How big is infinity? - Dennis Wildfogel

3,555,760 views ใƒป 2012-08-06

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Yifat Adler ืขืจื™ื›ื”: Ido Dekkers
00:13
When I was in fourth grade, my teacher said to us one day:
0
13999
2723
ื›ืฉื”ื™ื™ืชื™ ื‘ื›ื™ืชื” ื“', ื”ืžื•ืจื” ืืžืจ ืœื ื•:
00:16
"There are as many even numbers as there are numbers."
1
16746
2529
"ืžืกืคืจ ื”ืžืกืคืจื™ื ื”ื–ื•ื’ื™ื™ื ื–ื”ื” ืœืžืกืคืจ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื."
00:19
"Really?", I thought.
2
19745
1353
"ื‘ืืžืช?" ื—ืฉื‘ืชื™. ื•ื‘ื›ืŸ, ืฉื ื™ื”ื ืื™ื ืกื•ืคื™ื™ื, ืื– ืื ื™ ืžื ื™ื— ืฉืžืกืคืจื ื–ื”ื”.
00:21
Well, yeah, there are infinitely many of both,
3
21122
2336
00:23
so I suppose there are the same number of them.
4
23482
2396
00:25
But even numbers are only part of the whole numbers,
5
25902
3031
ืื‘ืœ ืžืฆื“ ืฉื ื™, ื”ืžืกืคืจื™ื ื”ื–ื•ื’ื™ื™ื ื”ื ืจืง ื—ืœืง ืžื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื. ื™ืฉ ื’ื ืžืกืคืจื™ื ืื™ ื–ื•ื’ื™ื™ื,
00:28
all the odd numbers are left over,
6
28957
1627
00:30
so there's got to be more whole numbers than even numbers, right?
7
30608
3049
ืื– ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื™ื•ืชืจ ืžืกืคืจื™ื ื˜ื‘ืขื™ื™ื. ืœื?
00:33
To see what my teacher was getting at,
8
33681
1848
ื›ื“ื™ ืœืจืื•ืช ืœืžื” ื”ืชื›ื•ื•ืŸ ื”ืžื•ืจื” ืฉืœื™, ื ื—ืฉื•ื‘ ืžื” ื”ืžืฉืžืขื•ืช ืฉืœ ืฉืชื™ ืงื‘ื•ืฆื•ืช ื‘ืื•ืชื• ื’ื•ื“ืœ.
00:35
let's first think about what it means for two sets to be the same size.
9
35553
3508
ื›ืฉืื ื™ ืื•ืžืจ "ื™ืฉ ืœื™ ืื•ืชื• ืžืกืคืจ ืืฆื‘ืขื•ืช ื‘ื™ื“ ื™ืžื™ืŸ ื•ื‘ื™ื“ ืฉืžืืœ", ืœืžื” ืื ื™ ืžืชื›ื•ื•ืŸ?
00:39
What do I mean when I say I have the same number of fingers
10
39085
2800
00:41
on my right hand as I do on left hand?
11
41909
2448
00:44
Of course, I have five fingers on each, but it's actually simpler than that.
12
44381
3634
ื›ืžื•ื‘ืŸ, ื™ืฉ ืœื™ 5 ืืฆื‘ืขื•ืช ื‘ื›ืœ ื™ื“, ืืš ื”ืขื ื™ื™ืŸ ืขื•ื“ ื™ื•ืชืจ ืคืฉื•ื˜.
ืื ื™ ืœื ืฆืจื™ืš ืœืกืคื•ืจ. ืื ื™ ืจืง ืฆืจื™ืš ืœื•ื•ื“ื ืฉืื ื™ ื™ื›ื•ืœ ืœื”ืชืื™ื ื‘ื™ื ื™ื”ืŸ, ืื—ืช ืœืื—ืช.
00:48
I don't have to count, I only need to see that I can match them up, one to one.
13
48039
4451
00:52
In fact, we think that some ancient people
14
52514
2106
ืœืžืขืฉื”, ืื ื—ื ื• ื—ื•ืฉื‘ื™ื ืฉื‘ืขืช ื”ืขืชื™ืงื” ื—ืœืง ืžื”ืฉืคื•ืช ืฉืœื ื›ืœืœื• ืžื™ืœื™ื
00:54
who spoke languages that didn't have words for numbers greater than three
15
54644
3443
ืขื‘ื•ืจ ืžืกืคืจื™ื ื’ื“ื•ืœื™ื ืž-3 ื”ืฉืชืžืฉื• ื‘ืงืกื ื”ื–ื”. ืœื“ื•ื’ืžื, ืื ื”ื•ืฆืืชื ื›ื‘ืฉื” ืžื”ื“ื™ืจ ืœืžืจืขื”
00:58
used this sort of magic.
16
58111
1372
00:59
For instance, if you let your sheep out of a pen to graze,
17
59507
2726
01:02
you can keep track of how many went out by setting aside a stone for each one,
18
62257
3681
ืชื•ื›ืœื• ืœืขืงื•ื‘ ืื—ืจ ืžืกืคืจ ื”ื›ื‘ืฉื™ื ืฉื™ืฆืื• ืื ืชื ื™ื—ื• ื‘ืฆื“ ืื‘ืŸ ืขื‘ื•ืจ ื›ืœ ื›ื‘ืฉื” ืฉื™ืฆืื”,
01:05
and putting those stones back one by one when the sheep return,
19
65962
3130
ื•ืื– ืชื—ื–ื™ืจื• ืื—ืช ืื—ืช ืืช ื”ืื‘ื ื™ื ื›ืฉื”ื›ื‘ืฉื™ื ื™ื—ื–ืจื• ืžื”ืžืจืขื”.
01:09
so you know if any are missing without really counting.
20
69116
2793
ื•ื›ืš ืชื“ืขื• ืื ื—ืกืจื” ื›ื‘ืฉื” ืœืœื ืฆื•ืจืš ื‘ืกืคื™ืจื”.
01:11
As another example of matching being more fundamental than counting,
21
71933
3239
ื“ื•ื’ืžื ื ื•ืกืคืช ืœื›ืš ืฉื”ืชืืžื” ื‘ืกื™ืกื™ืช ื™ื•ืชืจ ืžืกืคื™ืจื”,
01:15
if I'm speaking to a packed auditorium,
22
75196
2143
ืื ืื ื™ ืžืจืฆื” ืœืคื ื™ ืื•ืœื ืžืœื, ืฉื‘ื• ื›ืœ ื”ื›ืกืื•ืช ืชืคื•ืกื™ื, ื•ืืฃ ืื—ื“ ืœื ืขื•ืžื“,
01:17
where every seat is taken and no one is standing,
23
77363
2304
01:19
I know that there are the same number of chairs as people in the audience,
24
79691
3530
ืื ื™ ื™ื•ื“ืข ืฉืžืกืคืจ ื”ื›ืกืื•ืช ื–ื”ื” ืœืžืกืคืจ ื”ืื ืฉื™ื ื‘ืงื”ืœ,
01:23
even though I don't know how many there are of either.
25
83245
2526
ืœืžืจื•ืช ืฉืื ื™ ืœื ื™ื•ื“ืข ื›ืžื” ื›ืกืื•ืช ืื• ืื ืฉื™ื ื™ืฉื ื.
01:25
So, what we really mean when we say that two sets are the same size
26
85795
3143
ื•ื›ืš, ื›ืฉืื ื—ื ื• ืื•ืžืจื™ื ืฉืฉืชื™ ืงื‘ื•ืฆื•ืช ื”ืŸ ื‘ืื•ืชื• ื’ื•ื“ืœ, ืื ื—ื ื• ืžืชื›ื•ื•ื ื™ื
01:28
is that the elements in those sets
27
88962
1728
ืฉื™ืฉ ื“ืจืš ืœื‘ืฆืข ื”ืชืืžื” ื—ื“ ื—ื“ ืขืจื›ื™ืช ื‘ื™ืŸ ื”ืื™ื‘ืจื™ื ืฉืœ ืฉืชื™ ื”ืงื‘ื•ืฆื•ืช .
01:30
can be matched up one by one in some way.
28
90714
2229
01:32
My fourth grade teacher showed us
29
92967
1667
ื•ื›ืš ื”ืžื•ืจื” ื”ืจืื” ืœื ื• ืืช ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื ืขืจื•ื›ื™ื ื‘ืฉื•ืจื”, ื•ืžืชื—ืช ืœื›ืœ ืžืกืคืจ ื”ื•ื ื›ืชื‘ ืืช ื”ืžืกืคืจ ืžื•ื›ืคืœ ื‘-2.
01:34
the whole numbers laid out in a row, and below each we have its double.
30
94658
3341
ื”ืฉื•ืจื” ื”ืชื—ืชื•ื ื” ืžื›ื™ืœื” ืืช ื›ืœ ื”ืžืกืคืจื™ื ื”ื–ื•ื’ื™ื™ื, ื•ื™ืฉ ืœื ื• ื”ืชืืžื” ื—ื“ ื—ื“ ืขืจื›ื™ืช ื‘ื™ืŸ ื”ืฉื•ืจื•ืช.
01:38
As you can see, the bottom row contains all the even numbers,
31
98023
2869
01:40
and we have a one-to-one match.
32
100916
1541
01:42
That is, there are as many even numbers as there are numbers.
33
102481
2905
ื›ืœื•ืžืจ, ืžืกืคืจ ื”ืžืกืคืจื™ื ื”ื–ื•ื’ื™ื™ื ื–ื”ื” ืœืžืกืคืจ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื.
01:45
But what still bothers us is our distress
34
105410
2290
ืื‘ืœ ืื™ืš ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช? ื”ืžืกืคืจื™ื ื”ื–ื•ื’ื™ื™ื ื”ื ืงื‘ื•ืฆื” ื—ืœืงื™ืช ืฉืœ ืงื‘ื•ืฆืช ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื.
01:47
over the fact that even numbers seem to be only part of the whole numbers.
35
107724
3479
ืื‘ืœ ื”ืื ื–ื” ืžืฉื›ื ืข ืืชื›ื ืฉืžืกืคืจ ื”ืืฆื‘ืขื•ืช ื‘ื™ื“ื™ ื”ื™ืžื ื™ืช ืฉื•ื ื” ืžืžืกืคืจ ื”ืืฆื‘ืขื•ืช ื‘ื™ื“ื™ ื”ืฉืžืืœื™ืช?
01:51
But does this convince you
36
111227
1454
01:52
that I don't have the same number of fingers
37
112705
2175
01:54
on my right hand as I do on my left?
38
114904
1726
01:56
Of course not.
39
116654
1015
ื›ืžื•ื‘ืŸ ืฉืœื. ืื ื”ืชืืžื” ื‘ื“ืจืš ืžืกื•ื™ื™ืžืช ื ื›ืฉืœืช,
01:57
It doesn't matter if you try to match
40
117693
1843
01:59
the elements in some way and it doesn't work,
41
119560
2169
ื–ื” ืœื ืžื•ื›ื™ื— ืœื ื• ืฉื•ื ื“ื‘ืจ.
02:01
that doesn't convince us of anything.
42
121753
1762
ืื ืžื•ืฆืื™ื ื“ืจืš ืื—ืช ืฉื‘ื” ื™ืฉ ื”ืชืืžื” ื—ื“ ื—ื“ ืขืจื›ื™ืช ื‘ื™ืŸ ืื™ื‘ืจื™ ืฉืชื™ ื”ืงื‘ื•ืฆื•ืช
02:03
If you can find one way
43
123539
1191
02:04
in which the elements of two sets do match up,
44
124754
2224
ืื– ืื ื—ื ื• ืื•ืžืจื™ื ืฉืžืกืคืจ ื”ืื™ื‘ืจื™ื ื‘ืฉืชื™ ื”ืงื‘ื•ืฆื•ืช ื–ื”ื”.
02:07
then we say those two sets have the same number of elements.
45
127002
2893
02:10
Can you make a list of all the fractions?
46
130472
2015
ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืฉื‘ืจื™ื? ื–ืืช ืžืฉื™ืžื” ืงืฉื”, ื™ืฉ ื”ืžื•ืŸ ืฉื‘ืจื™ื!
02:12
This might be hard, there are a lot of fractions!
47
132511
2659
ื•ืœื ื‘ืจื•ืจ ืžื™ ืžื”ื ื™ื”ื™ื” ืจืืฉื•ืŸ, ืื• ืื™ืš ืžื•ื•ื“ืื™ื ืฉื›ืœ ื”ืฉื‘ืจื™ื ืžื•ืคื™ืขื™ื ื‘ืจืฉื™ืžื”.
02:15
And it's not obvious what to put first,
48
135194
1877
02:17
or how to be sure all of them are on the list.
49
137095
2143
ืขื ื–ืืช, ื™ืฉื ื” ื“ืจืš ืžืชื•ื—ื›ืžืช ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืฉื‘ืจื™ื.
02:19
Nevertheless, there is a very clever way
50
139262
2656
02:21
that we can make a list of all the fractions.
51
141942
2173
ื”ืจืืฉื•ืŸ ืฉื‘ื™ืฆืข ื–ืืช ื”ื™ื” ื’ืื•ืจื’ ืงื ื˜ื•ืจ, ื‘ืกื•ืฃ ื”ืžืื” ื”-19.
02:24
This was first done by Georg Cantor, in the late eighteen hundreds.
52
144139
3846
ืจืืฉื™ืช, ื ื›ื ื™ืก ืืช ื›ืœ ื”ืฉื‘ืจื™ื ืœื˜ื‘ืœื”. ื›ื•ืœื ื ืžืฆืื™ื ืฉื. ืœื“ื•ื’ืžื, ืชื•ื›ืœื• ืœืžืฆื•ื ืืช 117/243,
02:28
First, we put all the fractions into a grid.
53
148009
3008
02:31
They're all there.
54
151041
1090
02:32
For instance, you can find, say, 117/243,
55
152155
3757
02:35
in the 117th row and 243rd column.
56
155936
3060
ื‘ืžืฉื‘ืฆืช ืฉื‘ืฉื•ืจื” 117 ื•ืขืžื•ื“ื” 243.
02:39
Now we make a list out of this
57
159020
1801
ื›ืขืช ื ื”ืคื•ืš ืืช ื”ื˜ื‘ืœื” ืœืจืฉื™ืžื”. ื ืชื—ื™ืœ ื‘ืคื™ื ื” ื”ืฉืžืืœื™ืช ื”ืขืœื™ื•ื ื” ื•ื ืชืงื“ื ื”ืœื•ืš ื•ืฉื•ื‘ ื‘ืืœื›ืกื•ื ื™ื,
02:40
by starting at the upper left and sweeping back and forth diagonally,
58
160845
3400
02:44
skipping over any fraction, like 2/2,
59
164269
2327
ื•ื ื“ืœื’ ืขืœ ืฉื‘ืจื™ื, ื›ืžื• 2/2, ืฉืžื™ื™ืฆื’ื™ื ืžืกืคืจ ืฉื›ื‘ืจ ื‘ื—ืจื ื•.
02:46
that represents the same number as one the we've already picked.
60
166620
3039
02:49
We get a list of all the fractions,
61
169683
1878
ื•ื›ืš ืงื™ื‘ืœื ื• ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืฉื‘ืจื™ื. ื•ืžืฉืžืขื•ืช ื”ื“ื‘ืจ ื”ื™ื ืฉื™ืฆืจื ื• ื”ืชืืžื” ื—ื“ ื—ื“ ืขืจื›ื™ืช
02:51
which means we've created a one-to-one match
62
171585
2113
02:53
between the whole numbers and the fractions,
63
173722
2078
ื‘ื™ืŸ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื ื•ื”ืฉื‘ืจื™ื, ืœืžืจื•ืช ืฉื—ืฉื‘ื ื• ืฉืื•ืœื™ ืืžื•ืจื™ื ืœื”ื™ื•ืช ื™ื•ืชืจ ืฉื‘ืจื™ื.
02:55
despite the fact that we thought maybe there ought to be more fractions.
64
175818
3381
ืื•ืงื™, ื ืขื‘ื•ืจ ื›ืขืช ืœื—ืœืง ื”ืžืขื ื™ื™ืŸ ื‘ืืžืช.
02:59
OK, here's where it gets really interesting.
65
179223
2107
ื™ืชื›ืŸ ืฉื™ื“ื•ืข ืœื›ื ืฉืœื ื›ืœ ื”ืžืกืคืจื™ื ื”ืžืžืฉื™ื™ื, ื›ืœื•ืžืจ, ืœื ื›ืœ ื”ืžืกืคืจื™ื ืขืœ ืฆื™ืจ ื”ืžืกืคืจื™ื, ื”ื ืฉื‘ืจื™ื.
03:01
You may know that not all real numbers
66
181354
1965
03:03
-- that is, not all the numbers on a number line -- are fractions.
67
183343
3148
03:06
The square root of two and pi, for instance.
68
186515
2147
ืฉื•ืจืฉ ืจื™ื‘ื•ืขื™ ืฉืœ 2, ื•ื”ืžืกืคืจ ืคืื™, ื”ื ื“ื•ื’ืžืื•ืช ืœื›ืš.
03:08
Any number like this is called irrational.
69
188686
2427
ื”ืžืกืคืจื™ื ื”ืืœื• ื ืงืจืื™ื ืžืกืคืจื™ื ืื™ ืจืฆื™ื•ื ืœื™ื™ื. ืœื ื‘ื’ืœืœ ืฉื”ื ืžืฉื•ื’ืขื™ื ืืœื ืžื›ื™ื•ื•ืŸ ืฉื”ืฉื‘ืจื™ื
03:11
Not because it's crazy, or anything,
70
191137
1927
03:13
but because the fractions are ratios of whole numbers,
71
193088
3014
ื”ื ื™ื—ืก (ratio) ื‘ื™ืŸ ืžืกืคืจื™ื ื˜ื‘ืขื™ื™ื, ื•ืœื›ืŸ ื”ื ื ืงืจืื™ื ืžืกืคืจื™ื ืจืฆื™ื•ื ืœื™ื™ื. ื•ืฉืืจ ื”ืžืกืคืจื™ื ื”ื ืื™ ืจืฆื™ื•ื ืœื™ื™ื.
03:16
and so are called rationals;
72
196126
1467
03:17
meaning the rest are non-rational, that is, irrational.
73
197617
3211
03:20
Irrationals are represented by infinite, non-repeating decimals.
74
200852
3842
ื”ืžืกืคืจื™ื ื”ืื™ ืจืฆื™ื•ื ืœื™ื™ื ืžื™ื•ืฆื’ื™ื ืข"ื™ ืžืกืคืจื™ื ืขืฉืจื•ื ื™ื™ื ืื™ื ืกื•ืคื™ื™ื ืฉืื™ื ื ืžื—ื–ื•ืจื™ื™ื.
03:24
So, can we make a one-to-one match
75
204718
2135
ื”ืื ื ื•ื›ืœ ืœื‘ืฆืข ื”ืชืืžื” ื—ื“ ื—ื“ ืขืจื›ื™ืช ื‘ื™ืŸ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื ืœืงื‘ื•ืฆืช ื›ืœ ื”ืžืกืคืจื™ื ื”ืขืฉืจื•ื ื™ื™ื,
03:26
between the whole numbers and the set of all the decimals,
76
206877
2729
03:29
both the rationals and the irrationals?
77
209630
1888
ื”ืจืฆื™ื•ื ืœื™ื™ื ื•ื”ืื™ ืจืฆื™ื•ื ืœื™ื™ื? ื›ืœื•ืžืจ, ื”ืื ื ื•ื›ืœ ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืžืกืคืจื™ื ื”ืขืฉืจื•ื ื™ื™ื?
03:31
That is, can we make a list of all the decimal numbers?
78
211542
2572
ืงื ื˜ื•ืจ ื”ื•ื›ื™ื— ืฉืœื ื ื™ืชืŸ ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ื›ื–ื•, ืœื ืจืง ืฉืื ื—ื ื• ืœื ื™ื•ื“ืขื™ื ืื™ืš, ืืœื ืฉื–ื” ื‘ืœืชื™ ืืคืฉืจื™.
03:34
Cantor showed that you can't.
79
214138
2050
03:36
Not merely that we don't know how, but that it can't be done.
80
216212
3297
ื ื ื™ื— ืฉืืชื ื˜ื•ืขื ื™ื ืฉื”ืฆืœื—ืชื ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืžืกืคืจื™ื ื”ืขืฉืจื•ื ื™ื™ื. ืืจืื” ืœื›ื ืฉืœื ื”ืฆืœื—ืชื.
03:40
Look, suppose you claim you have made a list of all the decimals.
81
220045
3855
03:43
I'm going to show you that you didn't succeed,
82
223924
2218
03:46
by producing a decimal that is not on your list.
83
226166
2286
ืืฆื™ื’ ื‘ืคื ื™ื›ื ืžืกืคืจ ืขืฉืจื•ื ื™ ืฉืœื ื ืžืฆื ื‘ืจืฉื™ืžื” ืฉืœื›ื.
03:48
I'll construct my decimal one place at a time.
84
228476
2319
ืื ื™ ืื‘ื ื” ืืช ื”ืžืกืคืจ ื”ืขืฉืจื•ื ื™ ืฉืœื™ ืกืคืจื” ืื—ืจ ืกืคืจื”.
03:50
For the first decimal place of my number,
85
230819
2325
ืขื‘ื•ืจ ื”ืกืคืจื” ื”ืจืืฉื•ื ื” ืฉืœื™, ืื‘ื“ื•ืง ืžื”ื™ ื”ืกืคืจื” ื”ืจืืฉื•ื ื” ื‘ืžืกืคืจ ื”ืจืืฉื•ืŸ ื‘ืจืฉื™ืžื” ืฉืœื›ื.
03:53
I'll look at the first decimal place of your first number.
86
233168
2762
03:55
If it's a one, I'll make mine a two;
87
235954
2454
ืื ื”ื™ื 1, ื”ืกืคืจื” ืฉืœื™ ืชื”ื™ื” 2. ืื—ืจืช - ื”ืกืคืจื” ืฉืœื™ ืชื”ื™ื” 1.
03:58
otherwise I'll make mine a one.
88
238432
1956
04:00
For the second place of my number,
89
240412
2108
ืขื‘ื•ืจ ื”ืกืคืจื” ื”ืฉื ื™ื” ื‘ืžืกืคืจ ืฉืœื™, ืื‘ื“ื•ืง ืืช ื”ืกืคืจื” ื”ืฉื ื™ื” ื‘ืžืกืคืจ ื”ืฉื ื™ ื‘ืจืฉื™ืžื” ืฉืœื›ื.
04:02
I'll look at the second place of your second number.
90
242544
2477
ื•ืฉื•ื‘, ืื ื”ืกืคืจื” ืฉืœื›ื ื”ื™ื 1, ื”ืกืคืจื” ืฉืœื™ ืชื”ื™ื” 2. ืื—ืจืช - ื”ืกืคืจื” ืฉืœื™ ืชื”ื™ื” 1.
04:05
Again, if yours is a one, I'll make mine a two,
91
245045
2515
04:07
and otherwise I'll make mine a one.
92
247584
2310
04:09
See how this is going?
93
249918
1303
ืžื‘ื™ื ื™ื ืื™ืš ื–ื” ื”ื•ืœืš? ื”ืžืกืคืจ ื”ืขืฉืจื•ื ื™ ืฉื‘ื ื™ืชื™ ืœื ื™ื›ื•ืœ ืœื”ื•ืคื™ืข ื‘ืจืฉื™ืžื” ืฉืœื›ื.
04:11
The decimal I've produced can't be on your list.
94
251245
2975
ืœืžื”? ื”ืื ื”ื•ื ื™ื›ื•ืœ ืœื”ื•ืคื™ืข, ืœืžืฉืœ, ื‘ืžืงื•ื ื”-143 ื‘ืจืฉื™ืžื” ืฉืœื›ื? ืœื, ืžื›ื™ื•ื•ืŸ ืฉื”ืžืงื•ื ื”-143 ื‘ืžืกืคืจ ืฉืœื™
04:14
Why? Could it be, say, your 143rd number?
95
254244
3287
04:17
No, because the 143rd place of my decimal
96
257555
3158
04:20
is different from the 143rd place of your 143rd number.
97
260737
3637
ืฉื•ื ื” ืžื”ืžืงื•ื ื”-143 ื‘ืžืกืคืจ ื”-143 ื‘ืจืฉื™ืžื” ืฉืœื›ื. ื›ื›ื” ื‘ื ื™ืชื™ ืื•ืชื•.
04:24
I made it that way.
98
264398
1567
04:25
Your list is incomplete.
99
265989
1477
ื•ืœื›ืŸ, ื”ืจืฉื™ืžื” ืฉืœื›ื ืœื ืฉืœืžื”. ื”ื™ื ืœื ื›ื•ืœืœืช ืืช ื”ืžืกืคืจ ื”ืขืฉืจื•ื ื™ ืฉืœื™.
04:27
It doesn't contain my decimal number.
100
267490
1994
04:29
And, no matter what list you give me, I can do the same thing,
101
269508
2905
ื•ืœื›ืœ ืจืฉื™ืžื” ืฉืชืฆื™ื’ื• ื‘ืคื ื™, ืื ื™ ื™ื›ื•ืœ ืœื‘ืฆืข ืืช ืื•ืชื• ื˜ืจื™ืง, ื•ืœื‘ื ื•ืช ืžืกืคืจ ืขืฉืจื•ื ื™ ืฉืœื ืžื•ืคื™ืข ื‘ืจืฉื™ืžื” ืฉืœื›ื.
04:32
and produce a decimal that's not on that list.
102
272437
2213
04:34
So we're faced with this astounding conclusion:
103
274674
2521
ื•ื›ืš ื”ื’ืขื ื• ืœืžืกืงื ื” ื”ืžืคืชื™ืขื” ื”ื‘ืื”:
04:37
The decimal numbers cannot be put on a list.
104
277219
2865
ืœื ื ื™ืชืŸ ืœื”ื›ื™ืŸ ืจืฉื™ืžื” ืฉืœ ื”ืžืกืคืจื™ื ื”ืขืฉืจื•ื ื™ื™ื. ื”ื ืžื™ื™ืฆื’ื™ื ืื™ื ืกื•ืฃ ื’ื“ื•ืœ ื™ื•ืชืจ ืžื”ืื™ื ืกื•ืฃ ืฉืœ ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื.
04:40
They represent a bigger infinity that the infinity of whole numbers.
105
280108
3918
ื•ื›ืš, ืœืžืจื•ืช ืฉืื ื—ื ื• ืžื›ื™ืจื™ื ืจืง ืžืกืคืจ ืงื˜ืŸ ืฉืœ ืžืกืคืจื™ื ืื™ ืจืฆื™ื•ื ืœื™ื™ื, ื›ืžื• ืฉื•ืจืฉ ืจื™ื‘ื•ืขื™ ืฉืœ 2 ืื• ืคืื™,
04:44
So, even though we're familiar with only a few irrationals,
106
284050
2762
04:46
like square root of two and pi,
107
286836
1781
04:48
the infinity of irrationals
108
288641
1493
ื”ืื™ื ืกื•ืฃ ืฉืœ ื›ืœ ื”ืžืกืคืจื™ื ื”ืื™ ืจืฆื™ื•ื ืœื™ื™ื ื”ื•ื ืœืžืขืฉื” ื™ื•ืชืจ ื’ื“ื•ืœ ืžื”ืื™ื ืกื•ืฃ ืฉืœ ื”ืฉื‘ืจื™ื.
04:50
is actually greater than the infinity of fractions.
109
290158
2436
04:52
Someone once said that the rationals
110
292618
1769
ืžื™ืฉื”ื• ืืžืจ ืคืขื ืฉื”ืžืกืคืจื™ื ื”ืจืฆื™ื•ื ืœื™ื™ื - ื”ืฉื‘ืจื™ื - ื”ื ื›ืžื• ื”ื›ื•ื›ื‘ื™ื ื‘ืฉืžื™ ื”ืœื™ืœื”,
04:54
-- the fractions -- are like the stars in the night sky.
111
294411
2924
04:57
The irrationals are like the blackness.
112
297998
3121
ื”ืžืกืคืจื™ื ื”ืื™ ืจืฆื™ื•ื ืœื™ื™ื ื”ื ื›ืžื• ื”ื—ืฉื™ื›ื”.
05:01
Cantor also showed that, for any infinite set,
113
301143
2521
ืงื ื˜ื•ืจ ื”ืจืื” ื’ื ืฉืขื‘ื•ืจ ื›ืœ ืงื‘ื•ืฆื” ืื™ื ืกื•ืคื™ืช, ืงื‘ื•ืฆื” ื”ื›ื•ืœืœืช ืืช ื›ืœ ืชืชื™ ื”ืงื‘ื•ืฆื•ืช ืฉืœ ื”ืงื‘ื•ืฆื” ื”ืžืงื•ืจื™ืช
05:03
forming a new set made of all the subsets of the original set
114
303688
3406
ืžื™ื™ืฆื’ืช ืื™ื ืกื•ืฃ ื’ื“ื•ืœ ื™ื•ืชืจ ืžื”ืื™ื ืกื•ืฃ ืฉืœ ื”ืงื‘ื•ืฆื” ื”ืžืงื•ืจื™ืช. ืคื™ืจื•ืฉ ื”ื“ื‘ืจ ื”ื•ื, ืฉื‘ืจื’ืข ืฉื™ืฉ ืื™ื ืกื•ืฃ ืื—ื“,
05:07
represents a bigger infinity than that original set.
115
307118
3268
05:10
This means that, once you have one infinity,
116
310410
2049
05:12
you can always make a bigger one
117
312483
1558
ื ื™ืชืŸ ืชืžื™ื“ ืœื™ืฆื•ืจ ืื™ื ืกื•ืฃ ื’ื“ื•ืœ ื™ื•ืชืจ ืื ื ื‘ื ื” ืืช ื›ืœ ืชืชื™ ื”ืงื‘ื•ืฆื•ืช ืฉืœ ื”ืงื‘ื•ืฆื” ื”ืงื•ื“ืžืช.
05:14
by making the set of all subsets of that first set.
118
314065
2901
05:16
And then an even bigger one
119
316990
1416
05:18
by making the set of all the subsets of that one.
120
318430
2309
ื•ืื– ืื™ื ืกื•ืฃ ืขื•ื“ ื™ื•ืชืจ ื’ื“ื•ืœ ืื ื ื™ืฆื•ืจ ืงื‘ื•ืฆื” ืฉืœ ื›ืœ ืชืชื™ ื”ืงื‘ื•ืฆื•ืช ืฉืœ ื”ืงื‘ื•ืฆื” ื”ื‘ืื” ื‘ืชื•ืจ. ื•ื›ืŸ ื”ืœืื”.
05:20
And so on.
121
320763
1226
ื•ื›ืš, ื™ืฉ ืžืกืคืจ ืื™ื ืกื•ืคื™ ืฉืœ ืื™ื ืกื•ืคื™ื.
05:22
And so, there are an infinite number of infinities of different sizes.
122
322013
3588
05:25
If these ideas make you uncomfortable, you are not alone.
123
325625
3465
ืื ื–ื” ื ืฉืžืข ืœื›ื ืžื•ื–ืจ, ืืชื ืื™ื ื›ื ืœื‘ื“ื›ื. ื—ืœืง ืžื”ืžืชืžื˜ื™ืงืื™ื ื”ื’ื“ื•ืœื™ื ื‘ื™ื•ืชืจ ื‘ืชืงื•ืคืชื• ืฉืœ ืงื ื˜ื•ืจ
05:29
Some of the greatest mathematicians of Cantor's day
124
329114
2391
05:31
were very upset with this stuff.
125
331529
1524
ืžืฆืื• ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืืœื” ืžื˜ืจื™ื“ื™ื ื‘ื™ื•ืชืจ. ื”ื ื ื™ืกื• ืœื”ืคื•ืš ืืช ื”ืื™ื ืกื•ืคื™ื ื”ืฉื•ื ื™ื ืœืœื ืจืœื•ื•ื ื˜ื™ื™ื,
05:33
They tried to make these different infinities irrelevant,
126
333077
2620
05:35
to make mathematics work without them somehow.
127
335721
2292
ื•ืœื’ืจื•ื ืœืžืชืžื˜ื™ืงื” ืœื”ืกืชื“ืจ ืื™ื›ืฉื”ื• ื‘ืœืขื“ื™ื”ื.
ืงื ื˜ื•ืจ ืขืฆืžื• ื”ื•ื›ืคืฉ ื‘ืื•ืคืŸ ืื™ืฉื™, ื•ื”ื•ื ืกื‘ืœ ืžื“ื™ื›ืื•ืŸ ืงืฉื”,
05:38
Cantor was even vilified personally,
128
338037
2033
05:40
and it got so bad for him that he suffered severe depression,
129
340094
2905
ื•ื‘ื™ืœื” ืืช ื”ืžื—ืฆื™ืช ื”ืฉื ื™ื” ืฉืœ ื—ื™ื™ื• ื›ืฉื”ื•ื ื ื›ื ืก ื•ื™ื•ืฆื ืžื‘ืชื™ ื—ื•ืœื™ื ืœื—ื•ืœื™ ื ืคืฉ.
05:43
and spent the last half of his life in and out of mental institutions.
130
343023
3286
ืื‘ืœ ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ื”ืจืขื™ื•ื ื•ืช ืฉืœื• ื–ื›ื• ืœื”ืฆืœื—ื”. ื•ื›ื™ื•ื, ื”ื ื ื—ืฉื‘ื™ื ืœืจืขื™ื•ื ื•ืช ื™ืกื•ื“ื™ื™ื ื•ืžื•ืคืœืื™ื.
05:46
But eventually, his ideas won out.
131
346333
2329
05:48
Today, they're considered fundamental and magnificent.
132
348686
2958
05:51
All research mathematicians accept these ideas,
133
351668
2577
ื›ืœ ื”ืžืชืžื˜ื™ืงืื™ื ื”ืขื•ืกืงื™ื ื‘ืžื—ืงืจ ืžืงื‘ืœื™ื ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืืœื”, ื•ื›ืœ ืชืœืžื™ื“ ืงื•ืœื’' ืœืžืชืžื˜ื™ืงื” ืœื•ืžื“ ืื•ืชื,
05:54
every college math major learns them,
134
354269
1795
ื•ืื ื™ ื”ืกื‘ืจืชื™ ืœื›ื ืื•ืชื ื‘ื›ืžื” ื“ืงื•ืช.
05:56
and I've explained them to you in a few minutes.
135
356088
2239
05:58
Some day, perhaps, they'll be common knowledge.
136
358351
2493
ื•ื™ื•ื ืื—ื“, ืื•ืœื™, ื›ืœ ืื“ื ื™ื›ื™ืจ ืื•ืชื.
06:00
There's more.
137
360868
1174
ื•ื™ืฉ ืขื•ื“. ื”ืจื’ืข ืจืื™ื ื• ืฉืงื‘ื•ืฆืช ื”ืžืกืคืจื™ื ื”ืขืฉืจื•ื ื™ื™ื - ื›ืœื•ืžืจ, ื”ืžืกืคืจื™ื ื”ืžืžืฉื™ื™ื -
06:02
We just pointed out that the set of decimal numbers
138
362066
2430
06:04
-- that is, the real numbers -- is a bigger infinity
139
364520
2450
06:06
than the set of whole numbers.
140
366994
1435
ื”ื™ื ืื™ื ืกื•ืฃ ื’ื“ื•ืœ ื™ื•ืชืจ ืžืงื‘ื•ืฆืช ื”ืžืกืคืจื™ื ื”ื˜ื‘ืขื™ื™ื. ืงื ื˜ื•ืจ ืชื”ื” ื”ืื ื™ืฉ ืื™ื ืกื•ืคื™ื
06:08
Cantor wondered whether there are infinities
141
368453
2057
ืžื’ื“ืœื™ื ืฉื•ื ื™ื ื‘ื™ืŸ ืฉื ื™ ื”ืื™ื ืกื•ืคื™ื ื”ืืœื”. ื”ื•ื ืœื ื”ืืžื™ืŸ ืฉื”ื ืงื™ื™ืžื™ื ืืš ืœื ื”ืฆืœื™ื— ืœื”ื•ื›ื™ื— ืืช ื”ื“ื‘ืจ.
06:10
of different sizes between these two infinities.
142
370534
2260
06:12
He didn't believe there were, but couldn't prove it.
143
372818
2497
ื”ื”ืฉืขืจื” ืฉืœ ืงื ื˜ื•ืจ ื™ื“ื•ืขื” ื›ื”ืฉืขืจืช ื”ืจืฆืฃ.
06:15
Cantor's conjecture became known as the continuum hypothesis.
144
375339
2911
ื‘ืฉื ืช 1900, ื”ืžืชืžื˜ื™ืงืื™ ื”ื’ื“ื•ืœ ื“ื™ื™ื•ื•ื™ื“ ื”ื™ืœื‘ืจื˜ ื”ื—ืฉื™ื‘ ืืช ื”ืฉืขืจืช ื”ืจืฆืฃ
06:19
In 1900, the great mathematician David Hilbert
145
379402
2457
06:21
listed the continuum hypothesis
146
381883
1751
06:23
as the most important unsolved problem in mathematics.
147
383658
2759
ืœื‘ืขื™ื” ื”ืžืชืžื˜ื™ืช ื”ืœื ืคืชื•ืจื” ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ.
06:26
The 20th century saw a resolution of this problem,
148
386441
2813
ื‘ืžืื” ื”-20 ื ืžืฆื ืคืชืจื•ืŸ ืœื‘ืขื™ื”, ื‘ืฆื•ืจื” ืœื’ืžืจื™ ื‘ืœืชื™ ืฆืคื•ื™ื” ื•ืžื”ืคื›ื ื™ืช.
06:29
but in a completely unexpected, paradigm-shattering way.
149
389278
2958
06:32
In the 1920s, Kurt Gรถdel showed
150
392942
1957
ื‘ืฉื ื•ืช ื”-20 ืฉืœ ื”ืžืื” ื”-20, ืงื•ืจื˜ ื’ื“ืœ ื”ืจืื” ืฉืœื ื ื™ืชืŸ ืœื”ืคืจื™ืš ืืช ื”ืฉืขืจืช ื”ืจืฆืฃ.
06:34
that you can never prove that the continuum hypothesis is false.
151
394923
3000
06:37
Then, in the 1960s, Paul J. Cohen showed
152
397947
3056
ื•ืื–, ื‘ืฉื ื•ืช ื”-60 ืฉืœ ื”ืžืื” ื”-20, ืคื•ืœ ื’'. ื›ื”ืŸ ื”ืจืื” ืฉืœื ื ื™ืชืŸ ืœื”ื•ื›ื™ื— ืฉื”ืฉืขืจืช ื”ืจืฆืฃ ื ื›ื•ื ื”.
06:41
that you can never prove that the continuum hypothesis is true.
153
401027
3000
ืžืฉืžืขื•ืช ื”ื“ื‘ืจื™ื ื”ื™ื ืฉื”ืžืชืžื˜ื™ืงื” ื›ื•ืœืœืช ืฉืืœื•ืช ืฉืœื ื ื™ืชืŸ ืœืžืฆื•ื ืœื”ืŸ ืžืขื ื”.
06:44
Taken together, these results mean
154
404051
2149
06:46
that there are unanswerable questions in mathematics.
155
406224
2524
06:48
A very stunning conclusion.
156
408772
1514
ืžืกืงื ื” ืžื“ื”ื™ืžื” ื‘ื™ื•ืชืจ.
06:50
Mathematics is rightly considered the pinnacle of human reasoning,
157
410310
3125
ืžืชืžื˜ื™ืงื” ื ื—ืฉื‘ืช ื›ื—ื•ื“ ื”ื—ื ื™ืช ืฉืœ ื”ื—ืฉื™ื‘ื” ื”ืื ื•ืฉื™ืช.
06:53
but we now know that even mathematics has its limitations.
158
413459
3109
ืื‘ืœ ื›ืขืช ืื ื• ื™ื•ื“ืขื™ื ืฉืืคื™ืœื• ืœืžืชืžื˜ื™ืงื” ื™ืฉ ืžื’ื‘ืœื•ืช.
ื•ืขื“ื™ื™ืŸ, ื”ืžืชืžื˜ื™ืงื” ื›ื•ืœืœืช ื—ื•ืžืจ ืœืžื—ืฉื‘ื” ืžืจืชืง ืขื‘ื•ืจื ื•.
06:57
Still, mathematics has some truly amazing things for us to think about.
159
417094
3715
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7