How many ways can you arrange a deck of cards? - Yannay Khaikin

一副牌的排序有多少種? - 楊奈·凱金 (Yannay Khaikin)

1,687,744 views

2014-03-27 ・ TED-Ed


New videos

How many ways can you arrange a deck of cards? - Yannay Khaikin

一副牌的排序有多少種? - 楊奈·凱金 (Yannay Khaikin)

1,687,744 views ・ 2014-03-27

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: Regina Chu
00:06
Pick a card, any card.
0
6954
2170
抽一張牌,隨便一張,
00:09
Actually, just pick up all of them and take a look.
1
9124
2890
其實,乾脆把整副牌都攤開來 看一看,
00:12
This standard 52-card deck has been used for centuries.
2
12014
3834
一副共有 52 張的撲克牌, 已沿用了好幾個世紀。
00:15
Everyday, thousands just like it
3
15848
2250
每天,成千上萬副這樣的牌,
00:18
are shuffled in casinos all over the world,
4
18098
3036
在全球各個賭場被洗來洗去,
00:21
the order rearranged each time.
5
21134
2585
每次洗都會重新排序。
00:23
And yet, every time you pick up a well-shuffled deck
6
23719
2712
但當你每回拿起一副洗好的牌,
00:26
like this one,
7
26431
1211
像這副一樣,
00:27
you are almost certainly holding
8
27642
1789
你幾乎可以確定的是,
00:29
an arrangement of cards
9
29431
1417
你手上這副牌的順序
00:30
that has never before existed in all of history.
10
30848
2881
在過去從未出現。
00:33
How can this be?
11
33729
2035
怎麼會這樣?
00:35
The answer lies in how many different arrangements
12
35764
2136
答案在於,究竟有多少排列組合, 不論是這 52 張牌,
00:37
of 52 cards, or any objects, are possible.
13
37900
4448
或任何物件, 有多少可能的排列組合存在?
00:42
Now, 52 may not seem like such a high number,
14
42348
3272
52 看起來不是個很大的數字,
00:45
but let's start with an even smaller one.
15
45620
2415
但我們還是先從 更小的數字開始吧。
00:48
Say we have four people trying to sit
16
48035
1897
例如有四個人嘗試坐在
00:49
in four numbered chairs.
17
49932
2416
四張有編號的椅子上,
00:52
How many ways can they be seated?
18
52348
2112
他們的座位有幾種坐法?
00:54
To start off, any of the four people can sit
19
54460
2138
一開始,四人中的任何一位 都可以坐在一號位置,
00:56
in the first chair.
20
56598
1322
00:57
One this choice is made,
21
57920
1212
決定好之後,
00:59
only three people remain standing.
22
59132
2334
還有三個人站著,
01:01
After the second person sits down,
23
61466
1796
第二個人坐下之後,
01:03
only two people are left as candidates
24
63262
1957
就剩下兩個人有可能
01:05
for the third chair.
25
65219
1461
坐在三號位置。
01:06
And after the third person has sat down,
26
66680
2000
第三個人坐下後,
01:08
the last person standing has no choice
27
68680
1751
最後一個站著的人便別無他選,
01:10
but to sit in the fourth chair.
28
70431
1916
只能坐在四號椅子。
01:12
If we manually write out all the possible arrangements,
29
72347
2751
如果我們寫下 所有可能的座位排法,
01:15
or permutations,
30
75098
1716
或者說排列, (permutations)
01:16
it turns out that there are 24 ways
31
76814
2004
結果將有 24 種不同的坐法,
01:18
that four people can be seated into four chairs,
32
78818
3362
讓四個人坐上四張椅子。
01:22
but when dealing with larger numbers,
33
82180
1811
但當要處理的數字較大時,
01:23
this can take quite a while.
34
83991
1541
這就要花上好些時間了。
01:25
So let's see if there's a quicker way.
35
85532
2316
我們來想想有沒有更快的方法。
01:27
Going from the beginning again,
36
87848
1438
從頭來過,
01:29
you can see that each of the four initial choices
37
89286
2084
由誰坐上一號椅子,
01:31
for the first chair
38
91370
1312
01:32
leads to three more possible choices for the second chair,
39
92682
3317
引出二號椅子的三種可能選擇,
01:35
and each of those choices
40
95999
1462
而當中的每個選項,
01:37
leads to two more for the third chair.
41
97461
2386
再引出三號座位的兩種可能性。
01:39
So instead of counting each final scenario individually,
42
99847
3334
所我們不需要 一個一個排出最終的坐法,
01:43
we can multiply the number of choices for each chair:
43
103181
3081
只需乘上每張椅子的可能選項: 4 乘以 3 乘以 2 乘以 1。
01:46
four times three times two times one
44
106262
2834
01:49
to achieve the same result of 24.
45
109096
2752
就會得到相同的結果, 即 24 種坐法。
01:51
An interesting pattern emerges.
46
111848
1833
所以,出現了有趣的規則:
01:53
We start with the number of objects we're arranging,
47
113681
3048
我們先確認要排列的物件數量,
01:56
four in this case,
48
116729
1369
這次是四個人,
01:58
and multiply it by consecutively smaller integers
49
118098
2749
然後連續乘以越來越小的整數,
02:00
until we reach one.
50
120847
2055
直到 1 為止。
02:02
This is an exciting discovery.
51
122902
1612
這是很有趣的發現, 數學家將這種計算方法
02:04
So exciting that mathematicians have chosen
52
124514
1935
02:06
to symbolize this kind of calculation,
53
126449
2126
02:08
known as a factorial,
54
128575
1770
命名為階乘,
02:10
with an exclamation mark.
55
130345
1693
以驚嘆號「!」表示。
02:12
As a general rule, the factorial of any positive integer
56
132038
3476
一般而言,任意整數的階乘,
02:15
is calculated as the product
57
135514
1902
計算方法為:
02:17
of that same integer
58
137416
1460
從自己開始,越來越小的整數, 往下相乘,直到 1 為止。
02:18
and all smaller integers down to one.
59
138876
2960
02:21
In our simple example,
60
141836
1427
我們剛剛那個簡單的例子,
02:23
the number of ways four people
61
143263
1333
4 個人座位的排列方法,
02:24
can be arranged into chairs
62
144596
1585
02:26
is written as four factorial,
63
146181
1871
就可以寫成 4 的階乘「 4! 」,
02:28
which equals 24.
64
148052
1923
計算結果等於 24。
02:29
So let's go back to our deck.
65
149975
1833
所以讓我們回頭來看這副牌,
02:31
Just as there were four factorial ways
66
151808
1790
如同計算 4 個人 座位的排列方式,
02:33
of arranging four people,
67
153598
1833
02:35
there are 52 factorial ways
68
155431
2167
52 張牌就有 52! 種排列方式。
02:37
of arranging 52 cards.
69
157598
2416
02:40
Fortunately, we don't have to calculate this by hand.
70
160014
3052
好在我們不需要用手算,
02:43
Just enter the function into a calculator,
71
163066
1948
只要按計算機就可以知道,
02:45
and it will show you that the number of
72
165014
1417
可能的排列方式共有
02:46
possible arrangements is
73
166431
1500
02:47
8.07 x 10^67,
74
167931
4437
8.07 乘以 10 的 67 次方 這麼多種的可能排序,
02:52
or roughly eight followed by 67 zeros.
75
172368
3420
大約就是 8 後面加上 67 個 0 。
02:55
Just how big is this number?
76
175788
1670
這數字到底是多大呢?
02:57
Well, if a new permutation of 52 cards
77
177458
2250
嗯,如果每秒鐘排一種順序,
02:59
were written out every second
78
179708
2044
03:01
starting 13.8 billion years ago,
79
181752
2626
大約要花 138 億年,
差不多是從 宇宙大爆炸要開始的時候,
03:04
when the Big Bang is thought to have occurred,
80
184378
1966
03:06
the writing would still be continuing today
81
186344
2750
一直排到此時此刻都還沒排完,
還要再排個幾百萬年, 才可能排出所有的可能順序。
03:09
and for millions of years to come.
82
189094
2582
03:11
In fact, there are more possible
83
191676
1750
事實上,52 張牌的排法,
03:13
ways to arrange this simple deck of cards
84
193426
2919
數量可能遠超過, 地球上所有的原子數目總和。
03:16
than there are atoms on Earth.
85
196345
2248
03:18
So the next time it's your turn to shuffle,
86
198593
2166
所以下次輪到你洗牌的時候,
03:20
take a moment to remember
87
200759
1334
記得想想 你現在洗出來的這副牌,
03:22
that you're holding something that
88
202093
1081
03:23
may have never before existed
89
203174
2061
它的排列順序, 可能是絕無僅有,空前絕後的。
03:25
and may never exist again.
90
205235
2109
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog