How many ways can you arrange a deck of cards? - Yannay Khaikin

Na koliko načina možete da poređate špil karata? - Janaj Kajkin (Yannay Khaikin)

1,669,127 views

2014-03-27 ・ TED-Ed


New videos

How many ways can you arrange a deck of cards? - Yannay Khaikin

Na koliko načina možete da poređate špil karata? - Janaj Kajkin (Yannay Khaikin)

1,669,127 views ・ 2014-03-27

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Miloš Milosavljević Lektor: Mile Živković
00:06
Pick a card, any card.
0
6954
2170
Izaberite kartu. Bilo koju.
00:09
Actually, just pick up all of them and take a look.
1
9124
2890
U stvari, uzmite ih sve i pogledajte.
00:12
This standard 52-card deck has been used for centuries.
2
12014
3834
Ovaj standardni špil od 52 karte koristi se vekovima.
00:15
Everyday, thousands just like it
3
15848
2250
Svakodnevno, hiljade ovakvih
00:18
are shuffled in casinos all over the world,
4
18098
3036
se meša u kazinima širom sveta
00:21
the order rearranged each time.
5
21134
2585
i redosled karata se menja svaki put.
00:23
And yet, every time you pick up a well-shuffled deck
6
23719
2712
Svaki put kad uzmete dobro promešan špil
00:26
like this one,
7
26431
1211
kao što je ovaj,
00:27
you are almost certainly holding
8
27642
1789
skoro sigurno ćete imati
00:29
an arrangement of cards
9
29431
1417
raspored karata
00:30
that has never before existed in all of history.
10
30848
2881
koji nikada u istoriji nije postojao.
00:33
How can this be?
11
33729
2035
Kako je to moguće?
00:35
The answer lies in how many different arrangements
12
35764
2136
Odgovor leži u tome koliko ima mogućih različitih rasporeda
00:37
of 52 cards, or any objects, are possible.
13
37900
4448
52 karte, ili bilo kojih drugih predmeta.
00:42
Now, 52 may not seem like such a high number,
14
42348
3272
Možda 52 ne izgleda kao naročito veliki broj,
00:45
but let's start with an even smaller one.
15
45620
2415
ali hajde da krenemo sa još manjim.
00:48
Say we have four people trying to sit
16
48035
1897
Recimo da imamo četvoro ljudi koji pokušavaju da sednu
00:49
in four numbered chairs.
17
49932
2416
na četiri numerisane stolice.
00:52
How many ways can they be seated?
18
52348
2112
Na koliko načina mogu da se rasporede?
00:54
To start off, any of the four people can sit
19
54460
2138
Za početak, svako od njih četvoro može da sedne
00:56
in the first chair.
20
56598
1322
na prvu stolicu.
00:57
One this choice is made,
21
57920
1212
Kad je ovaj izbor napravljen,
00:59
only three people remain standing.
22
59132
2334
samo troje ostaje da stoji.
01:01
After the second person sits down,
23
61466
1796
Pošto druga osoba sedne,
01:03
only two people are left as candidates
24
63262
1957
ostaje samo dva kandidata
01:05
for the third chair.
25
65219
1461
za treću stolicu.
01:06
And after the third person has sat down,
26
66680
2000
A kad treća osoba sedne,
01:08
the last person standing has no choice
27
68680
1751
poslednja koja je ostala nema drugog izbora,
01:10
but to sit in the fourth chair.
28
70431
1916
nego da sedne na četvrtu stolicu.
01:12
If we manually write out all the possible arrangements,
29
72347
2751
Ako ručno napišemo sve moguće rasporede,
01:15
or permutations,
30
75098
1716
ili permutacije,
01:16
it turns out that there are 24 ways
31
76814
2004
ispostavlja se da postoji 24 načina
01:18
that four people can be seated into four chairs,
32
78818
3362
da se četvoro ljudi rasporedi na 4 stolice,
01:22
but when dealing with larger numbers,
33
82180
1811
ali kada radimo sa većim brojevima,
01:23
this can take quite a while.
34
83991
1541
to može da potraje.
01:25
So let's see if there's a quicker way.
35
85532
2316
Pa, da vidimo da li postoji brži način.
01:27
Going from the beginning again,
36
87848
1438
Ako krenemo opet od početka,
01:29
you can see that each of the four initial choices
37
89286
2084
možete videti da svaka od prvobitne 4 mogućnosti
01:31
for the first chair
38
91370
1312
za prvu stolicu
01:32
leads to three more possible choices for the second chair,
39
92682
3317
vodi do još tri mogućnosti za drugu stolicu,
01:35
and each of those choices
40
95999
1462
a svaka od tih mogućnosti
01:37
leads to two more for the third chair.
41
97461
2386
vodi do još dve za treću stolicu.
01:39
So instead of counting each final scenario individually,
42
99847
3334
Pa umesto brojanja svakog pojedinačnog rezultata,
01:43
we can multiply the number of choices for each chair:
43
103181
3081
možemo pomnožiti broj mogućnosti za svaku stolicu:
01:46
four times three times two times one
44
106262
2834
4 x 3 x 2 x 1,
01:49
to achieve the same result of 24.
45
109096
2752
da bismo dobili isti rezultat: 24.
01:51
An interesting pattern emerges.
46
111848
1833
Pojavljuje se zanimljiv obrazac.
01:53
We start with the number of objects we're arranging,
47
113681
3048
Počinjemo sa brojem predmeta koje raspoređujemo,
01:56
four in this case,
48
116729
1369
u ovom slučaju četiri,
01:58
and multiply it by consecutively smaller integers
49
118098
2749
i množimo ga sledećim manjim celim brojevima
02:00
until we reach one.
50
120847
2055
dok ne stignemo do 1.
02:02
This is an exciting discovery.
51
122902
1612
Ovo je bilo uzbudljivo otkriće,
02:04
So exciting that mathematicians have chosen
52
124514
1935
do te mere, da su matematičari odlučili
02:06
to symbolize this kind of calculation,
53
126449
2126
da predstave ovu operaciju
02:08
known as a factorial,
54
128575
1770
poznatu kao faktorijel,
02:10
with an exclamation mark.
55
130345
1693
simbolom uzvičnika.
02:12
As a general rule, the factorial of any positive integer
56
132038
3476
Kao opšte pravilo, faktorijel bilo kog pozitivnog celog broja
02:15
is calculated as the product
57
135514
1902
se računa kao proizvod
02:17
of that same integer
58
137416
1460
tog istog celog broja
02:18
and all smaller integers down to one.
59
138876
2960
i svih manjih celih brojeva od njega, sve do broja 1.
02:21
In our simple example,
60
141836
1427
U našem jednostavnom primeru,
02:23
the number of ways four people
61
143263
1333
broj načina na koje se četvoro ljudi
02:24
can be arranged into chairs
62
144596
1585
može rasporediti na stolice
02:26
is written as four factorial,
63
146181
1871
je napisan kao četiri faktorijel,
02:28
which equals 24.
64
148052
1923
što iznosi 24.
02:29
So let's go back to our deck.
65
149975
1833
Da se vratimo na naš špil.
02:31
Just as there were four factorial ways
66
151808
1790
Isto kao što je bilo četiri faktorijel načina
02:33
of arranging four people,
67
153598
1833
raspoređivanja četvoro ljudi,
02:35
there are 52 factorial ways
68
155431
2167
tako postoji 52 faktorijel načina
02:37
of arranging 52 cards.
69
157598
2416
da se rasporede 52 karte.
02:40
Fortunately, we don't have to calculate this by hand.
70
160014
3052
Srećom, ne moramo to da računamo ručno.
02:43
Just enter the function into a calculator,
71
163066
1948
Samo upišite funkciju u digitron
02:45
and it will show you that the number of
72
165014
1417
i on će vam pokazati da je
02:46
possible arrangements is
73
166431
1500
broj mogućih rasporeda
02:47
8.07 x 10^67,
74
167931
4437
8.07 x 10^67,
02:52
or roughly eight followed by 67 zeros.
75
172368
3420
što je otprilike - broj 8 sa 67 nula.
02:55
Just how big is this number?
76
175788
1670
Koliki je ustvari ovaj broj?
02:57
Well, if a new permutation of 52 cards
77
177458
2250
Pa, ako bi se svaka nova permutacija 52 karte
02:59
were written out every second
78
179708
2044
zapisivala svake sekunde
03:01
starting 13.8 billion years ago,
79
181752
2626
počevši od pre 13,8 milijardi godina,
03:04
when the Big Bang is thought to have occurred,
80
184378
1966
kada se veruje da se dogodio Veliki prasak,
03:06
the writing would still be continuing today
81
186344
2750
zapisivanje bi trajalo i danas
03:09
and for millions of years to come.
82
189094
2582
i nastavilo bi se još milionima godina.
03:11
In fact, there are more possible
83
191676
1750
U stvari, ima više
03:13
ways to arrange this simple deck of cards
84
193426
2919
mogućih načina rasporeda ovog jednostavnog špila karata,
03:16
than there are atoms on Earth.
85
196345
2248
nego što ima atoma na Zemlji.
03:18
So the next time it's your turn to shuffle,
86
198593
2166
Zato, sledeći put kad bude bio vaš red da mešate,
03:20
take a moment to remember
87
200759
1334
setite se da
03:22
that you're holding something that
88
202093
1081
možda držite nešto
03:23
may have never before existed
89
203174
2061
što nikada ranije nije postojalo
03:25
and may never exist again.
90
205235
2109
i neće ni postojati.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7