How big is infinity? - Dennis Wildfogel

Koliko je velika beskonačnost?

3,555,760 views ・ 2012-08-06

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Jelena Jaranović Lektor: Tatjana Jevdjic
00:13
When I was in fourth grade, my teacher said to us one day:
0
13999
2723
Kada sam bio u 4. razredu, učitelj nam je rekao:
00:16
"There are as many even numbers as there are numbers."
1
16746
2529
"Parnih i celih brojeva ima podjednako mnogo."
00:19
"Really?", I thought.
2
19745
1353
"Zaista?", pomislio sam. Ali, i jednih i drugih ima beskrajno mnogo, pa je logično da ih ima isto.
00:21
Well, yeah, there are infinitely many of both,
3
21122
2336
00:23
so I suppose there are the same number of them.
4
23482
2396
00:25
But even numbers are only part of the whole numbers,
5
25902
3031
Ali, sa druge strane, parni brojevi su samo deo celih brojeva, ostaju neparni brojevi,
00:28
all the odd numbers are left over,
6
28957
1627
00:30
so there's got to be more whole numbers than even numbers, right?
7
30608
3049
tako da mora da bude više celih nego parnih brojeva, zar ne?
00:33
To see what my teacher was getting at,
8
33681
1848
Da bismo razumeli šta je moj učitelj mislio, hajde prvo da razmislimo
00:35
let's first think about what it means for two sets to be the same size.
9
35553
3508
šta znači imati dva jednaka skupa.
Šta mislim kada kažem da na levoj i desnoj šaci imam isti broj prstiju?
00:39
What do I mean when I say I have the same number of fingers
10
39085
2800
00:41
on my right hand as I do on left hand?
11
41909
2448
00:44
Of course, I have five fingers on each, but it's actually simpler than that.
12
44381
3634
Naravno, imam po 5 prstiju na svakoj, ali to je zapravo još jednostavnije.
Ne moram da brojim, dovoljno je da vidim da svaki prst sa jedne ruke ima svoj par na drugoj.
00:48
I don't have to count, I only need to see that I can match them up, one to one.
13
48039
4451
00:52
In fact, we think that some ancient people
14
52514
2106
Zapravo, verujemo da su neki stari narodi čiji jezici nisu imali reči za brojeve veće od 3
00:54
who spoke languages that didn't have words for numbers greater than three
15
54644
3443
koristili ovu vrstu uparivanja. Recimo, ako pustite ovce iz obora na ispašu,
00:58
used this sort of magic.
16
58111
1372
00:59
For instance, if you let your sheep out of a pen to graze,
17
59507
2726
01:02
you can keep track of how many went out by setting aside a stone for each one,
18
62257
3681
možete pratiti koliko ih je otišlo tako što ćete odvojiti po kamenčić za svaku,
01:05
and putting those stones back one by one when the sheep return,
19
65962
3130
a onda vratiti te kamenčiće na mesto, jedan po jedan, kako se ovce vraćaju.
01:09
so you know if any are missing without really counting.
20
69116
2793
Na taj način, znate ukoliko neka nedostaje i bez pravog brojanja.
01:11
As another example of matching being more fundamental than counting,
21
71933
3239
Kao još jedan primer da je uparivanje mnogo jednostavnije od brojanja je
01:15
if I'm speaking to a packed auditorium,
22
75196
2143
da ako govorim u prepunoj prostoriji, a sva mesta su popunjena i niko ne stoji,
01:17
where every seat is taken and no one is standing,
23
77363
2304
01:19
I know that there are the same number of chairs as people in the audience,
24
79691
3530
znam da je isti broj stolica i prisutnih ljudi
01:23
even though I don't know how many there are of either.
25
83245
2526
iako ne znam koliko je tačno jednih ili drugih.
01:25
So, what we really mean when we say that two sets are the same size
26
85795
3143
Dakle, šta u stvari mislimo kada kažemo da su dva skupa jednaka jeste
01:28
is that the elements in those sets
27
88962
1728
da svi elementi oba skupa mogu biti upareni, jedan prema jedan, na neki način.
01:30
can be matched up one by one in some way.
28
90714
2229
01:32
My fourth grade teacher showed us
29
92967
1667
Dakle, moj učitelj je ispisao cele brojeve u jednom redu i ispod svakog je dopisao duplo veći broj.
01:34
the whole numbers laid out in a row, and below each we have its double.
30
94658
3341
Kao što vidite, donji red sadrži sve parne brojeve i imamo poklapanje "1-1".
01:38
As you can see, the bottom row contains all the even numbers,
31
98023
2869
01:40
and we have a one-to-one match.
32
100916
1541
01:42
That is, there are as many even numbers as there are numbers.
33
102481
2905
Ovo pokazuje da postoji isti broj celih i parnih brojeva.
01:45
But what still bothers us is our distress
34
105410
2290
Ali, još uvek nam je smetala činjenica da su parni brojevi samo deo skupa celih brojeva.
01:47
over the fact that even numbers seem to be only part of the whole numbers.
35
107724
3479
Ali, da li vas ovo ubeđuje da na desnoj ruci nemam isti broj prstiju kao na levoj?
01:51
But does this convince you
36
111227
1454
01:52
that I don't have the same number of fingers
37
112705
2175
01:54
on my right hand as I do on my left?
38
114904
1726
01:56
Of course not.
39
116654
1015
Naravno da ne. Nebitno je ako pokušamo da uparimo elemente na neki način i to ne uspe,
01:57
It doesn't matter if you try to match
40
117693
1843
01:59
the elements in some way and it doesn't work,
41
119560
2169
to nas ne ubeđuje ni u šta.
02:01
that doesn't convince us of anything.
42
121753
1762
Ali ako nađemo makar jedan način da uparimo elemente dva skupa,
02:03
If you can find one way
43
123539
1191
02:04
in which the elements of two sets do match up,
44
124754
2224
onda kažemo da ti skupovi imaju isti broj elemenata.
02:07
then we say those two sets have the same number of elements.
45
127002
2893
02:10
Can you make a list of all the fractions?
46
130472
2015
Možete li da napravite spisak svih razlomaka? Teško, ima ih previše!
02:12
This might be hard, there are a lot of fractions!
47
132511
2659
Dodatno, nije očigledno šta ide prvo i kako biti siguran da je sve na spisku.
02:15
And it's not obvious what to put first,
48
135194
1877
02:17
or how to be sure all of them are on the list.
49
137095
2143
Ipak, postoji jako dobar način na koji možemo napraviti spisak svih razlomaka.
02:19
Nevertheless, there is a very clever way
50
139262
2656
02:21
that we can make a list of all the fractions.
51
141942
2173
Georg Kentor je bio prvi koji je ovo uradio, krajem 19. veka.
02:24
This was first done by Georg Cantor, in the late eighteen hundreds.
52
144139
3846
Prvo, napravimo tabelu svih razlomaka. Svi su tu. Na primer, možemo naći 117/243
02:28
First, we put all the fractions into a grid.
53
148009
3008
02:31
They're all there.
54
151041
1090
02:32
For instance, you can find, say, 117/243,
55
152155
3757
02:35
in the 117th row and 243rd column.
56
155936
3060
u 117. redu i 243. koloni.
02:39
Now we make a list out of this
57
159020
1801
Zatim pravimo spisak počinjući iz gornjeg levog ugla i idemo napred i nazad dijagonalno,
02:40
by starting at the upper left and sweeping back and forth diagonally,
58
160845
3400
02:44
skipping over any fraction, like 2/2,
59
164269
2327
preskačući sve razlomke poput 2/2, jer oni predstavljaju isti broj koji smo već zapisali.
02:46
that represents the same number as one the we've already picked.
60
166620
3039
02:49
We get a list of all the fractions,
61
169683
1878
Tako dobijemo spisak svih razlomaka, što znači da smo napravili "1-1" povezivanje
02:51
which means we've created a one-to-one match
62
171585
2113
02:53
between the whole numbers and the fractions,
63
173722
2078
između celih brojeva i razlomaka, iako smo na početku mislili da razlomaka ima više.
02:55
despite the fact that we thought maybe there ought to be more fractions.
64
175818
3381
Ok, sada postaje stvarno zanimljivo.
02:59
OK, here's where it gets really interesting.
65
179223
2107
Možda znate da nisu svi realni brojevi - oni koji se nalaze na brojevnoj pravoj - razlomci.
03:01
You may know that not all real numbers
66
181354
1965
03:03
-- that is, not all the numbers on a number line -- are fractions.
67
183343
3148
03:06
The square root of two and pi, for instance.
68
186515
2147
Kvadratni koren iz 2 i Pi, na primer.
03:08
Any number like this is called irrational.
69
188686
2427
Svaki broj poput ovih zove se iracionalan. Ne jer je lud ili nešto tako, već zato što su razlomci
03:11
Not because it's crazy, or anything,
70
191137
1927
03:13
but because the fractions are ratios of whole numbers,
71
193088
3014
delovi celih brojeva i zato su nazvani "racionalni"; što znači da je ostatak ne-racionalan,
03:16
and so are called rationals;
72
196126
1467
03:17
meaning the rest are non-rational, that is, irrational.
73
197617
3211
odnosno, "iracionalan".
03:20
Irrationals are represented by infinite, non-repeating decimals.
74
200852
3842
Iracionalni brojevi imaju beskonačne, neponavljajuće decimale.
03:24
So, can we make a one-to-one match
75
204718
2135
Pitanje je možemo li napraviti "1-1" poklapanje između svih celih brojeva i skupa svih decimala,
03:26
between the whole numbers and the set of all the decimals,
76
206877
2729
03:29
both the rationals and the irrationals?
77
209630
1888
i za racionalne i za iracionalne brojeve? Odnosno, možemo li napraviti spisak svih decimala?
03:31
That is, can we make a list of all the decimal numbers?
78
211542
2572
Kendor je pokazao da ne možemo.
03:34
Cantor showed that you can't.
79
214138
2050
03:36
Not merely that we don't know how, but that it can't be done.
80
216212
3297
Ne samo da ne znamo kako, već da to ne može biti urađeno.
03:40
Look, suppose you claim you have made a list of all the decimals.
81
220045
3855
Pogledajte, pretpostavimo da tvrdite da ste napravili spisak svih decimala.
03:43
I'm going to show you that you didn't succeed,
82
223924
2218
Pokazaću vam da niste uspeli
pravljenjem decimale koja nije na vašoj listi.
03:46
by producing a decimal that is not on your list.
83
226166
2286
03:48
I'll construct my decimal one place at a time.
84
228476
2319
Postepeno ću dodavati po jedan broj svojoj decimali.
03:50
For the first decimal place of my number,
85
230819
2325
Za prvo mesto u mojoj decimali pogledaću prvi broj u vašoj decimali.
03:53
I'll look at the first decimal place of your first number.
86
233168
2762
03:55
If it's a one, I'll make mine a two;
87
235954
2454
Ako je to 1, ja ću u mojoj zapisati 2; u suprotnom, zapisaću 1.
03:58
otherwise I'll make mine a one.
88
238432
1956
04:00
For the second place of my number,
89
240412
2108
Za drugo mesto mog broja, pogledaću drugo mesto vašeg drugog broja.
04:02
I'll look at the second place of your second number.
90
242544
2477
Ponovo, ako je vaš 1, zapisaću 2; u suprotnom, zapisaću 1.
04:05
Again, if yours is a one, I'll make mine a two,
91
245045
2515
04:07
and otherwise I'll make mine a one.
92
247584
2310
04:09
See how this is going?
93
249918
1303
Vidite kako ide? Broj koji stvaram ne može biti na vašoj listi.
04:11
The decimal I've produced can't be on your list.
94
251245
2975
Zašto? Hajde da pogledamo da li je 143. broj isti? Ne, zato što je 143. broj u mojoj decimali
04:14
Why? Could it be, say, your 143rd number?
95
254244
3287
04:17
No, because the 143rd place of my decimal
96
257555
3158
04:20
is different from the 143rd place of your 143rd number.
97
260737
3637
različit od 143. mesta u vašem 143. broju. Tako sam napravio svoj broj.
04:24
I made it that way.
98
264398
1567
04:25
Your list is incomplete.
99
265989
1477
Dakle, vaša lista nije kompletna jer ne sadrži moj decimalni broj.
04:27
It doesn't contain my decimal number.
100
267490
1994
04:29
And, no matter what list you give me, I can do the same thing,
101
269508
2905
I, bez obzira kakvu listu brojeva mi date, mogu uraditi isto i stvoriti decimalu koje nema kod vas.
04:32
and produce a decimal that's not on that list.
102
272437
2213
04:34
So we're faced with this astounding conclusion:
103
274674
2521
Dakle, suočavamo se sa zapanjujućim zaključkom:
04:37
The decimal numbers cannot be put on a list.
104
277219
2865
ne možemo napraviti spisak svih decimalnih brojeva.
Oni predstavljaju veću beskonačnost od beskonačnosti celih brojeva.
04:40
They represent a bigger infinity that the infinity of whole numbers.
105
280108
3918
04:44
So, even though we're familiar with only a few irrationals,
106
284050
2762
Iako smo upoznati sa nekim iracionalnim brojevima, poput kvadratnog korena iz 2 i Pi,
04:46
like square root of two and pi,
107
286836
1781
04:48
the infinity of irrationals
108
288641
1493
beskonačnost iracionalnih brojeva zapravo je veća i od beskonačnosti razlomaka.
04:50
is actually greater than the infinity of fractions.
109
290158
2436
04:52
Someone once said that the rationals
110
292618
1769
Neko je jednom rekao da su racionalni brojevi - razlomci - poput zvezda na noćnom nebu;
04:54
-- the fractions -- are like the stars in the night sky.
111
294411
2924
04:57
The irrationals are like the blackness.
112
297998
3121
dok su iracionalni tama između njih.
05:01
Cantor also showed that, for any infinite set,
113
301143
2521
Kentor je još pokazao da, ako za bilo koji beskonačni skup
05:03
forming a new set made of all the subsets of the original set
114
303688
3406
napravimo novi skup, sačinjen od svih podskupova polaznog skupa,
05:07
represents a bigger infinity than that original set.
115
307118
3268
to će biti veća beskonačnost od one koju ima polazni skup. Ovo znači da kada imamo jednu beskonačnost,
05:10
This means that, once you have one infinity,
116
310410
2049
05:12
you can always make a bigger one
117
312483
1558
uvek možemo da napravimo veću, formirajući skup sačinjen od svih podskupova prvog skupa.
05:14
by making the set of all subsets of that first set.
118
314065
2901
05:16
And then an even bigger one
119
316990
1416
A onda čak i veću praveći skup svih podskupova drugog skupa. Itd.
05:18
by making the set of all the subsets of that one.
120
318430
2309
05:20
And so on.
121
320763
1226
Dakle, postoji beskonačan broj beskonačnosti različitih veličina.
05:22
And so, there are an infinite number of infinities of different sizes.
122
322013
3588
05:25
If these ideas make you uncomfortable, you are not alone.
123
325625
3465
Ako se zbog ove pomisli osećate nelagodno, niste jedini. Neki od najvećih matematičara, Kentorovih savremenika,
05:29
Some of the greatest mathematicians of Cantor's day
124
329114
2391
05:31
were very upset with this stuff.
125
331529
1524
bili su veoma zaokupljeni ovim problemima. Pokušali su da ove različite beskonačnosti učine nevažnim,
05:33
They tried to make these different infinities irrelevant,
126
333077
2620
05:35
to make mathematics work without them somehow.
127
335721
2292
da omoguće matematici da nekako funkcioniše i bez njih.
Kentor je bio čak i lično omalovažavan, što je uticalo na tešku depresiju kroz koju je prošao.
05:38
Cantor was even vilified personally,
128
338037
2033
05:40
and it got so bad for him that he suffered severe depression,
129
340094
2905
Proveo je drugu polovinu života u čestim posetama psihijatrijskim ustanovama.
05:43
and spent the last half of his life in and out of mental institutions.
130
343023
3286
Ali na kraju, njegove ideje su priznate. Danas ih smatraju temeljnim i veličanstvenim.
05:46
But eventually, his ideas won out.
131
346333
2329
05:48
Today, they're considered fundamental and magnificent.
132
348686
2958
05:51
All research mathematicians accept these ideas,
133
351668
2577
Svi matematičari koji se bave istraživanjem prihvataju su ove ideje,
05:54
every college math major learns them,
134
354269
1795
one se uče na svim matematičkim fakultetima i objasnio sam vam ih u nekoliko minuta.
05:56
and I've explained them to you in a few minutes.
135
356088
2239
05:58
Some day, perhaps, they'll be common knowledge.
136
358351
2493
Jednog dana će, verovatno, postati deo opšte kulture.
06:00
There's more.
137
360868
1174
Ali ima još. Upravo smo istakli da skup decimalnih, odnosno realnih brojeva,
06:02
We just pointed out that the set of decimal numbers
138
362066
2430
06:04
-- that is, the real numbers -- is a bigger infinity
139
364520
2450
06:06
than the set of whole numbers.
140
366994
1435
predstavlja veću beskonačnost od skupa celih brojeva. Kendor se pitao postoje li beskonačnosti
06:08
Cantor wondered whether there are infinities
141
368453
2057
različitih veličina između ovih dveju beskonačnosti. Verovao je da ne postoje, ali nije mogao to da dokaže.
06:10
of different sizes between these two infinities.
142
370534
2260
06:12
He didn't believe there were, but couldn't prove it.
143
372818
2497
Kendorova pretpostavka postala je poznata kao hipoteza kontinuuma.
06:15
Cantor's conjecture became known as the continuum hypothesis.
144
375339
2911
1900., veliki matematičar Dejvid Hilbert izdvojio je hipotezu kontinuuma
06:19
In 1900, the great mathematician David Hilbert
145
379402
2457
06:21
listed the continuum hypothesis
146
381883
1751
06:23
as the most important unsolved problem in mathematics.
147
383658
2759
kao najvažniji nerešeni problem u matematici.
06:26
The 20th century saw a resolution of this problem,
148
386441
2813
20. vek je doneo rešenje ovog problema, ali na potpuno neočekivan način
06:29
but in a completely unexpected, paradigm-shattering way.
149
389278
2958
koji je promenio ceo pristup problemu.
06:32
In the 1920s, Kurt Gödel showed
150
392942
1957
Tokom 1920-ih Kurt Godel je pokazao
06:34
that you can never prove that the continuum hypothesis is false.
151
394923
3000
da je nemoguće dokazati da je hipoteza kontnuuma pogrešna.
06:37
Then, in the 1960s, Paul J. Cohen showed
152
397947
3056
Zatim, tokom 1960-ih, Pol Dž. Košon je pokazao da je nemoguće dokazati
06:41
that you can never prove that the continuum hypothesis is true.
153
401027
3000
da je hipoteza kontinuuma tačna.
06:44
Taken together, these results mean
154
404051
2149
Sve skupa, ovo pokazuje da u matematici postoje pitanja na koja nema odgovora.
06:46
that there are unanswerable questions in mathematics.
155
406224
2524
06:48
A very stunning conclusion.
156
408772
1514
Veoma iznenađujući zaključak.
06:50
Mathematics is rightly considered the pinnacle of human reasoning,
157
410310
3125
Matematika se s pravom smatra vrhuncem ljudskog razmišljanja,
06:53
but we now know that even mathematics has its limitations.
158
413459
3109
ali danas nam je poznato da čak i matematika ima ograničenja.
Ipak, matematika nam pruža neke zaista neverovatne stvari o kojima možemo da razmišljamo.
06:57
Still, mathematics has some truly amazing things for us to think about.
159
417094
3715

Original video on YouTube.com
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7