How many ways can you arrange a deck of cards? - Yannay Khaikin

How many ways can you arrange a deck of cards? - Yannay Khaikin

1,687,744 views

2014-03-27 ・ TED-Ed


New videos

How many ways can you arrange a deck of cards? - Yannay Khaikin

How many ways can you arrange a deck of cards? - Yannay Khaikin

1,687,744 views ・ 2014-03-27

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Biyue碧玥 Wang王 校对人员: Lanfu Zhang
00:06
Pick a card, any card.
0
6954
2170
选一张牌,任何牌。
00:09
Actually, just pick up all of them and take a look.
1
9124
2890
事实上,把它们全部拿起来看一看
00:12
This standard 52-card deck has been used for centuries.
2
12014
3834
标准的 52 张牌已经延用了几个世纪之久。
00:15
Everyday, thousands just like it
3
15848
2250
每天成千上万像这样的扑克牌
00:18
are shuffled in casinos all over the world,
4
18098
3036
在世界各地的赌场中洗牌
00:21
the order rearranged each time.
5
21134
2585
每一次排列组合都会改变
00:23
And yet, every time you pick up a well-shuffled deck
6
23719
2712
事实上, 每一次你从洗过的牌堆里抽一张牌
00:26
like this one,
7
26431
1211
像这样,
00:27
you are almost certainly holding
8
27642
1789
几乎可以肯定你拥有的牌
00:29
an arrangement of cards
9
29431
1417
的排列组合顺序
00:30
that has never before existed in all of history.
10
30848
2881
在历史上从未出现过
00:33
How can this be?
11
33729
2035
为什么是这样?
00:35
The answer lies in how many different arrangements
12
35764
2136
答案藏在这52张牌有
00:37
of 52 cards, or any objects, are possible.
13
37900
4448
许多可能的排列组合
00:42
Now, 52 may not seem like such a high number,
14
42348
3272
现在,52 看起并不是一个大数字
00:45
but let's start with an even smaller one.
15
45620
2415
让我们从一个更小的数字开始研究。
00:48
Say we have four people trying to sit
16
48035
1897
假设有四个人要坐
00:49
in four numbered chairs.
17
49932
2416
四个带编号的椅子。
00:52
How many ways can they be seated?
18
52348
2112
有多少种方法?
00:54
To start off, any of the four people can sit
19
54460
2138
一开始,四个人中的任何一个人
00:56
in the first chair.
20
56598
1322
都可以坐第一把椅子。
00:57
One this choice is made,
21
57920
1212
一旦选定其中一个人
00:59
only three people remain standing.
22
59132
2334
只剩下三个人站着
01:01
After the second person sits down,
23
61466
1796
在第二个人坐下后
01:03
only two people are left as candidates
24
63262
1957
谁坐第三把椅子只有
01:05
for the third chair.
25
65219
1461
两个选择。
01:06
And after the third person has sat down,
26
66680
2000
第三人坐了下来,
01:08
the last person standing has no choice
27
68680
1751
最后一个站的人已别无选择
01:10
but to sit in the fourth chair.
28
70431
1916
只能坐在第四把椅子上。
01:12
If we manually write out all the possible arrangements,
29
72347
2751
如果我们手写出所有可能的安排,
01:15
or permutations,
30
75098
1716
或置换,
01:16
it turns out that there are 24 ways
31
76814
2004
会出现24 种方法
01:18
that four people can be seated into four chairs,
32
78818
3362
让四人可以坐满四把椅子,
01:22
but when dealing with larger numbers,
33
82180
1811
但当处理较大的数字,
01:23
this can take quite a while.
34
83991
1541
这可能会需要相当长的一段时间。
01:25
So let's see if there's a quicker way.
35
85532
2316
所以让我们看看是否有更快的方法。
01:27
Going from the beginning again,
36
87848
1438
我们再一次从头开始
01:29
you can see that each of the four initial choices
37
89286
2084
为第一把椅子
01:31
for the first chair
38
91370
1312
我们有四个初始选项
01:32
leads to three more possible choices for the second chair,
39
92682
3317
这样第二把椅子,我们有三个选项
01:35
and each of those choices
40
95999
1462
每一个选项
01:37
leads to two more for the third chair.
41
97461
2386
使得第三把椅有两个选项
01:39
So instead of counting each final scenario individually,
42
99847
3334
替换费时的累加每一种可能性
01:43
we can multiply the number of choices for each chair:
43
103181
3081
我们可以将每个椅子的可选择数相乘
01:46
four times three times two times one
44
106262
2834
4乘3乘2乘1
01:49
to achieve the same result of 24.
45
109096
2752
得出一样的得数,24。
01:51
An interesting pattern emerges.
46
111848
1833
一个有意思的模式出现了
01:53
We start with the number of objects we're arranging,
47
113681
3048
我们从要安排的个体数开始
01:56
four in this case,
48
116729
1369
在这个例子中是四
01:58
and multiply it by consecutively smaller integers
49
118098
2749
然后乘以比这个数小一位的整数
02:00
until we reach one.
50
120847
2055
直到一。
02:02
This is an exciting discovery.
51
122902
1612
这是一个令人兴奋的发现。
02:04
So exciting that mathematicians have chosen
52
124514
1935
数学家们如此兴奋以至于已经决定
02:06
to symbolize this kind of calculation,
53
126449
2126
讲这种据算象征性的取名为
02:08
known as a factorial,
54
128575
1770
阶乘
02:10
with an exclamation mark.
55
130345
1693
并随的一个感叹号。
02:12
As a general rule, the factorial of any positive integer
56
132038
3476
一般规则: 任何正整数的阶乘
02:15
is calculated as the product
57
135514
1902
都是这个整数本身
02:17
of that same integer
58
137416
1460
和每一个比这个整数小的
02:18
and all smaller integers down to one.
59
138876
2960
直到一的整数的乘积。
02:21
In our simple example,
60
141836
1427
在我们的简单示例中,
02:23
the number of ways four people
61
143263
1333
四个人被
02:24
can be arranged into chairs
62
144596
1585
安排坐入椅子的不同可能性
02:26
is written as four factorial,
63
146181
1871
被写作四的阶乘
02:28
which equals 24.
64
148052
1923
这等于 24。
02:29
So let's go back to our deck.
65
149975
1833
所以让我们先前的纸牌例子
02:31
Just as there were four factorial ways
66
151808
1790
正如我们有4种乘积的方法
02:33
of arranging four people,
67
153598
1833
来安排4个人就坐
02:35
there are 52 factorial ways
68
155431
2167
我们有52种阶乘的方法
02:37
of arranging 52 cards.
69
157598
2416
来排列52张牌
02:40
Fortunately, we don't have to calculate this by hand.
70
160014
3052
幸运的是,我们不需要手动计算
02:43
Just enter the function into a calculator,
71
163066
1948
只要把公式输入进计算器
02:45
and it will show you that the number of
72
165014
1417
计算器会告诉你
02:46
possible arrangements is
73
166431
1500
排列的不同方法一共是
02:47
8.07 x 10^67,
74
167931
4437
8.07 x 10 ^67,
02:52
or roughly eight followed by 67 zeros.
75
172368
3420
大约是8后面的67个零。
02:55
Just how big is this number?
76
175788
1670
这个数字有多大?
02:57
Well, if a new permutation of 52 cards
77
177458
2250
如果一种52张牌的排列
02:59
were written out every second
78
179708
2044
用掉1秒钟来写出
03:01
starting 13.8 billion years ago,
79
181752
2626
从138亿年前
03:04
when the Big Bang is thought to have occurred,
80
184378
1966
公认的宇宙大爆炸之时开始
03:06
the writing would still be continuing today
81
186344
2750
我们可以一直写到今天
03:09
and for millions of years to come.
82
189094
2582
并且继续写上数百万年
03:11
In fact, there are more possible
83
191676
1750
事实上,这一副扑克牌的
03:13
ways to arrange this simple deck of cards
84
193426
2919
安排方式要比
03:16
than there are atoms on Earth.
85
196345
2248
地球上原子的数量多。
03:18
So the next time it's your turn to shuffle,
86
198593
2166
所以在下一次轮到你洗牌时
03:20
take a moment to remember
87
200759
1334
花一点时间来记住
03:22
that you're holding something that
88
202093
1081
你拿着的这副牌
03:23
may have never before existed
89
203174
2061
可能以前并不存在
03:25
and may never exist again.
90
205235
2109
而且可能永远也不会再出现。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog