How many ways can you arrange a deck of cards? - Yannay Khaikin

一副牌的排序有多少種? - 楊奈·凱金 (Yannay Khaikin)

1,669,127 views

2014-03-27 ・ TED-Ed


New videos

How many ways can you arrange a deck of cards? - Yannay Khaikin

一副牌的排序有多少種? - 楊奈·凱金 (Yannay Khaikin)

1,669,127 views ・ 2014-03-27

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Helen Chang 審譯者: Regina Chu
00:06
Pick a card, any card.
0
6954
2170
抽一張牌,隨便一張,
00:09
Actually, just pick up all of them and take a look.
1
9124
2890
其實,乾脆把整副牌都攤開來 看一看,
00:12
This standard 52-card deck has been used for centuries.
2
12014
3834
一副共有 52 張的撲克牌, 已沿用了好幾個世紀。
00:15
Everyday, thousands just like it
3
15848
2250
每天,成千上萬副這樣的牌,
00:18
are shuffled in casinos all over the world,
4
18098
3036
在全球各個賭場被洗來洗去,
00:21
the order rearranged each time.
5
21134
2585
每次洗都會重新排序。
00:23
And yet, every time you pick up a well-shuffled deck
6
23719
2712
但當你每回拿起一副洗好的牌,
00:26
like this one,
7
26431
1211
像這副一樣,
00:27
you are almost certainly holding
8
27642
1789
你幾乎可以確定的是,
00:29
an arrangement of cards
9
29431
1417
你手上這副牌的順序
00:30
that has never before existed in all of history.
10
30848
2881
在過去從未出現。
00:33
How can this be?
11
33729
2035
怎麼會這樣?
00:35
The answer lies in how many different arrangements
12
35764
2136
答案在於,究竟有多少排列組合, 不論是這 52 張牌,
00:37
of 52 cards, or any objects, are possible.
13
37900
4448
或任何物件, 有多少可能的排列組合存在?
00:42
Now, 52 may not seem like such a high number,
14
42348
3272
52 看起來不是個很大的數字,
00:45
but let's start with an even smaller one.
15
45620
2415
但我們還是先從 更小的數字開始吧。
00:48
Say we have four people trying to sit
16
48035
1897
例如有四個人嘗試坐在
00:49
in four numbered chairs.
17
49932
2416
四張有編號的椅子上,
00:52
How many ways can they be seated?
18
52348
2112
他們的座位有幾種坐法?
00:54
To start off, any of the four people can sit
19
54460
2138
一開始,四人中的任何一位 都可以坐在一號位置,
00:56
in the first chair.
20
56598
1322
00:57
One this choice is made,
21
57920
1212
決定好之後,
00:59
only three people remain standing.
22
59132
2334
還有三個人站著,
01:01
After the second person sits down,
23
61466
1796
第二個人坐下之後,
01:03
only two people are left as candidates
24
63262
1957
就剩下兩個人有可能
01:05
for the third chair.
25
65219
1461
坐在三號位置。
01:06
And after the third person has sat down,
26
66680
2000
第三個人坐下後,
01:08
the last person standing has no choice
27
68680
1751
最後一個站著的人便別無他選,
01:10
but to sit in the fourth chair.
28
70431
1916
只能坐在四號椅子。
01:12
If we manually write out all the possible arrangements,
29
72347
2751
如果我們寫下 所有可能的座位排法,
01:15
or permutations,
30
75098
1716
或者說排列, (permutations)
01:16
it turns out that there are 24 ways
31
76814
2004
結果將有 24 種不同的坐法,
01:18
that four people can be seated into four chairs,
32
78818
3362
讓四個人坐上四張椅子。
01:22
but when dealing with larger numbers,
33
82180
1811
但當要處理的數字較大時,
01:23
this can take quite a while.
34
83991
1541
這就要花上好些時間了。
01:25
So let's see if there's a quicker way.
35
85532
2316
我們來想想有沒有更快的方法。
01:27
Going from the beginning again,
36
87848
1438
從頭來過,
01:29
you can see that each of the four initial choices
37
89286
2084
由誰坐上一號椅子,
01:31
for the first chair
38
91370
1312
01:32
leads to three more possible choices for the second chair,
39
92682
3317
引出二號椅子的三種可能選擇,
01:35
and each of those choices
40
95999
1462
而當中的每個選項,
01:37
leads to two more for the third chair.
41
97461
2386
再引出三號座位的兩種可能性。
01:39
So instead of counting each final scenario individually,
