The Infinite Hotel Paradox - Jeff Dekofsky

24,765,846 views ใƒป 2014-01-16

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ido Dekkers ืขืจื™ื›ื”: Tal Dekkers
00:06
In the 1920's,
0
6531
1160
ื‘ืฉื ื•ืช ื” 20,
00:07
the German mathematician David Hilbert
1
7715
2469
ื”ืžืชืžื˜ื™ืงืื™ ื”ื’ืจืžื ื™ ื“ื™ื™ื•ื™ื“ ื”ื™ืœื‘ืจื˜
00:10
devised a famous thought experiment
2
10208
2229
ื”ื’ื” ื ื™ืกื•ื™ ืžื—ืฉื‘ืชื™ ืžืคื•ืจืกื
00:12
to show us just how hard it is
3
12461
1730
ื›ื“ื™ ืœื”ืจืื•ืช ื›ืžื” ืงืฉื” ื–ื”
00:14
to wrap our minds around the concept of infinity.
4
14215
3450
ืœื”ื‘ื™ืŸ ืืช ืžื•ืฉื’ ื”ืื™ื ืกื•ืฃ.
00:18
Imagine a hotel with an infinite number of rooms
5
18353
3306
ื“ืžื™ื™ื ื• ืžืœื•ืŸ ืขื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ื—ื“ืจื™ื
00:21
and a very hardworking night manager.
6
21683
2305
ื•ืžื ื”ืœ ืœื™ืœื” ืžืื•ื“ ื—ืจื•ืฅ.
00:24
One night, the Infinite Hotel is completely full,
7
24528
2995
ืœื™ืœื” ืื—ื“, ื”ืžืœื•ืŸ ื”ืื™ื ืกื•ืคื™ ืžืœื ืœื’ืžืจื™,
00:27
totally booked up with an infinite number of guests.
8
27547
3456
ืžืœื ืœื’ืžืจื™ ืขื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ืื•ืจื—ื™ื.
00:31
A man walks into the hotel and asks for a room.
9
31027
3134
ืื“ื ื ื›ื ืก ืœืžืœื•ืŸ
ื•ืžื‘ืงืฉ ื—ื“ืจ.
ื‘ืžืงื•ื ืœื“ื—ื•ืช ืื•ืชื•,
00:34
Rather than turn him down,
10
34185
1259
00:35
the night manager decides to make room for him.
11
35468
2439
ืžื ื”ืœ ื”ืœื™ืœื” ืžื—ืœื™ื˜ ืœื™ืฆื•ืจ ืžืงื•ื ื‘ืฉื‘ื™ืœื•.
00:37
How?
12
37931
1016
ืื™ืš?
00:38
Easy, he asks the guest in room number 1
13
38971
2664
ื‘ืงืœื•ืช, ื”ื•ื ืžื‘ืงืฉ ืžื”ืื•ืจื— ื‘ื—ื“ืจ 1
00:41
to move to room 2,
14
41659
2052
ืœืขื‘ื•ืจ ืœื—ื“ืจ 2,
00:43
the guest in room 2 to move to room 3,
15
43735
2321
ื”ืื•ืจื— ื‘ื—ื“ืจ 2 ืœืขื‘ื•ืจ ืœื—ื“ืจ 3,
00:46
and so on.
16
46080
1058
ื•ื›ืš ื”ืœืื”.
00:47
Every guest moves from room number "n"
17
47449
2389
ื›ืœ ืื•ืจื— ืขื•ื‘ืจ ืžื—ื“ืจ ืžืกืคืจ "n"
00:49
to room number "n+1".
18
49862
2317
ืœื—ื“ืจ ืžืกืคืจ "n+1"..
00:52
Since there are an infinite number of rooms,
19
52721
2091
ืžืื—ืจ ื•ื™ืฉ ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ื—ื“ืจื™ื,
00:54
there is a new room for each existing guest.
20
54836
2173
ื™ืฉ ื—ื“ืจ ื—ื“ืฉ ืœื›ืœ ืื•ืจื—.
00:57
This leaves room 1 open for the new customer.
21
57413
2347
ื–ื” ืžืฉืื™ืจ ืืช ื—ื“ืจ 1 ืคื ื•ื™ ืœืœืงื•ื— ื”ื—ื“ืฉ.
00:59
The process can be repeated
22
59784
1286
ื”ืชื”ืœื™ืš ื™ื›ื•ืœ ืœื—ื–ื•ืจ ืขืœ ืขืฆืžื•
01:01
for any finite number of new guests.
23
61094
2417
ืขื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ืื•ืจื—ื™ื ื—ื“ืฉื™ื.
01:03
If, say, a tour bus unloads 40 new people looking for rooms,
24
63535
3994
ืื, ื ื’ื™ื“, ืื•ื˜ื•ื‘ื•ืก ืชื™ื™ืจื™ื ืžื’ื™ืข
ืขื 40 ืื ืฉื™ื ืฉืžื‘ืงืฉื™ื ื—ื“ืจื™ื,
01:07
then every existing guest just moves
25
67553
2089
ืื– ื›ืœ ืื•ืจื— ืงื™ื™ื ืคืฉื•ื˜ ื–ื–
01:09
from room number "n"
26
69666
1314
ืžื—ื“ืจ ืžืกืคืจ "n"
01:11
to room number "n+40",
27
71004
2634
ืœื—ื“ืจ "n+40",
01:13
thus, opening up the first 40 rooms.
28
73662
2538
ื•ื›ืš, ืžืชืคื ื™ื 40 ื”ื—ื“ืจื™ื ื”ืจืืฉื•ื ื™ื.
ืื‘ืœ ืขื›ืฉื™ื• ืžื’ื™ืข ืื•ื˜ื•ื‘ื•ืก ื’ื“ื•ืœ ืื™ื ืกื•ืคื™ืช
01:17
But now an infinitely large bus
29
77157
2014
01:19
with a countably infinite number of passengers
30
79195
2549
ืขื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ื‘ืจ ืกืคื™ืจื” ืฉืœ ื ื•ืกืขื™ื
01:21
pulls up to rent rooms.
31
81768
1905
ืฉื‘ืื™ื ืœืฉื›ื•ืจ ื—ื“ืจื™ื.
01:23
countably infinite is the key.
32
83697
1989
ืื™ื ืกื•ืฃ ื‘ืจ ืกืคื™ืจื” ื–ื” ื”ืžืคืชื—.
ืขื›ืฉื™ื•, ื”ืื•ื˜ื•ื‘ื•ืก ื”ืื™ืŸ ืกื•ืคื™
01:26
Now, the infinite bus of infinite passengers
33
86164
2366
01:28
perplexes the night manager at first,
34
88554
1964
ืžื‘ืœื‘ืœ ืืช ืžื ื”ืœ ื”ืœื™ืœื” ื‘ื”ืชื—ืœื”,
01:30
but he realizes there's a way
35
90542
1468
ืื‘ืœ ื”ื•ื ืžื‘ื™ืŸ ืฉื™ืฉ ื“ืจืš
01:32
to place each new person.
36
92034
1315
ืœืžืงื ื›ืœ ืื“ื ื—ื“ืฉ.
01:33
He asks the guest in room 1 to move to room 2.
37
93373
3018
ื”ื•ื ืžื‘ืงืฉ ืžื”ืื•ืจื— ื‘ื—ื“ืจ 1
ืœืขื‘ื•ืจ ืœื—ื“ืจ 2.
01:36
He then asks the guest in room 2
38
96415
2112
ืื– ื”ื•ื ืžื‘ืงืฉ ืžื”ืื•ืจื— ื‘ื—ื“ืจ 2
01:38
to move to room 4,
39
98551
1884
ืœืขื‘ื•ืจ ืœื—ื“ืจ 4,
01:40
the guest in room 3 to move to room 6,
40
100459
2350
ื”ืื•ืจื— ื‘ื—ื“ืจ 3
ืœืขื‘ื•ืจ ืœื—ื“ืจ 6,
01:42
and so on.
41
102833
1272
ื•ื›ืš ื”ืœืื”.
01:44
Each current guest moves from room number "n"
42
104129
3184
ื›ืœ ืื•ืจื— ื–ื– ืขื›ืฉื™ื• ืžื—ื“ืจ ืžืกืคืจ "n"
01:47
to room number "2n" --
43
107337
1692
ืœื—ื“ืจ ืžืกืคืจ "2n",
01:50
filling up only the infinite even-numbered rooms.
44
110807
3253
ื•ืžืžืœืื™ื ืจืง ืืช ื”ื—ื“ืจื™ื ื”ื–ื•ื’ื™ื™ื ื”ืื™ื ืกื•ืคื™ื™ื.
01:54
By doing this, he has now emptied
45
114084
1845
ื‘ื›ืš, ื”ื•ื ืจื•ืงืŸ ืขื›ืฉื™ื•
01:55
all of the infinitely many odd-numbered rooms,
46
115953
2914
ืืช ืื™ืŸ ืกื•ืฃ ื”ื—ื“ืจื™ื ืขื ื”ืžืกืคืจื™ื ื”ืื™ ื–ื•ื’ื™ื™ื,
01:58
which are then taken by the people filing off the infinite bus.
47
118891
3615
ืฉืื– ื ืœืงื—ื™ื ืขืœ ื™ื“ื™ ื”ืื ืฉื™ื
ืฉืžืžืœืื™ื ืืช ื”ืื•ื˜ื•ื‘ื•ืก ื”ืื™ืŸ ืกื•ืคื™.
ื›ื•ืœื ืฉืžื—ื™ื ื•ื”ืขืกืงื™ื ื‘ืžืœื•ืŸ
02:03
Everyone's happy and the hotel's business is booming more than ever.
48
123242
3633
ืžืฆืœื™ื—ื™ื ื™ื•ืชืจ ืžืชืžื™ื“.
02:06
Well, actually, it is booming exactly the same amount as ever,
49
126899
3517
ื•ื‘ื›ืŸ, ืœืžืขืŸ ื”ืืžืช, ื”ื ืžืฆืœื™ื—ื™ื
ื‘ืื•ืชื• ืกื›ื•ื ื›ืžื• ืชืžื™ื“,
02:10
banking an infinite number of dollars a night.
50
130440
2483
ื•ืžื›ื ื™ืกื™ื ืžืกืคืจ ืื™ืŸ ืกื•ืคื™ ืฉืœ ื“ื•ืœืจื™ื ืœืœื™ืœื”.
ื”ืฉืžื•ืขื•ืช ืžืชืคืฉื˜ื•ืช ืœื’ื‘ื™ ื”ืžืœื•ืŸ ื”ืžื“ื”ื™ื ื”ื–ื”.
02:14
Word spreads about this incredible hotel.
51
134076
2279
02:16
People pour in from far and wide.
52
136379
2165
ืื ืฉื™ื ืžื’ื™ืขื™ื ืžื›ืœ ื”ืขื•ืœื.
02:18
One night, the unthinkable happens.
53
138568
2274
ืœื™ืœื” ืื—ื“, ื”ื‘ืœืชื™ ืืคืฉืจื™ ืงื•ืจื”.
02:20
The night manager looks outside
54
140866
2541
ืžื ื”ืœ ื”ืœื™ืœื” ืžื‘ื™ื˜ ื”ื—ื•ืฆื”
02:23
and sees an infinite line of infinitely large buses,
55
143431
4086
ื•ืจื•ืื” ืชื•ืจ ืื™ืŸ ืกื•ืคื™
ืฉืœ ืื™ื ืกื•ืฃ ืื•ื˜ื•ื‘ื•ืกื™ื ืื™ืŸ ืกื•ืคื™ื™ื,
02:27
each with a countably infinite number of passengers.
56
147541
2788
ื›ืœ ืื—ื“ ืขื ืžืกืคืจ ืื™ื ืกื•ืคื™ ืฉืœ ืื ืฉื™ื ืฉืื™ื ื• ื ื™ืชืŸ ืœืกืคื™ืจื”.
02:30
What can he do?
57
150353
1033
ืžื” ื”ื•ื ื™ื›ื•ืœ ืœืขืฉื•ืช?
02:31
If he cannot find rooms for them, the hotel will lose out
58
151410
2797
ืื ื”ื•ื ืœื ื™ื•ื›ืœ ืœืžืฆื•ื ื—ื“ืจื™ื ื‘ืฉื‘ื™ืœื,
ื”ืžืœื•ืŸ ื™ืคืกื™ื“
02:34
on an infinite amount of money,
59
154231
1727
ื›ืžื•ืช ืื™ืŸ ืกื•ืคื™ืช ืฉืœ ื›ืกืฃ,
02:35
and he will surely lose his job.
60
155982
1973
ื•ื”ื•ื ื‘ื•ื•ื“ืื™ ื™ืื‘ื“ ืืช ืขื‘ื•ื“ืชื•.
02:37
Luckily, he remembers that around the year 300 B.C.E.,
61
157979
3811
ืœืžืจื‘ื” ื”ืžื–ืœ, ื”ื•ื ื–ื•ื›ืจ
ืฉื‘ืกื‘ื™ื‘ื•ืช ื”ืฉื ื” 300 ืœืคื ื™ ื”ืกืคื™ืจื”,
02:41
Euclid proved that there is an infinite quantity
62
161814
2912
ืื•ืงืœื™ื“ืก ื”ื•ื›ื™ื— ืฉื™ืฉ ื›ืžื•ืช ืื™ื ืกื•ืคื™ืช
02:44
of prime numbers.
63
164750
1884
ืฉืœ ืžืกืคืจื™ื ืจืืฉื•ื ื™ื™ื.
02:47
So, to accomplish this seemingly impossible task
64
167372
2288
ืื–, ื›ื“ื™ ืœื”ืฉื™ื’ ืืช ื”ืžื˜ืจื” ืฉื ืจืื™ืช ื‘ืœืชื™ ืืคืฉืจื™ืช
02:49
of finding infinite beds for infinite buses
65
169684
2601
ืฉืœ ืœืžืฆื•ื ืื™ืŸ ืกื•ืฃ ืžื™ื˜ื•ืช
ืœืื™ืŸ ืกื•ืฃ ืื•ื˜ื•ื‘ื•ืกื™ื
02:52
of infinite weary travelers,
66
172309
1982
ืฉืœ ืื™ืŸ ืกื•ืฃ ื ื•ืกืขื™ื ืขื™ื™ืคื™ื,
02:54
the night manager assigns every current guest
67
174315
2867
ืžื ื”ืœ ื”ืœื™ืœื” ื ื•ืชืŸ ืœื›ืœ ืื—ื“ ืžื”ืื•ืจื—ื™ื ื”ื ื•ื›ื—ื™ื™ื
ืืช ื”ืžืกืคืจ ื”ืจืืฉื•ื ื™ ื”ืจืืฉื•ืŸ, 2,
02:57
to the first prime number, 2,
68
177206
1836
02:59
raised to the power of their current room number.
69
179066
2801
ื‘ื—ื–ืงืช ื”ื—ื“ืจ ื”ื ื•ื›ื—ื™ ืฉืœื”ื.
03:01
So, the current occupant of room number 7
70
181891
2644
ืื–, ื”ืื•ืจื— ื”ื ื•ื›ื—ื™ ืฉืœ ื—ื“ืจ 7
03:04
goes to room number 2^7,
71
184559
2982
ืขื•ื‘ืจ ืœื—ื“ืจ 7^2,
03:07
which is room 128.
72
187565
1696
ืฉื”ื•ื ื—ื“ืจ 128.
ืžื ื”ืœ ื”ืœื™ืœื” ืœื•ืงื— ืื– ืืช ื”ืื ืฉื™ื
03:10
The night manager then takes the people on the first of the infinite buses
73
190236
3521
ื‘ืื•ื˜ื•ื‘ื•ืก ื”ืื™ืŸ ืกื•ืคื™ ื”ืจืืฉื•ืŸ
03:13
and assigns them to the room number
74
193781
2025
ื•ืžืงืฆื” ืœื”ื ืืช ืžืกืคืจ ื”ื—ื“ืจ
03:15
of the next prime, 3,
75
195830
2461
ืฉืœ ื”ืžืกืคืจ ื”ืจืืฉื•ื ื™ ื”ืฉื ื™, 3,
03:18
raised to the power of their seat number on the bus.
76
198315
3413
ื‘ื—ื–ืงืช ืžืกืคืจ ื”ืžื•ืฉื‘ ืฉืœื”ื ื‘ืื•ื˜ื•ื‘ื•ืก.
03:21
So, the person in seat number 7 on the first bus
77
201752
3507
ืื–, ื”ืื“ื ื‘ืžื•ืฉื‘ ืžืกืคืจ 7 ื‘ืื•ื˜ื•ื‘ื•ืก ื”ืจืืฉื•ืŸ
03:25
goes to room number 3^7
78
205283
3077
ื”ื•ืœืš ืœื—ื“ืจ 7^3
03:28
or room number 2,187.
79
208384
3226
ืฉื”ื•ื ื—ื“ืจ 2,187.
03:31
This continues for all of the first bus.
80
211634
2435
ื–ื” ืžืžืฉื™ืš ืœื›ืœ ื”ืื•ื˜ื•ื‘ื•ืก ื”ืจืืฉื•ืŸ.
03:34
The passengers on the second bus
81
214093
1648
ื”ื ื•ืกืขื™ื ืฉืœ ื”ืื•ื˜ื•ื‘ื•ืก ื”ืฉื ื™
03:35
are assigned powers of the next prime, 5.
82
215765
3645
ืžืงื‘ืœื™ื ื—ื–ืงื•ืช ืฉืœ ื”ืžืกืคืจ ื”ืจืืฉื•ื ื™ ื”ื‘ื, 5.
03:39
The following bus, powers of 7.
83
219434
2059
ื”ืื•ื˜ื•ื‘ื•ืก ื”ื‘ื, ืืช ื”ื—ื–ืงื•ืช ืฉืœ 7.
03:41
Each bus follows:
84
221517
1404
ื›ืœ ืื•ื˜ื•ื‘ื•ืก ืœืื—ืจ ืžื›ืŸ:
03:42
powers of 11, powers of 13,
85
222945
1801
ื—ื–ืงื•ืช ืฉืœ 11,
ื—ื–ืงื•ืช ืฉืœ 13,
03:44
powers of 17, etc.
86
224770
2029
ื—ื–ืงื•ืช ืฉืœ 17, ื•ื›ื•'.
03:47
Since each of these numbers
87
227370
1359
ืžืื—ืจ ื•ืœื›ืœ ืื—ื“ ืžื”ืžืกืคืจื™ื ื”ืืœื”
03:48
only has 1 and the natural number powers
88
228753
2215
ื™ืฉ ืจืง ืืช 1 ื•ื—ื–ืงื•ืช ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื
03:50
of their prime number base as factors,
89
230992
2221
ืฉืœ ื‘ืกื™ืกื™ ื”ืžืกืคืจื™ื ื”ืจืืฉื•ื ื™ื ืฉืœื”ื ื›ื—ื–ืงื•ืช,
03:53
there are no overlapping room numbers.
90
233237
2149
ืื™ืŸ ื—ื“ืจื™ื ื—ื•ืคืคื™ื.
03:55
All the buses' passengers fan out into rooms
91
235410
2929
ื›ืœ ื ื•ืกืขื™ ื”ืื•ื˜ื•ื‘ื•ืกื™ื ืžืชืคื–ืจื™ื ืœื—ื“ืจื™ื
03:58
using unique room-assignment schemes
92
238363
2483
ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ืกื›ืžืช ื”ืฉืžืช ื—ื“ืจื™ื
04:00
based on unique prime numbers.
93
240870
2616
ืฉืžื‘ื•ืกืกืช ืขืœ ืžืกืคืจื™ื ืจืืฉื•ื ื™ื™ื.
04:03
In this way, the night manager can accommodate
94
243510
2191
ื‘ื“ืจืš ื–ื•, ืžื ื”ืœ ื”ืœื™ืœื” ื™ื›ื•ืœ ืœืืจื—
04:05
every passenger on every bus.
95
245725
2121
ื›ืœ ื ื•ืกืข ืขืœ ื›ืœ ืื•ื˜ื•ื‘ื•ืก.
04:07
Although, there will be many rooms that go unfilled,
96
247870
3194
ืœืžืจื•ืช ืฉื™ื”ื™ื• ื”ืจื‘ื” ื—ื“ืจื™ื ืจื™ืงื™ื,
ื›ืžื• ื—ื“ืจ 6
04:11
like room 6,
97
251088
1268
ืžืื—ืจ ื• 6 ื”ื•ื ืœื ื—ื–ืงื” ืฉืœ ืืฃ ืžืกืคืจ ืจืืฉื•ื ื™.
04:12
since 6 is not a power of any prime number.
98
252380
2715
04:15
Luckily, his bosses weren't very good in math,
99
255119
2393
ืœืžืจื‘ื” ื”ืžื–ืœ, ื”ื‘ื•ืกื™ื ืฉืœื• ืœื ื˜ื•ื‘ื™ื ื‘ืžืชืžื˜ื™ืงื”,
04:17
so his job is safe.
100
257536
1339
ืื– ื”ืขื‘ื•ื“ื” ืฉืœื• ื‘ื˜ื•ื—ื”.
04:19
The night manager's strategies are only possible
101
259507
2500
ืืกื˜ืจื˜ื’ื™ื•ืช ืžื ื”ืœ ื”ืœื™ืœื” ืืคืฉืจื™ื•ืช
04:22
because while the Infinite Hotel is certainly a logistical nightmare,
102
262031
4593
ืจืง ื‘ื’ืœืœ ืฉื‘ืขื•ื“ ื”ืžืœื•ืŸ ื”ืื™ืŸ ืกื•ืคื™
ื”ื•ื ื‘ื”ื—ืœื˜ ืกื™ื•ื˜ ืœื•ื’ื™ืกื˜ื™,
04:26
it only deals with the lowest level of infinity,
103
266648
3309
ื”ื•ื ืจืง ืžืชืขืกืง ืขื ื”ืจื‘ื“ื™ื ื”ื ืžื•ื›ื™ื ืฉืœ ื”ืื™ื ืกื•ืฃ,
04:29
mainly, the countable infinity of the natural numbers,
104
269981
3532
ื‘ืขื™ืงืจ, ื”ืื™ืŸ ืกื•ืฃ ื‘ืจ ื”ืกืคื™ืจื”
ืฉืœ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื,
04:33
1, 2, 3, 4, and so on.
105
273537
3057
1,2,3,4, ื•ื›ืš ื”ืœืื”.
04:36
Georg Cantor called this level of infinity aleph-zero.
106
276618
3895
ื’ืื•ืจื’ ืงืื ื˜ื•ืจ ืงืจืื” ืœืจืžื” ื”ื–ื• ืฉืœ ืื™ื ืกื•ืฃ ืืœืฃ-ืืคืก.
04:40
We use natural numbers for the room numbers
107
280945
2097
ืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘ืžืกืคืจื™ื ื”ืจืืฉื•ื ื™ื™ื ืœืžืกืคืจื™ ื”ื—ื“ืจื™ื
ื›ืžื• ื’ื ืœืžืกืคืจื™ ื”ืžื•ืฉื‘ื™ื ื‘ืื•ื˜ื•ื‘ื•ืกื™ื.
04:43
as well as the seat numbers on the buses.
108
283066
2122
04:45
If we were dealing with higher orders of infinity,
109
285913
2339
ืื ื”ื™ื™ื ื• ืžืชืขืกืงื™ื ืขื ืจืžื•ืช ื’ื‘ื•ื”ื•ืช ื™ื•ืชืจ ืฉืœ ืื™ื ืกื•ืฃ,
04:48
such as that of the real numbers,
110
288276
1572
ื›ืžื• ื–ื• ืฉืœ ืžืกืคืจื™ื ืืžื™ืชื™ื™ื,
04:49
these structured strategies would no longer be possible
111
289872
2972
ื”ืืกื˜ืจื˜ื’ื™ื•ืช ื”ืžื•ื‘ื ื•ืช ื”ืืœื•
ืœื ื”ื™ื• ืืคืฉืจื™ื•ืช ื™ื•ืชืจ
04:52
as we have no way to systematically include every number.
112
292868
3537
ืžืื—ืจ ื•ืื™ืŸ ืœื ื• ื“ืจืš
ืœื›ืœื•ืœ ืกื™ืกื˜ืžื˜ื™ืช ื›ืœ ืžืกืคืจ.
ืœืžืœื•ืŸ ื”ืžืกืคืจื™ื ื”ืืžื™ืชื™ื™ื ื”ืื™ืŸ ืกื•ืคื™ ื™ืฉ
04:57
The Real Number Infinite Hotel
113
297002
1801
04:58
has negative number rooms in the basement,
114
298827
2078
ืžืกืคืจื™ ื—ื“ืจื™ื ืฉืœื™ืœื™ื™ื ื‘ืžืจืชืฃ,
05:00
fractional rooms,
115
300929
1435
ื—ื“ืจื™ื ื—ืœืงื™ื™ื,
05:02
so the guy in room 1/2 always suspects
116
302388
2096
ืื– ื”ืื“ื ื‘ื—ื“ืจ 1/2 ืชืžื™ื“ ื—ื•ืฉื“
05:04
he has less room than the guy in room 1.
117
304508
2673
ืฉื™ืฉ ืœื• ืคื—ื•ืช ืžืงื•ื ืžื”ืื“ื ื‘ื—ื“ืจ 1.
05:07
Square root rooms, like room radical 2,
118
307205
3103
ื—ื“ืจื™ื ืฉื•ืจืฉื™ื ืžืจื•ื‘ืขื™ื, ื›ืžื• ื—ื“ืจ ืฉื•ืจืฉ 2
05:10
and room pi,
119
310332
1106
ื•ื—ื“ืจ ืคื™ื™,
05:11
where the guests expect free dessert.
120
311462
2863
ืฉื ื”ืื•ืจื—ื™ื ืžืฆืคื™ื ืœืงื™ื ื•ื—ื™ื ื—ื™ื ื.
05:14
What self-respecting night manager would ever want to work there
121
314349
3025
ืื™ื–ื” ืžื ื”ืœ ืœื™ืœื” ืฉืžื›ื‘ื“ ืืช ืขืฆืžื•
ืื™ ืคืขื ื™ืจืฆื” ืœืขื‘ื•ื“ ืฉื
05:17
even for an infinite salary?
122
317398
1607
ืืคื™ืœื• ืขื‘ื•ืจ ืžืฉื›ื•ืจืช ืื™ืŸ ืกื•ืคื™ืช?
05:19
But over at Hilbert's Infinite Hotel,
123
319029
1889
ืื‘ืœ ื‘ืžืœื•ืŸ ื”ืื™ืŸ ืกื•ืคื™ ืฉืœ ื”ื™ืœื‘ืจื˜,
05:20
where there's never any vacancy
124
320942
1478
ืฉื ืœืขื•ืœื ืื™ืŸ ืžืงื•ื ืคื ื•ื™
05:22
and always room for more,
125
322444
1560
ื•ืชืžื™ื“ ื™ืฉ ืžืงื•ื ืœื™ื•ืชืจ,
ื”ืžืงืจื™ื ืฉืขื•ืžื“ื™ื ืœืคื ื™ ืžื ื”ืœ ื”ืœื™ืœื”
05:24
the scenarios faced by the ever-diligent
126
324028
2898
05:26
and maybe too hospitable night manager
127
326950
1810
ื”ืชืžื™ื“ ืžื•ื›ืŸ ื•ืื•ืœื™ ืžืกื‘ื™ืจ ืคื ื™ื ืžื“ื™
05:28
serve to remind us of just how hard it is
128
328784
2706
ื ืžืฆืื™ื ื›ื“ื™ ืœื”ื–ื›ื™ืจ ืœื ื•
ื›ืžื” ืงืฉื” ื–ื”
05:31
for our relatively finite minds
129
331514
2391
ืœืžื•ื—ื•ืช ื”ื“ื™ ืกื•ืคื™ื™ื ืฉืœื ื•
05:33
to grasp a concept as large as infinity.
130
333929
2838
ื›ื“ื™ ืœื”ื‘ื™ืŸ ืจืขื™ื•ืŸ ื’ื“ื•ืœ ื›ืžื• ื”ืื™ืŸ ืกื•ืฃ.
05:37
Maybe you can help tackle these problems
131
337132
1951
ืื•ืœื™ ืืชื ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื˜ืคืœ ื‘ื‘ืขื™ื•ืช ื”ืืœื•
ืื—ืจื™ ืฉื™ื ื” ื˜ื•ื‘ื”.
05:39
after a good night's sleep.
132
339107
1296
05:40
But honestly, we might need you
133
340427
1849
ืื‘ืœ ื‘ื›ื ื•ืช, ืื•ืœื™ ื ืฆื˜ืจืš ืืชื›ื
05:42
to change rooms at 2 a.m.
134
342300
2401
ืœื”ื—ืœื™ืฃ ื—ื“ืจื™ื ื‘ 2 ื‘ืœื™ืœื”.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7