Right?
171
571260
2143
ื•ื‘ื“ื™ื•ืŸ, ืœืžื™ ืื›ืคืช ืžื–ื”? ื ื›ื•ืŸ?
09:33
That's a science paper, basically. (Laughter)
172
573403
2459
ื–ื” ืžืืžืจ ืžื“ืขื™, ื‘ื’ื“ื•ืœ. (ืฆื—ื•ืง)
09:35
So the kids give me the words, right? I put it into a narrative,
173
575862
4529
ืื– ื”ื™ืœื“ื™ื ื ืชื ื• ืœื™ ืืช ื”ืžื™ืœื™ื, ื›ืŸ? ืื ื™ ื—ื™ื‘ืจืชื™ ืœื ืจื˜ื™ื‘,
09:40
which means that this paper is written in kidspeak.
174
580391
3247
ืžื” ืฉืื•ืžืจ ืฉื”ืžืืžืจ ื”ื–ื” ื ื›ืชื‘ ื‘ืฉืคื” ืฉืœ ื™ืœื“ื™ื.
09:43
It's not written by me. It's written by Amy
175
583638
2528
ื•ืœื ืื ื™ ื›ืชื‘ืชื™ ืืช ื–ื”. ื›ืชื‘ื• ืืช ื–ื” ืื™ื™ืžื™
09:46
and the other students in the class. As a consequence,
176
586166
3320
ื•ื”ืชืœืžื™ื“ื™ื ื”ืื—ืจื™ื ื‘ื›ื™ืชื”. ื›ืชื•ืฆืื” ืžื›ืš,
09:49
this science paper begins, "Once upon a time ... " (Laughter)
177
589486
6017
ื”ืžืืžืจ ื”ืžื“ืขื™ ื”ื–ื” ืžืชื—ื™ืœ ื‘"ื”ื™ื” ื”ื™ื” ืคืขื..." (ืฆื—ื•ืง)
09:55
The results section, it says: "Training phase, the puzzle ... duh duh duuuuuhhh." Right? (Laughter)
178
595503
5312
ื‘ืคืจืง ื”ืชื•ืฆืื•ืช, ื›ืชื•ื‘: "ืฉืœื‘ ื”ืื™ืžื•ื ื™ื, ื”ื—ื™ื“ื”... ืื™ื–ื” ืžืชื—!" ื”ื‘ื ืชื? (ืฆื—ื•ืง)
10:00
And the methods, it says, "Then we put the bees
179
600815
2196
ื•ื‘ืฉื™ื˜ื”, ื›ืชื•ื‘, "ื•ืื– ืฉืžื ื• ืืช ื”ื“ื‘ื•ืจื™ื
10:03
into the fridge (and made bee pie)," smiley face. Right? (Laughter)
180
603011
3317
ื‘ืชื•ืš ื”ืžืงืจืจ (ื•ื”ื›ื ื• ืคืฉื˜ื™ื“ืช ื“ื‘ื•ืจื™ื)" ืคืจืฆื•ืฃ ืžื—ื™ื™ืš. ื”ื‘ื ืชื? (ืฆื—ื•ืง)
10:06
This is a science paper. We're going to try to get it published.
181
606328
3833
ื–ื” ืžืืžืจ ืžื“ืขื™. ืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื ืกื•ืช ืœืคืจืกื ืื•ืชื•.
10:10
So here's the title page. We have a number of authors there.
182
610161
2834
ืื– ื™ืฉ ื›ืืŸ ืืช ืขืžื•ื“ ื”ื›ื•ืชืจืช. ื™ืฉ ืœื ื• ืžืกืคืจ ื›ื•ืชื‘ื™ื ื›ืืŸ.
10:12
All the ones in bold are eight to 10 years old.
183
612995
2851
ื›ืœ ืืœื• ืฉื›ืชื•ื‘ื™ื ื‘ืื•ืชื™ื•ืช ืžื•ื“ื’ืฉื•ืช ื”ื ื‘ื ื™ 8-10.