42
99847
3334
所我們不需要 一個一個排出最終的坐法,
01:43
we can multiply the number of choices for each chair:
43
103181
3081
只需乘上每張椅子的可能選項: 4 乘以 3 乘以 2 乘以 1。
01:46
four times three times two times one
44
106262
2834
01:49
to achieve the same result of 24.
45
109096
2752
就會得到相同的結果, 即 24 種坐法。
01:51
An interesting pattern emerges.
46
111848
1833
所以,出現了有趣的規則:
01:53
We start with the number of objects we're arranging,
47
113681
3048
我們先確認要排列的物件數量,
01:56
four in this case,
48
116729
1369
這次是四個人,
01:58
and multiply it by consecutively smaller integers
49
118098
2749
然後連續乘以越來越小的整數,
02:00
until we reach one.
50
120847
2055
直到 1 為止。
02:02
This is an exciting discovery.
51
122902
1612
這是很有趣的發現, 數學家將這種計算方法
02:04
So exciting that mathematicians have chosen
52
124514
1935
02:06
to symbolize this kind of calculation,
53
126449
2126
02:08
known as a factorial,
54
128575
1770
命名為階乘,
02:10
with an exclamation mark.
55
130345
1693
以驚嘆號「!」表示。
02:12
As a general rule, the factorial of any positive integer
56
132038
3476
一般而言,任意整數的階乘,
02:15
is calculated as the product
57
135514
1902
計算方法為:
02:17
of that same integer
58
137416
1460
從自己開始,越來越小的整數, 往下相乘,直到 1 為止。
02:18
and all smaller integers down to one.
59
138876
2960
02:21
In our simple example,
60
141836
1427
我們剛剛那個簡單的例子,
02:23
the number of ways four people
61
143263
1333
4 個人座位的排列方法,
02:24
can be arranged into chairs
62
144596
1585
02:26
is written as four factorial,
63
146181
1871
就可以寫成 4 的階乘「 4! 」,
02:28
which equals 24.
64
148052
1923
計算結果等於 24。
02:29
So let's go back to our deck.
65
149975
1833
所以讓我們回頭來看這副牌,
02:31
Just as there were four factorial ways
66
151808
1790
如同計算 4 個人 座位的排列方式,
02:33
of arranging four people,
67
153598
1833
02:35
there are 52 factorial ways
68
155431
2167
52 張牌就有 52! 種排列方式。
02:37
of arranging 52 cards.
69
157598
2416
02:40
Fortunately, we don't have to calculate this by hand.
70
160014
3052
好在我們不需要用手算,
02:43
Just enter the function into a calculator,
71
163066
1948
只要按計算機就可以知道,
02:45
and it will show you that the number of
72
165014
1417
可能的排列方式共有
02:46
possible arrangements is
73
166431
1500
02:47
8.07 x 10^67,
74
167931
4437
8.07 乘以 10 的 67 次方 這麼多種的可能排序,
02:52
or roughly eight followed by 67 zeros.
75
172368
3420
大約就是 8 後面加上 67 個 0 。
02:55
Just how big is this number?
76
175788
1670
這數字到底是多大呢?
02:57
Well, if a new permutation of 52 cards
77
177458
2250
嗯,如果每秒鐘排一種順序,
02:59
were written out every second
78
179708
2044
03:01
starting 13.8 billion years ago,
79
181752
2626
大約要花 138 億年,
差不多是從 宇宙大爆炸要開始的時候,
03:04
when the Big Bang is thought to have occurred,
80
184378
1966
03:06
the writing would still be continuing today
81
186344
2750
一直排到此時此刻都還沒排完,
還要再排個幾百萬年, 才可能排出所有的可能順序。
03:09
and for millions of years to come.
82
189094
2582
03:11
In fact, there are more possible
83
191676
1750
事實上,52 張牌的排法,
03:13
ways to arrange this simple deck of cards
84
193426
2919
數量可能遠超過, 地球上所有的原子數目總和。
03:16
than there are atoms on Earth.
85
196345
2248
03:18
So the next time it's your turn to shuffle,
86
198593
2166
所以下次輪到你洗牌的時候,
03:20
take a moment to remember
87
200759
1334
記得想想 你現在洗出來的這副牌,
03:22
that you're holding something that
88
202093
1081
03:23
may have never before existed
89
203174
2061
它的排列順序, 可能是絕無僅有,空前絕後的。
03:25
and may never exist again.
90
205235
2109
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7