Should you trust unanimous decisions? - Derek Abbott

4,352,695 views ・ 2016-04-18

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Helen Lin 審譯者: Max Chern
00:06
Imagine a police lineup where ten witnesses
0
6713
3317
想像一個「列隊指認」, 十位目擊者
00:10
are asked to identify a bank robber they glimpsed fleeing the crime scene.
1
10030
5601
被要求指認在現場瞥見 逃跑的銀行搶劫犯。
00:15
If six of them pick out the same person,
2
15631
2643
如果其中六位指認同一人,
00:18
there's a good chance that's the real culprit,
3
18274
2930
那他很可能是真的罪犯,
00:21
and if all ten make the same choice,
4
21204
1811
如果十人的指認都相同,
00:23
you might think the case is rock solid,
5
23015
2194
你可能想這情況罪證確鑿,
00:25
but you'd be wrong.
6
25209
2046
但你錯了!
00:27
For most of us, this sounds pretty strange.
7
27255
2473
我們多數會覺得這聽起來很奇怪,
00:29
After all, much of our society relies on majority vote and consensus,
8
29728
4965
畢竟,我們社會大多 依賴 多數表決與共識,
00:34
whether it's politics,
9
34693
1000
無論是政治、商業或娛樂活動。
00:35
business,
10
35693
1000
00:36
or entertainment.
11
36693
1058
00:37
So it's natural to think that more consensus is a good thing.
12
37751
4279
所以視 ‘越多共識是件好事’ 是理所當然的。
00:42
And up until a certain point, it usually is.
13
42030
2833
到某個程度,它通常是這樣的。
00:44
But sometimes, the closer you start to get to total agreement,
14
44863
4123
但有時,當開始越靠近完全一致時,
00:48
the less reliable the result becomes.
15
48986
3604
結果變得越不可靠,
00:52
This is called the paradox of unanimity.
16
52590
3442
這稱為「一致性悖論」。
00:56
The key to understanding this apparent paradox
17
56032
2315
了解這明顯矛盾論點的關鍵
00:58
is in considering the overall level of uncertainty
18
58347
3547
在於考量整體不確定性,
01:01
involved in the type of situation you're dealing with.
19
61894
3889
它涉及你正在處理的情況類型。
01:05
If we asked witnesses to identify the apple in this lineup, for example,
20
65783
4153
例如,我們要求目擊者 指認這個列隊中的蘋果,
01:09
we shouldn't be surprised by a unanimous verdict.
21
69936
3453
對有一致性的判斷 是無需驚訝的。
01:13
But in cases where we have reason to expect some natural variance,
22
73389
4111
但有理由預料會有些自然差異的存在下,
01:17
we should also expect varied distribution.
23
77500
3834
我們也應預期會有不同的分佈。
01:21
If you toss a coin one hundred times,
24
81334
2126
如果你擲一個硬幣一百次,
01:23
you would expect to get heads somewhere around 50% of the time.
25
83460
4696
你會預期得到人頭的次數 約在 50% 左右,
01:28
But if your results started to approach 100% heads,
26
88156
3385
但若結果開始趨近 100% 的人頭,
01:31
you'd suspect that something was wrong,
27
91541
2636
你會懷疑有什麼不對勁了,
01:34
not with your individual flips,
28
94177
1795
問題不在於你每次的拋擲,
01:35
but with the coin itself.
29
95972
3029
而是硬幣本身。
01:39
Of course, suspect identifications aren't as random as coin tosses,
30
99001
4805
當然,嫌疑犯的指認 不同於擲硬幣的隨機性,
01:43
but they're not as clear cut as telling apples from bananas, either.
31
103806
4533
但也不像分辨蘋果與香蕉那樣明確。
01:48
In fact, a 1994 study found that up to 48% of witnesses
32
108339
5864
事實上,一個 1994 年的研究發現 高達 48% 的目擊者
01:54
tend to pick the wrong person out of a lineup,
33
114203
2764
往往會在列隊中指認錯人,
01:56
even when many are confident in their choice.
34
116967
3345
即便許多人很確信自己的指認。
02:00
Memory based on short glimpses can be unreliable,
35
120312
3476
短暫一瞥的記憶 可能是靠不住的,
02:03
and we often overestimate our own accuracy.
36
123788
3416
而且我們常高估自己的準確度。
02:07
Knowing all this,
37
127204
960
知道這些之後,
02:08
a unanimous identification starts to seem less like certain guilt,
38
128164
3929
一致性的指認開始看起來 似乎不一定有罪,
02:12
and more like a systemic error,
39
132093
2612
而較像體制上的錯誤,
02:14
or bias in the lineup.
40
134705
2319
或對列隊中的人有偏見。
02:17
And systemic errors don't just appear in matters of human judgement.
41
137024
3989
體制錯誤不只發生在 人為判斷的事而已。
02:21
From 1993-2008,
42
141013
2351
從 1993 - 2008,
02:23
the same female DNA was found in multiple crime scenes around Europe,
43
143364
5471
在歐洲各地許多犯罪現場 發現同一位女性的 DNA,
02:28
incriminating an elusive killer dubbed the Phantom of Heilbronn.
44
148835
5598
這位涉罪行蹤飄忽的殺手 被命名 「海布隆魅影」。
02:34
But the DNA evidence was so consistent precisely because it was wrong.
45
154433
5800
但 DNA 証據如此一致性 正因為它是錯的,
02:40
It turned out that the cotton swabs used to collect the DNA samples
46
160233
3730
原來是用來收集 DNA 檢體的棉棒,
02:43
had all been accidentally contaminated by a woman working in the swab factory.
47
163963
6082
全被一位在棉棒工廠工作的女性 不經意地給污染了。
02:50
In other cases, systematic errors arise through deliberate fraud,
48
170045
4149
在其他情況, 體制錯誤是因於蓄意欺詐,
02:54
like the presidential referendum held by Saddam Hussein in 2002,
49
174194
5024
例如 2002 年,薩達姆•海珊主導的 全民公投總統大選,
02:59
which claimed a turnout of 100% of voters with all 100% supposedly voting in favor
50
179218
7150
宣稱投票率 100%, 且據稱有 100% 是贊成
03:06
of another seven-year term.
51
186368
3088
他另一個七年任期。
03:09
When you look at it this way,
52
189456
1383
從這個方面考量時,
03:10
the paradox of unanimity isn't actually all that paradoxical.
53
190839
4282
「一致性悖論」事實上 並不是全然荒謬的。
03:15
Unanimous agreement is still theoretically ideal,
54
195121
3123
一致同意仍是理論上的理想,
03:18
especially in cases when you'd expect very low odds of variability and uncertainty,
55
198244
5344
尤其在一些情況 預期變異及不確定的機率很低時,
03:23
but in practice,
56
203588
969
但實際上,
03:24
achieving it in situations where perfect agreement is highly unlikely
57
204557
4501
在極不可能完全一致的情況下 卻出現一致時,
03:29
should tell us that there's probably some hidden factor affecting the system.
58
209058
5122
這告訴了我們 可能有些隱藏因素影響了體制。
03:34
Although we may strive for harmony and consensus,
59
214180
2838
雖然我們力求和諧與共識,
03:37
in many situations, error and disagreement should be naturally expected.
60
217018
5141
但許多情況, 錯誤與分歧理當是預料中之事,
03:42
And if a perfect result seems too good to be true,
61
222159
2537
若一個完美結果好得令人難以置信, 它大概真的其中有詐了。
03:44
it probably is.
62
224696
1647
翻譯:Helen Lin
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7