10:15
The first author is Blackawton Primary School, because
184
615846
2050
ื”ื›ื•ืชื‘ ื”ืจืืฉื•ื ื™ื ื”ื•ื ื‘ื™"ืก ื™ืกื•ื“ื™ ื‘ืœืืงืื˜ื•ืŸ, ื‘ื’ืœืœ
10:17
if it were ever referenced, it would be "Blackawton et al,"
185
617896
3246
ืฉืื ืื™ ืคืขื ื™ืฆื˜ื˜ื• ืืช ื–ื”, ื–ื” ื™ื”ื™ื” "ื‘ืœืืงืื˜ื•ืŸ ื•ืฉื•ืช',"
10:21
and not one individual. So we submit it to a public access journal,
186
621142
3057
ื•ืœื ืฉื ืฉืœ ืžื™ืฉื”ื• ืื—ื“. ืื– ื”ื’ืฉื ื• ืืช ื”ืžืืžืจ ืœื›ืชื‘ ืขืช ืฆื™ื‘ื•ืจื™,
10:24
and it says this. It said many things, but it said this.
187
624199
3332
ื•ื”ื•ื ืื•ืžืจ ื›ื›ื”. ื”ื•ื ืืžืจ ื”ืจื‘ื” ื“ื‘ืจื™ื, ืื‘ืœ ื”ื•ื ืืžืจ ื›ื›ื”.
10:27
"I'm afraid the paper fails our initial quality control checks in several different ways." (Laughter)
188
627531
3919
"ืื ื™ ื—ื•ืฉืฉ ืฉื”ืžืืžืจ ื ื›ืฉืœ ื‘ื‘ืงืจืช ื”ืื™ื›ื•ืช ืฉืœื ื• ื‘ื›ืžื” ืฆื•ืจื•ืช ืฉื•ื ื•ืช." (ืฆื—ื•ืง)
10:31
In other words, it starts off "once upon a time,"
189
631450
2560
ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื–ื” ืžืชื—ื™ืœ ื‘"ื”ื™ื” ื”ื™ื” ืคืขื,"
10:34
the figures are in crayon, etc. (Laughter)
190
634010
2526
ื”ื ืชื•ื ื™ื ื ื›ืชื‘ื• ื‘ืขืคืจื•ื ื•ืช ืฆื‘ืขื•ื ื™ื™ื, ื•ื›ื•'. (ืฆื—ื•ืง)
10:36
So we said, we'll get it reviewed. So I sent it to Dale Purves,
191
636536
4353
ืื– ืืžืจื ื• ืฉื ืœืš ืœื‘ื™ืงื•ืจืช ืขืžื™ืชื™ื. ืฉืœื—ื ื• ืืช ื”ืžืืžืจ ืœื“ื™ื™ืœ ืคื•ืจื•ื•ืก,
10:40
who is at the National Academy of Science, one of the leading neuroscientists in the world,
192
640889
3533
ืžื”ืืงื“ืžื™ื” ื”ืœืื•ืžื™ืช ืœืžื“ืขื™ื, ืžื’ื“ื•ืœื™ ื”ืžื•ืžื—ื™ื ื‘ืขื•ืœื ืœืžื“ืขื™ ื”ืžื•ื—,
10:44
and he says, "This is the most original science paper I have ever read" โ€” (Laughter) โ€”
193
644422
3449
ื•ื”ื•ื ืื•ืžืจ, "ื–ื” ืื—ื“ ื”ืžืืžืจื™ื ื”ืžื“ืขื™ื™ื ื”ืžืงื•ืจื™ื™ื ื‘ื™ื•ืชืจ ืฉืงืจืืชื™ ืžื™ืžื™ื™" (ืฆื—ื•ืง)
10:47
"and it certainly deserves wide exposure."
194
647871
2097
"ื•ื”ื•ื ื‘ื”ื—ืœื˜ ืจืื•ื™ ืœื—ืฉื™ืคื” ื ืจื—ื‘ืช."
10:49
Larry Maloney, expert in vision, says, "The paper is magnificent.
195
649968
4271
ืœืืจื™ ืžืืœื•ื ื™, ืžื•ืžื—ื” ื‘ืจืื™ื™ื”, ืื•ืžืจ, "ื”ืžืืžืจ ื ื”ื“ืจ.
10:54
The work would be publishable if done by adults."
196
654239
3366
ื”ืขื‘ื•ื“ื” ื”ื™ืชื” ืžืชืคืจืกืžืช ืื™ืœื• ื ื›ืชื‘ื” ืขืœ ื™ื“ื™ ืžื‘ื•ื’ืจื™ื."
10:57
So what did we do? We send it back to the editor.
197
657605
1979
ืื– ืžื” ืขืฉื™ื ื•? ื”ื—ื–ืจื ื• ืื•ืชื” ืœืขื•ืจืš.
10:59
They say no.
198
659584
1589
ื”ื ืืžืจื• ืœื.
11:01
So we asked Larry and Natalie Hempel to write
199
661173
2454
ืื– ื‘ื™ืงืฉื ื• ืžืœืืจื™ ื•ื ื˜ืœื™ ื”ืžืคืœ ืœื›ืชื•ื‘
11:03
a commentary situating the findings for scientists, right,
200
663627
4007
ืคืจืฉื ื•ืช ืฉืชืžืงื ืืช ื”ืžืžืฆืื™ื ืขื‘ื•ืจ ืžื“ืขื ื™ื, ื›ืŸ?
11:07
putting in the references, and we submit it to Biology Letters.
201
667634
4128
ื”ื›ื ืกื ื• ืืช ื”ื”ืคื ื™ื•ืช, ื•ื”ื’ืฉื ื• ืื•ืชื• ืœ"ื‘ื™ื•ืœื•ื’'ื™ ืœื˜ืจืก".
11:11
And there, it was reviewed by five independent referees,
202
671762
3327
ื”ืžืืžืจ ืขื‘ืจ ื‘ื™ืงื•ืจืช ืฉืœ ื—ืžื™ืฉื” ืžื‘ืงืจื™ื ื‘ืœืชื™ ืชืœื•ื™ื™ื,
11:15
and it was published. Okay? (Applause)
203
675089
4421
ื•ื”ื•ื ืคื•ืจืกื. ืื•ืงื™ื™? (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:19
(Applause)
204
679510
6000
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:25
It took four months to do the science,
205
685510
3021
ืœืงื— ืืจื‘ืขื” ื—ื•ื“ืฉื™ื ื›ื“ื™ ืœืขืฉื•ืช ืืช ื”ืžื“ืข,
11:28
two years to get it published. (Laughter)
206
688531
3228
ืœืงื— ืฉื ืชื™ื™ื ื›ื“ื™ ืœืคืจืกื ืื•ืชื•. (ืฆื—ื•ืง)
11:31
Typical science, actually, right? So this makes Amy and
207
691759
4835
ืžื“ืข ืื•ืคื™ื™ื ื™, ื‘ืขืฆื, ืœื? ืื– ื–ื” ืขื•ืฉื” ืืช ืื™ื™ืžื™ ื•ืืช
11:36
her friends the youngest published scientists in the world.
208
696594
2433
ื”ื—ื‘ืจื™ื ืฉืœื” ืœืžื“ืขื ื™ื ื”ืฆืขื™ืจื™ื ื‘ืขื•ืœื ืฉืคืจืกืžื• ืืช ืขื‘ื•ื“ืชื.
11:39
What was the feedback like?
209
699027
2016
ื•ืื™ืš ื”ื™ื• ื”ืชื’ื•ื‘ื•ืช?
11:41
Well, it was published two days before Christmas,
210
701043
2885
ื˜ื•ื‘, ื”ืžืืžืจ ืคื•ืจืกื ื™ื•ืžื™ื™ื ืœืคื ื™ ื—ื’ ื”ืžื•ืœื“,
11:43
downloaded 30,000 times in the first day, right?
211
703928
4003
ื”ื•ืจื™ื“ื• ืื•ืชื• 30,000 ืคืขืžื™ื ื‘ื™ื•ื ื”ืจืืฉื•ืŸ, ื›ืŸ?
11:47
It was the Editors' Choice in Science, which is a top science magazine.
212
707931
4040
ื–ื” ื”ื™ื” ื‘ื—ื™ืจืช ื”ืขื•ืจืš ื‘ื›ืชื‘ ื”ืขืช "ืกื™ื™ื ืก", ื›ืชื‘ ื”ืขืช ื”ืžื•ื‘ื™ืœ ื‘ืžื“ืข.
11:51
It's forever freely accessible by Biology Letters.
213
711971
2542
ืชืžื™ื“ ืชื”ื™ื” ืืœื™ื• ื’ื™ืฉื” ื‘ื—ื™ื ื ื‘"ื‘ื™ื•ืœื•ื’'ื™ ืœื˜ืจืก".
11:54
It's the only paper that will ever be freely accessible by this journal.
214
714513
3680
ื–ื” ื”ืžืืžืจ ื”ื™ื—ื™ื“ ืฉืื™ ืคืขื ื™ื”ื™ื” ื ื’ื™ืฉ ื‘ื—ื™ื ื ื‘ื›ืชื‘ ื”ืขืช ื”ื–ื”.
11:58
Last year, it was the second-most downloaded paper
215
718193
2699
ืฉื ื” ืฉืขื‘ืจื”, ื–ื” ื”ื™ื” ื”ืžืืžืจ ื”ืฉื ื™ ื‘ื›ืžื•ืช ื”ื”ื•ืจื“ื•ืช
12:00
by Biology Letters, and the feedback from not just scientists
216
720892
4104
ื‘"ื‘ื™ื•ืœื•ื’'ื™ ืœื˜ืจืก", ื•ื”ืชื’ื•ื‘ื•ืช, ืœื ืจืง ืžืžื“ืขื ื™ื
12:04
and teachers but the public as well.
217
724996
2548
ื•ืžื•ืจื™ื, ืืœื ืžื”ืฆื™ื‘ื•ืจ ื”ืจื—ื‘ ื’ื ื›ืŸ.
12:07
And I'll just read one.
218
727544
1772
ื•ืื ื™ ืืงืจื ืจืง ืื—ื“ ืžื”ื.
12:09
"I have read 'Blackawton Bees' recently. I don't have
219
729316
2490
"ืงืจืืชื™ ืืช "ื“ื‘ื•ืจื™ ื‘ืœืืงืื˜ื•ืŸ" ืœืื—ืจื•ื ื”. ืื™ืŸ ืœื™
12:11
words to explain exactly how I am feeling right now.
220
731806
2313
ืžื™ืœื™ื ืœืชืืจ ื‘ื“ื™ื•ืง ืื™ืš ืื ื™ ืžืจื’ื™ืฉ ื›ืจื’ืข.
12:14
What you guys have done is real, true and amazing.
221
734119
2479
ืžื” ืฉืืชื ืขืฉื™ืชื, ื—ื‘ืจ'ื”, ื–ื” ืืžื™ืชื™, ื›ื ื” ื•ืžื“ื”ื™ื.
12:16
Curiosity, interest, innocence and zeal are the most basic
222
736598
3109
ืกืงืจื ื•ืช, ืขื ื™ื™ืŸ, ืชืžื™ืžื•ืช ื•ื”ืชืœื”ื‘ื•ืช ื”ื ื”ื“ื‘ืจื™ื ื”ื‘ืกื™ืกื™ื™ื
12:19
and most important things to do science.
223
739707
1724
ื•ื”ื—ืฉื•ื‘ื™ื ื‘ื™ื•ืชืจ ื›ื“ื™ ืœืขืกื•ืง ื‘ืžื“ืข.
12:21
Who else can have these qualities more than children?
224
741431
2478
ืœืžื™ ื™ื”ื™ื” ืืช ื–ื” ืื ืœื ื™ืœื“ื™ื?
12:23
Please congratulate your children's team from my side."
225
743909
3541
ื‘ื‘ืงืฉื” ื‘ืจื›ื• ืืช ืฆื•ื•ืช ื”ื™ืœื“ื™ื ื‘ืฉืžื™."
12:27
So I'd like to conclude with a physical metaphor.
226
747450
3383
ื”ื™ื™ืชื™ ืจื•ืฆื” ืœืกื™ื™ื ื‘ืžื˜ืคื•ืจื” ืคื™ื–ื™ืช.
12:30
Can I do it on you? (Laughter)
227
750833
2968
ืื ื™ ื™ื›ื•ืœ ืœืขืฉื•ืช ืื•ืชื” ืขืœื™ื™ืš? (ืฆื—ื•ืง)
12:33
Oh yeah, yeah, yeah, come on. Yeah yeah. Okay.
228
753801
3093
ื”ื•, ื›ืŸ, ื›ืŸ, ื™ืืœืœื”, ื‘ื•ื. ื›ืŸ ื›ืŸ. ืื•ืงื™ื™.
12:36
Now, science is about taking risks, so this is an incredible risk, right? (Laughter)
229
756894
5177
ืืžืจื ื• ืฉืžื“ืข ื›ืจื•ืš ื‘ืกื™ื›ื•ื ื™ื, ืื– ื–ื” ืกื™ื›ื•ืŸ ืขืฆื•ื, ื›ืŸ? (ืฆื—ื•ืง)
12:42
For me, not for him. Right? Because we've only done this once before. (Laughter)
230
762071
6098
ื‘ืฉื‘ื™ืœื™, ืœื ื‘ืฉื‘ื™ืœื•. ื›ืŸ? ื›ื™ ืขืฉื™ื ื• ืืช ื–ื” ืจืง ืคืขื ืื—ืช ื‘ืขื‘ืจ. (ืฆื—ื•ืง)
12:48
And you like technology, right?
231
768169
1576
ื•ืืชื” ืื•ื”ื‘ ื˜ื›ื ื•ืœื•ื’ื™ื”, ื ื›ื•ืŸ?
12:49
Shimon Schocken: Right, but I like myself.
232
769745
2176
ืฉืžืขื•ืŸ ืฉื•ืงืŸ: ื›ืŸ, ืื‘ืœ ืื ื™ ืื•ื”ื‘ ื‘ืขืฆืžื™.
12:51
BL: This is the epitome of technology. Right. Okay.
233
771921
2951
ื‘"ืœ: ื–ื• ื”ืชื’ืœืžื•ืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”. ื˜ื•ื‘. ืื•ืงื™ื™.
12:54
Now ... (Laughter)
234
774872
3608
ืขื›ืฉื™ื•... (ืฆื—ื•ืง)
12:58
Okay. (Laughter)
235
778480
2880
ืื•ืงื™ื™. (ืฆื—ื•ืง)
13:01
Now, we're going to do a little demonstration, right?
236
781360
4084
ืขื›ืฉื™ื•, ืื ื—ื ื• ืขื•ืžื“ื™ื ืœืขืจื•ืš ื”ื“ื’ืžื” ืงื˜ื ื”, ื˜ื•ื‘?
13:05
You have to close your eyes, and you have to point
237
785444
4019
ืืชื” ืฆืจื™ืš ืœืขืฆื•ื ืขื™ื ื™ื™ื, ื•ืืชื” ืฆืจื™ืš ืœื”ืฆื‘ื™ืข,
13:09
where you hear me clapping. All right?
238
789463
3157
ืœื›ื™ื•ื•ืŸ ืฉืžืžื ื• ืืชื” ืฉื•ืžืข ืืช ืžื—ื™ืื•ืช ื”ื›ืคื™ื™ื ืฉืœื™. ื˜ื•ื‘?
13:12
(Clapping)
239
792620
4398
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:17
(Clapping)
240
797018
3144
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:20
Okay, how about if everyone over there shouts. One, two, three?
241
800162
2903
ืื•ืงื™ื™, ืžื” ืื ื›ื•ืœื ืฉื ื™ืฆืขืงื•. ืื—ืช, ืฉืชื™ื™ื, ืฉืœื•ืฉ?
13:23
Audience: (Shouts)
242
803065
2901
ืงื”ืœ: (ืฆืขืงื•ืช)
13:25
(Laughter)
243
805966
4446
(ืฆื—ื•ืง)
13:30
(Shouts) (Laughter)
244
810412
3171
(ืฆืขืงื•ืช) (ืฆื—ื•ืง)
13:33
Brilliant. Now, open your eyes. We'll do it one more time.
245
813583
3641
ืžืขื•ืœื”. ืขื›ืฉื™ื•, ืคืงื— ืืช ื”ืขื™ื ื™ื™ื. ื ืขืฉื” ืืช ื–ื” ืคืขื ืื—ืช ื ื•ืกืคืช.
13:37
Everyone over there shout. (Shouts)
246
817224
2802
ื›ื•ืœื ืฉื ืœืฆืขื•ืง. (ืฆืขืงื•ืช)
13:40
Where's the sound coming from? (Laughter) (Applause)
247
820026
5932
ืžืื™ืคื” ืžื’ื™ืข ื”ืงื•ืœ? (ืฆื—ื•ืง) (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:45
Thank you very much. (Applause)
248
825958
4230
ืชื•ื“ื” ืจื‘ื” ืœืš. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
13:50
What's the point? The point is what science does for us.
249
830188
3713
ืžื” ื”ื ืงื•ื“ื”? ื”ื ืงื•ื“ื” ื”ื™ื ืžื” ืฉื”ืžื“ืข ืขื•ืฉื” ื‘ืฉื‘ื™ืœื ื•.
13:53
Right? We normally walk through life responding,
250
833901
2406
ื›ืŸ? ืื ื—ื ื• ืขื•ื‘ืจื™ื ืืช ื”ื—ื™ื™ื ื•ืชืžื™ื“ ืžื’ื™ื‘ื™ื,
13:56
but if we ever want to do anything different, we have to
251
836307
2212
ืื‘ืœ ืื ืื ื—ื ื• ืื™ ืคืขื ืจื•ืฆื™ื ืฉื™ื ื•ื™, ืื ื—ื ื• ื—ื™ื™ื‘ื™ื
13:58
step into uncertainty. When he opened his eyes,
252
838519
2689
ืœื”ื™ื›ื ืก ืœื—ื•ืกืจ ื•ื•ื“ืื•ืช. ื›ืฉื”ื•ื ืคืงื— ืืช ื”ืขื™ื ื™ื™ื,
14:01
he was able to see the world in a new way.
253
841208
2382
ื”ืชืืคืฉืจ ืœื• ืœืจืื•ืช ืืช ื”ืขื•ืœื ื‘ืฆื•ืจื” ื—ื“ืฉื”.
14:03
That's what science offers us. It offers the possibility
254
843590
3168
ื–ื” ืžื” ืฉื”ืžื“ืข ืžืฆื™ืข ืœื ื•. ื”ื•ื ืžืฆื™ืข ืืช ื”ืืคืฉืจื•ืช
14:06
to step on uncertainty through the process of play, right?
255
846758
4016
ืœื”ื™ื›ื ืก ืœื—ื•ืกืจ ื”ื•ื•ื“ืื•ืช ื“ืจืš ืชื”ืœื™ืš ื”ืžืฉื—ืง, ื›ืŸ?
14:10
Now, true science education I think should be about
256
850774
3024
ืขื›ืฉื™ื•, ื—ื™ื ื•ืš ืืžื™ืชื™ ืœืžื“ืข, ืฆืจื™ืš ืœื”ื™ื•ืช ืœื“ืขืชื™ ืžื‘ื•ืกืก
14:13
giving people a voice and enabling to express that voice,
257
853798
3399
ืขืœ ืœืชืช ืœืื ืฉื™ื ืงื•ืœ ื•ืœืืคืฉืจ ืœื”ื ืœื”ื‘ื™ืข ืืช ื”ืงื•ืœ ื”ื–ื”,
14:17
so I've asked Amy to be the last voice in this short story.
258
857197
4369
ืื– ื‘ื™ืงืฉืชื™ ืžืื™ื™ืžื™ ืœื”ื™ื•ืช ื”ืงื•ืœ ื”ืื—ืจื•ืŸ ื‘ืกื™ืคื•ืจ ื”ืงืฆืจ ื”ื–ื”.
14:21
So, Amy?
259
861566
3105
ืื–, ืื™ื™ืžื™?
14:24
AO: This project was really exciting for me,
260
864671
2553
ื"ื: ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ื”ื™ื” ืžืžืฉ ืžืจื’ืฉ ื‘ืฉื‘ื™ืœื™,
14:27
because it brought the process of discovery to life,
261
867224
2671
ื›ื™ ื”ื•ื ืขื•ืจืจ ืœื—ื™ื™ื ืืช ืชื”ืœื™ืš ื”ื’ื™ืœื•ื™,
14:29
and it showed me that anyone, and I mean anyone,
262
869895
2911
ื•ื”ืจืื” ืœื™ ืฉืœื›ืœ ืื—ื“, ืžืžืฉ ื›ืœ ืื—ื“,
14:32
has the potential to discover something new,
263
872806
2753
ื™ืฉ ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืœื’ืœื•ืช ื“ื‘ืจ ื—ื“ืฉ,
14:35
and that a small question can lead into a big discovery.
264
875559
4072
ื•ืฉืฉืืœื” ืงื˜ื ื” ื™ื›ื•ืœื” ืœื”ื•ื‘ื™ืœ ืœื’ื™ืœื•ื™ ื’ื“ื•ืœ.
14:39
Changing the way a person thinks about something
265
879631
2652
ืฉื™ื ื•ื™ ื‘ืฆื•ืจืช ื”ืžื—ืฉื‘ื” ืฉืœ ืžื™ืฉื”ื• ืœื’ื‘ื™ ืžืฉื”ื•
14:42
can be easy or hard. It all depends on the way the person
266
882283
3712
ื™ื›ื•ืœ ืœื”ื™ื•ืช ืงืœ ืื• ืงืฉื”. ื”ื›ืœ ืชืœื•ื™ ื‘ืื•ืคืŸ ืฉื‘ื• ื”ืื“ื
14:45
feels about change.
267
885995
1488
ืžืจื’ื™ืฉ ืœื’ื‘ื™ ืฉื™ื ื•ื™.
14:47
But changing the way I thought about science was
268
887483
2452
ืื‘ืœ ืฉื™ื ื•ื™ ื”ืื•ืคืŸ ืฉื‘ื• ืื ื™ ื—ืฉื‘ืชื™ ืขืœ ืžื“ืข
14:49
surprisingly easy. Once we played the games
269
889935
2275
ื”ื™ื” ืงืœ ื‘ืื•ืคืŸ ืžืคืชื™ืข. ื‘ืจื’ืข ืฉืฉื™ื—ืงื ื• ืืช ื”ืžืฉื—ืงื™ื
14:52
and then started to think about the puzzle,
270
892210
2418
ื•ื”ืชื—ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื”ื—ื™ื“ื”,
14:54
I then realized that science isn't just a boring subject,
271
894628
3857
ื”ื‘ื ืชื™ ืฉืžื“ืข ื–ื” ืœื ืจืง ืžืงืฆื•ืข ืžืฉืขืžื,
14:58
and that anyone can discover something new.
272
898485
3194
ื•ืฉื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœื’ืœื•ืช ื“ื‘ืจ ื—ื“ืฉ.
15:01
You just need an opportunity. My opportunity came
273
901679
3200
ืจืง ืฆืจื™ืš ื”ื–ื“ืžื ื•ืช. ื”ื”ื–ื“ืžื ื•ืช ืฉืœื™ ื”ื’ื™ืขื”
15:04
in the form of Beau, and the Blackawton Bee Project.
274
904879
2636
ื‘ืขื–ืจืช ื‘ื•, ื•ืคืจื•ื™ืงื˜ ื”ื“ื‘ื•ืจื™ื ืžื‘ืœืืงืื˜ื•ืŸ.
15:07
Thank you.BL: Thank you very much. (Applause)
275
907515
4361
ืชื•ื“ื” ืจื‘ื”. ื‘"ืœ: ืชื•ื“ื” ืจื‘ื” ืœื›ื. (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
15:11
(Applause)
276
911876
7747
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7