The Infinite Hotel Paradox - Jeff Dekofsky

Paradoks Beskonačnog hotela - Džef Dekofski (Jeff Dekofsky)

24,738,498 views ・ 2014-01-16

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Miloš Milosavljević Lektor: Mile Živković
00:06
In the 1920's,
0
6531
1160
Dvadesetih godina 20. veka
00:07
the German mathematician David Hilbert
1
7715
2469
nemački matematičar Dejvid Hilbert
00:10
devised a famous thought experiment
2
10208
2229
smislio je čuveni misaoni eksperiment
00:12
to show us just how hard it is
3
12461
1730
da bi nam pokazao kako je teško
00:14
to wrap our minds around the concept of infinity.
4
14215
3450
zamisliti pojam beskonačnosti.
00:18
Imagine a hotel with an infinite number of rooms
5
18353
3306
Zamislite hotel sa beskonačnim brojem soba
00:21
and a very hardworking night manager.
6
21683
2305
i vrlo vrednim noćnim poslovođom.
00:24
One night, the Infinite Hotel is completely full,
7
24528
2995
Jedne noći, Beskonačni hotel je dupke pun,
00:27
totally booked up with an infinite number of guests.
8
27547
3456
ceo je popunjen beskonačnim brojem gostiju.
00:31
A man walks into the hotel and asks for a room.
9
31027
3134
Čovek ulazi u hotel
i traži sobu.
Ne želeći da ga odbije,
00:34
Rather than turn him down,
10
34185
1259
00:35
the night manager decides to make room for him.
11
35468
2439
noćni poslovođa odlučuje da mu napravi mesta.
00:37
How?
12
37931
1016
Kako?
00:38
Easy, he asks the guest in room number 1
13
38971
2664
Lako. Zamoli gosta iz sobe broj 1
00:41
to move to room 2,
14
41659
2052
da se premesti u sobu broj 2,
00:43
the guest in room 2 to move to room 3,
15
43735
2321
gosta iz sobe 2 da pređe u sobu 3
00:46
and so on.
16
46080
1058
i tako dalje.
00:47
Every guest moves from room number "n"
17
47449
2389
Svaki gost prelazi iz sobe "n"
00:49
to room number "n+1".
18
49862
2317
u sobu "n+1".
00:52
Since there are an infinite number of rooms,
19
52721
2091
Pošto ima beskonačan broj soba,
00:54
there is a new room for each existing guest.
20
54836
2173
postoji nova soba za svakog postojećeg gosta.
00:57
This leaves room 1 open for the new customer.
21
57413
2347
Time ostaje slobodna soba za novu mušteriju.
00:59
The process can be repeated
22
59784
1286
Ovaj proces se može ponoviti
01:01
for any finite number of new guests.
23
61094
2417
za svaki konačan broj novih gostiju.
01:03
If, say, a tour bus unloads 40 new people looking for rooms,
24
63535
3994
Ako bi, na primer, autobus istovario
40 novih ljudi koji traže sobe,
01:07
then every existing guest just moves
25
67553
2089
onda svaki postojeći gost samo pređe
01:09
from room number "n"
26
69666
1314
iz sobe broj "n"
01:11
to room number "n+40",
27
71004
2634
u sobu broj "n+40"
01:13
thus, opening up the first 40 rooms.
28
73662
2538
i tako se otvori prvih 40 soba.
Ali sada, beskonačno veliki autobus
01:17
But now an infinitely large bus
29
77157
2014
01:19
with a countably infinite number of passengers
30
79195
2549
sa prebrojivo beskonačnim brojem putnika
01:21
pulls up to rent rooms.
31
81768
1905
pristaje pored hotela.
01:23
countably infinite is the key.
32
83697
1989
Prebrojivo beskonačno je ključna stvar.
Beskonačni autobus sa beskonačnim putnicima
01:26
Now, the infinite bus of infinite passengers
33
86164
2366
01:28
perplexes the night manager at first,
34
88554
1964
zbunjuje poslovođu u prvi mah,
01:30
but he realizes there's a way
35
90542
1468
ali onda shvata da postoji način
01:32
to place each new person.
36
92034
1315
da smesti sve nove ljude.
01:33
He asks the guest in room 1 to move to room 2.
37
93373
3018
Zamoli gosta u sobi 1
da pređe u sobu 2.
01:36
He then asks the guest in room 2
38
96415
2112
Onda zamoli gosta iz sobe 2
01:38
to move to room 4,
39
98551
1884
da pređe u sobu 4,
01:40
the guest in room 3 to move to room 6,
40
100459
2350
gosta iz sobe 3
da pređe u sobu 6
01:42
and so on.
41
102833
1272
i tako dalje.
01:44
Each current guest moves from room number "n"
42
104129
3184
Svaki postojeći gost prelazi iz sobe broj "n"
01:47
to room number "2n" --
43
107337
1692
u sobu broj "2n"
01:50
filling up only the infinite even-numbered rooms.
44
110807
3253
popunjavajući samo beskonačan broj parnih soba.
01:54
By doing this, he has now emptied
45
114084
1845
Uradivši ovo, on je ispraznio
01:55
all of the infinitely many odd-numbered rooms,
46
115953
2914
sve neparne sobe kojih ima beskonačan broj,
01:58
which are then taken by the people filing off the infinite bus.
47
118891
3615
u koje su onda ušli ljudi
koji su izašli iz beskonačnog autobusa.
Svi su zadovoljni i hotel posluje
02:03
Everyone's happy and the hotel's business is booming more than ever.
48
123242
3633
bolje nego ikad.
02:06
Well, actually, it is booming exactly the same amount as ever,
49
126899
3517
U stvari, posluje
sa istom zaradom kao i uvek,
02:10
banking an infinite number of dollars a night.
50
130440
2483
inkasirajući beskonačan broj dolara svake noći.
Priča o ovom neverovatnom hotelu se širi.
02:14
Word spreads about this incredible hotel.
51
134076
2279
02:16
People pour in from far and wide.
52
136379
2165
Ljudi dolaze sa svih strana.
02:18
One night, the unthinkable happens.
53
138568
2274
Jedne noći, dešava se nezamislivo.
02:20
The night manager looks outside
54
140866
2541
Noćni poslovođa gleda napolje
02:23
and sees an infinite line of infinitely large buses,
55
143431
4086
i vidi beskonačnu kolonu
beskonačno velikih autobusa,
02:27
each with a countably infinite number of passengers.
56
147541
2788
svaki sa prebrojivo beskonačnim brojem putnika.
02:30
What can he do?
57
150353
1033
Šta može da uradi?
02:31
If he cannot find rooms for them, the hotel will lose out
58
151410
2797
Ako ne nađe sobe za njih
hotel će izgubiti
02:34
on an infinite amount of money,
59
154231
1727
beskonačnu sumu novca,
02:35
and he will surely lose his job.
60
155982
1973
a on će sigurno izgubiti posao.
02:37
Luckily, he remembers that around the year 300 B.C.E.,
61
157979
3811
Srećom, seti se
da je oko 300. godine p.n.e
02:41
Euclid proved that there is an infinite quantity
62
161814
2912
Euklid dokazao da postoji beskonačan broj
02:44
of prime numbers.
63
164750
1884
prostih brojeva.
02:47
So, to accomplish this seemingly impossible task
64
167372
2288
Da bi ispunio ovaj naizgled nemoguć zadatak
02:49
of finding infinite beds for infinite buses
65
169684
2601
da nađe beskonačan broj kreveta za beskonačne autobuse,
02:52
of infinite weary travelers,
66
172309
1982
pune umornih putnika u beskonačnom broju,
02:54
the night manager assigns every current guest
67
174315
2867
noćni poslovođa dodeljuje svakom već postojećem gostu
prvi prost broj, 2,
02:57
to the first prime number, 2,
68
177206
1836
02:59
raised to the power of their current room number.
69
179066
2801
stepenovan brojem njihove sobe.
03:01
So, the current occupant of room number 7
70
181891
2644
Tako gost iz sobe broj 7
03:04
goes to room number 2^7,
71
184559
2982
odlazi u sobu broj 2^7 (2 na sedmi),
03:07
which is room 128.
72
187565
1696
a to je soba 128.
Poslovođa zatim uzima ljude
03:10
The night manager then takes the people on the first of the infinite buses
73
190236
3521
iz prvog od beskonačnih autobusa
03:13
and assigns them to the room number
74
193781
2025
i dodeljuje im sobu broj:
03:15
of the next prime, 3,
75
195830
2461
sledeći prost broj, 3,
03:18
raised to the power of their seat number on the bus.
76
198315
3413
stepenovan brojem njihovog sedišta u autobusu.
03:21
So, the person in seat number 7 on the first bus
77
201752
3507
Tako osoba na sedištu broj 7 u prvom autobusu
03:25
goes to room number 3^7
78
205283
3077
odlazi u sobu broj 3^7
03:28
or room number 2,187.
79
208384
3226
to jest u sobu 2.187.
03:31
This continues for all of the first bus.
80
211634
2435
To se nastavlja za ceo prvi autobus.
03:34
The passengers on the second bus
81
214093
1648
Putnicima iz drugog autobusa
03:35
are assigned powers of the next prime, 5.
82
215765
3645
se dodeljuju eksponenti sledećeg prostog broja, 5.
03:39
The following bus, powers of 7.
83
219434
2059
Sledećem autobusu, eksponenti broja 7.
03:41
Each bus follows:
84
221517
1404
Sledećim autobusima:
03:42
powers of 11, powers of 13,
85
222945
1801
eksponenti broja 11,
eksponenti broja 13,
03:44
powers of 17, etc.
86
224770
2029
broja 17 itd.
03:47
Since each of these numbers
87
227370
1359
Pošto svaki od ovih brojeva kao delioce ima
03:48
only has 1 and the natural number powers
88
228753
2215
samo 1 i prirodne brojeve eksponente
03:50
of their prime number base as factors,
89
230992
2221
prostog broja u osnovi,
03:53
there are no overlapping room numbers.
90
233237
2149
nema preklapanja brojeva soba.
03:55
All the buses' passengers fan out into rooms
91
235410
2929
Svi putnici se raspoređuju po sobama
03:58
using unique room-assignment schemes
92
238363
2483
koristeći jedinstvenu šemu dodeljivanja soba
04:00
based on unique prime numbers.
93
240870
2616
zasnovanu na jedinstvenim prostim brojevima.
04:03
In this way, the night manager can accommodate
94
243510
2191
Na ovaj način noćni poslovođa može da smesti
04:05
every passenger on every bus.
95
245725
2121
svakog putnika iz svakog autobusa.
04:07
Although, there will be many rooms that go unfilled,
96
247870
3194
Mada, ostaće mnogo nepopunjenih soba,
kao, na primer soba 6
04:11
like room 6,
97
251088
1268
jer 6 nije eksponent nijednog prostog broja.
04:12
since 6 is not a power of any prime number.
98
252380
2715
04:15
Luckily, his bosses weren't very good in math,
99
255119
2393
Srećom, njegovi šefovi nisu bili dobri iz matematike,
04:17
so his job is safe.
100
257536
1339
tako da nije u opasnosti da izgubi posao.
04:19
The night manager's strategies are only possible
101
259507
2500
Strategije noćnog poslovođe su moguće jer,
04:22
because while the Infinite Hotel is certainly a logistical nightmare,
102
262031
4593
iako je Beskonačni hotel
sigurno logistička noćna mora,
04:26
it only deals with the lowest level of infinity,
103
266648
3309
on samo operiše sa najnižim nivoom beskonačnosti,
04:29
mainly, the countable infinity of the natural numbers,
104
269981
3532
uglavnom sa prebrojivom beskonačnošću
prirodnih brojeva:
04:33
1, 2, 3, 4, and so on.
105
273537
3057
1, 2, 3, 4 itd.
04:36
Georg Cantor called this level of infinity aleph-zero.
106
276618
3895
Georg Kantor je nazvao ovaj nivo beskonačnosti "alef-nula".
04:40
We use natural numbers for the room numbers
107
280945
2097
Koristimo prirodne brojeve za brojeve soba,
kao i za brojeve sedišta u autobusima.
04:43
as well as the seat numbers on the buses.
108
283066
2122
04:45
If we were dealing with higher orders of infinity,
109
285913
2339
Ako bismo operisali sa višim nivoima beskonačnosti,
04:48
such as that of the real numbers,
110
288276
1572
kao što su oni realnih brojeva,
04:49
these structured strategies would no longer be possible
111
289872
2972
ove strukturirane strategije
ne bi više bile moguće
04:52
as we have no way to systematically include every number.
112
292868
3537
jer nemamo načina
da sistematski uključimo svaki broj.
Beskonačni hotel realnih brojeva ima
04:57
The Real Number Infinite Hotel
113
297002
1801
04:58
has negative number rooms in the basement,
114
298827
2078
negativne brojeve soba u podrumu,
05:00
fractional rooms,
115
300929
1435
sobe sa razlomcima,
05:02
so the guy in room 1/2 always suspects
116
302388
2096
tako da čovek u sobi broj 1/2 uvek sumnja
05:04
he has less room than the guy in room 1.
117
304508
2673
da je dobio manju sobu od osobe u sobi 1.
05:07
Square root rooms, like room radical 2,
118
307205
3103
Sobe sa kvadratnim korenom, kao soba "koren iz 2"
05:10
and room pi,
119
310332
1106
i soba "pi",
05:11
where the guests expect free dessert.
120
311462
2863
gde gosti očekuju besplatnu pitu.
05:14
What self-respecting night manager would ever want to work there
121
314349
3025
Koji poslovođa sa samopoštovanjem
bi hteo da radi tu,
05:17
even for an infinite salary?
122
317398
1607
čak i za beskonačnu platu?
05:19
But over at Hilbert's Infinite Hotel,
123
319029
1889
Ali u Hilbertovom Beskonačnom hotelu, gde nikad nema praznih soba
05:20
where there's never any vacancy
124
320942
1478
05:22
and always room for more,
125
322444
1560
i uvek ima mesta za još gostiju,
05:24
the scenarios faced by the ever-diligent
126
324028
2898
scenarija sa kojima se suočava uvek marljivi
05:26
and maybe too hospitable night manager
127
326950
1810
i možda suviše gostoljubivi poslovođa
05:28
serve to remind us of just how hard it is
128
328784
2706
služe da nas podsete na to kako je teško
05:31
for our relatively finite minds
129
331514
2391
za naše relativno konačne umove
05:33
to grasp a concept as large as infinity.
130
333929
2838
da shvate tako veliki pojam kao što je beskonačnost.
05:37
Maybe you can help tackle these problems
131
337132
1951
Možda možete da se pozabavite ovim problemima
posle dobrog noćnog sna.
05:39
after a good night's sleep.
132
339107
1296
05:40
But honestly, we might need you
133
340427
1849
Ali iskreno, možda ćete morati
05:42
to change rooms at 2 a.m.
134
342300
2401
da promenite sobu u 2 sata noću.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7