How many ways can you arrange a deck of cards? - Yannay Khaikin

How many ways can you arrange a deck of cards? - Yannay Khaikin

1,665,654 views

2014-03-27 ・ TED-Ed


New videos

How many ways can you arrange a deck of cards? - Yannay Khaikin

How many ways can you arrange a deck of cards? - Yannay Khaikin

1,665,654 views ・ 2014-03-27

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Biyue碧玥 Wang王 校对人员: Lanfu Zhang
00:06
Pick a card, any card.
0
6954
2170
选一张牌,任何牌。
00:09
Actually, just pick up all of them and take a look.
1
9124
2890
事实上,把它们全部拿起来看一看
00:12
This standard 52-card deck has been used for centuries.
2
12014
3834
标准的 52 张牌已经延用了几个世纪之久。
00:15
Everyday, thousands just like it
3
15848
2250
每天成千上万像这样的扑克牌
00:18
are shuffled in casinos all over the world,
4
18098
3036
在世界各地的赌场中洗牌
00:21
the order rearranged each time.
5
21134
2585
每一次排列组合都会改变
00:23
And yet, every time you pick up a well-shuffled deck
6
23719
2712
事实上, 每一次你从洗过的牌堆里抽一张牌
00:26
like this one,
7
26431
1211
像这样,
00:27
you are almost certainly holding
8
27642
1789
几乎可以肯定你拥有的牌
00:29
an arrangement of cards
9
29431
1417
的排列组合顺序
00:30
that has never before existed in all of history.
10
30848
2881
在历史上从未出现过
00:33
How can this be?
11
33729
2035
为什么是这样?
00:35
The answer lies in how many different arrangements
12
35764
2136
答案藏在这52张牌有
00:37
of 52 cards, or any objects, are possible.
13
37900
4448
许多可能的排列组合
00:42
Now, 52 may not seem like such a high number,
14
42348
3272
现在,52 看起并不是一个大数字
00:45
but let's start with an even smaller one.
15
45620
2415
让我们从一个更小的数字开始研究。
00:48
Say we have four people trying to sit
16
48035
1897
假设有四个人要坐
00:49
in four numbered chairs.
17
49932
2416
四个带编号的椅子。
00:52
How many ways can they be seated?
18
52348
2112
有多少种方法?
00:54
To start off, any of the four people can sit
19
54460
2138
一开始,四个人中的任何一个人
00:56
in the first chair.
20
56598
1322
都可以坐第一把椅子。
00:57
One this choice is made,
21
57920
1212
一旦选定其中一个人
00:59
only three people remain standing.
22
59132
2334
只剩下三个人站着
01:01
After the second person sits down,
23
61466
1796
在第二个人坐下后
01:03
only two people are left as candidates
24
63262
1957
谁坐第三把椅子只有
01:05
for the third chair.
25
65219
1461
两个选择。
01:06
And after the third person has sat down,
26
66680
2000
第三人坐了下来,
01:08
the last person standing has no choice
27
68680
1751
最后一个站的人已别无选择
01:10
but to sit in the fourth chair.
28
70431
1916
只能坐在第四把椅子上。
01:12
If we manually write out all the possible arrangements,
29
72347
2751
如果我们手写出所有可能的安排,
01:15
or permutations,
30
75098
1716
或置换,
01:16
it turns out that there are 24 ways
31
76814
2004
会出现24 种方法
01:18
that four people can be seated into four chairs,
32
78818
3362
让四人可以坐满四把椅子,
01:22
but when dealing with larger numbers,
33
82180
1811
但当处理较大的数字,
01:23
this can take quite a while.
34
83991
1541
这可能会需要相当长的一段时间。
01:25
So let's see if there's a quicker way.
35
85532
2316
所以让我们看看是否有更快的方法。
01:27
Going from the beginning again,
36
87848
1438
我们再一次从头开始
01:29
you can see that each of the four initial choices
37
89286
2084
为第一把椅子
01:31
for the first chair
38
91370
1312
我们有四个初始选项
01:32
leads to three more possible choices for the second chair,
39
92682
3317
这样第二把椅子,我们有三个选项
01:35
and each of those choices
40
95999
1462
每一个选项
01:37
leads to two more for the third chair.
41
97461
2386
使得第三把椅有两个选项
01:39
So instead of counting each final scenario individually,
42
99847
3334
替换费时的累加每一种可能性
01:43
we can multiply the number of choices for each chair:
43
103181
3081
我们可以将每个椅子的可选择数相乘
01:46
four times three times two times one
44
106262
2834
4乘3乘2乘1
01:49
to achieve the same result of 24.
45
109096
2752
得出一样的得数,24。
01:51
An interesting pattern emerges.
46
111848
1833
一个有意思的模式出现了
01:53
We start with the number of objects we're arranging,
47
113681
3048
我们从要安排的个体数开始
01:56
four in this case,
48
116729
1369
在这个例子中是四
01:58
and multiply it by consecutively smaller integers
49
118098
2749
然后乘以比这个数小一位的整数
02:00
until we reach one.
50
120847
2055
直到一。
02:02
This is an exciting discovery.
51
122902
1612
这是一个令人兴奋的发现。
02:04
So exciting that mathematicians have chosen
52
124514
1935
数学家们如此兴奋以至于已经决定
02:06
to symbolize this kind of calculation,
53
126449
2126
讲这种据算象征性的取名为
02:08
known as a factorial,
54
128575
1770
阶乘
02:10
with an exclamation mark.
55
130345
1693
并随的一个感叹号。
02:12
As a general rule, the factorial of any positive integer
56
132038
3476
一般规则: 任何正整数的阶乘
02:15
is calculated as the product
57
135514
1902
都是这个整数本身
02:17
of that same integer
58
137416
1460
和每一个比这个整数小的
02:18
and all smaller integers down to one.
59
138876
2960
直到一的整数的乘积。
02:21
In our simple example,
60
141836
1427
在我们的简单示例中,
02:23
the number of ways four people
61
143263
1333
四个人被
02:24
can be arranged into chairs
62
144596
1585
安排坐入椅子的不同可能性
02:26
is written as four factorial,
63
146181
1871
被写作四的阶乘
02:28
which equals 24.
64
148052
1923
这等于 24。
02:29
So let's go back to our deck.
65
149975
1833
所以让我们先前的纸牌例子
02:31
Just as there were four factorial ways
66
151808
1790
正如我们有4种乘积的方法
02:33
of arranging four people,
67
153598
1833
来安排4个人就坐
02:35
there are 52 factorial ways
68
155431
2167
我们有52种阶乘的方法
02:37
of arranging 52 cards.
69
157598
2416
来排列52张牌
02:40
Fortunately, we don't have to calculate this by hand.
70
160014
3052
幸运的是,我们不需要手动计算
02:43
Just enter the function into a calculator,
71
163066
1948
只要把公式输入进计算器
02:45
and it will show you that the number of
72
165014
1417
计算器会告诉你
02:46
possible arrangements is
73
166431
1500
排列的不同方法一共是
02:47
8.07 x 10^67,
74
167931
4437
8.07 x 10 ^67,
02:52
or roughly eight followed by 67 zeros.
75
172368
3420
大约是8后面的67个零。
02:55
Just how big is this number?
76
175788
1670
这个数字有多大?
02:57
Well, if a new permutation of 52 cards
77
177458
2250
如果一种52张牌的排列
02:59
were written out every second
78
179708
2044
用掉1秒钟来写出
03:01
starting 13.8 billion years ago,
79
181752
2626
从138亿年前
03:04
when the Big Bang is thought to have occurred,
80
184378
1966
公认的宇宙大爆炸之时开始
03:06
the writing would still be continuing today
81
186344
2750
我们可以一直写到今天
03:09
and for millions of years to come.
82
189094
2582
并且继续写上数百万年
03:11
In fact, there are more possible
83
191676
1750
事实上,这一副扑克牌的
03:13
ways to arrange this simple deck of cards
84
193426
2919
安排方式要比
03:16
than there are atoms on Earth.
85
196345
2248
地球上原子的数量多。
03:18
So the next time it's your turn to shuffle,
86
198593
2166
所以在下一次轮到你洗牌时
03:20
take a moment to remember
87
200759
1334
花一点时间来记住
03:22
that you're holding something that
88
202093
1081
你拿着的这副牌
03:23
may have never before existed
89
203174
2061
可能以前并不存在
03:25
and may never exist again.
90
205235
2109
而且可能永远也不会再出现。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7