How big is infinity? - Dennis Wildfogel
無限大有多大? - Dennis Wildfogel
3,555,760 views ・ 2012-08-06
請雙擊下方英文字幕播放視頻。
譯者: Jephian Lin
審譯者: Michelle Ho
00:13
When I was in fourth grade,
my teacher said to us one day:
0
13999
2723
我在四年級的時候,
國小老師有一天跟我們說:
00:16
"There are as many even numbers
as there are numbers."
1
16746
2529
「偶數的個數
和正整數的個數一樣多。」
00:19
"Really?", I thought.
2
19745
1353
「真的嗎?」我心想。
噢對!兩個都是無限多個,所以一樣多。
00:21
Well, yeah, there are
infinitely many of both,
3
21122
2336
00:23
so I suppose there are
the same number of them.
4
23482
2396
00:25
But even numbers are only part
of the whole numbers,
5
25902
3031
但另一方面,偶數只是正整數的一部份,
而奇數就是剩下的部份,
00:28
all the odd numbers are left over,
6
28957
1627
00:30
so there's got to be more whole numbers
than even numbers, right?
7
30608
3049
所以正整數應該要比偶數還多,對吧?
00:33
To see what my teacher was getting at,
8
33681
1848
要了解老師那段話的道理,
我們要知道兩個集合一樣大是什麼意思。
00:35
let's first think about what it means
for two sets to be the same size.
9
35553
3508
當我說我左手的手指
和右手的手指一樣多時,是什麼意思?
00:39
What do I mean when I say
I have the same number of fingers
10
39085
2800
00:41
on my right hand as I do on left hand?
11
41909
2448
00:44
Of course, I have five fingers on each,
but it's actually simpler than that.
12
44381
3634
當然,兩隻手都是五根手指,
但是可以更簡單一些。
我不用去算,我只要知道
我能夠將它們「一對一」對應起來。
00:48
I don't have to count, I only need to see
that I can match them up, one to one.
13
48039
4451
00:52
In fact, we think that some ancient people
14
52514
2106
事實上,我們認為古代那些
語言裡數字只到三的人們
00:54
who spoke languages that didn't have words
for numbers greater than three
15
54644
3443
就是用這個技倆。
如果你把你的羊從羊圈裡放出去吃草,
00:58
used this sort of magic.
16
58111
1372
00:59
For instance, if you let
your sheep out of a pen to graze,
17
59507
2726
01:02
you can keep track of how many went out
by setting aside a stone for each one,
18
62257
3681
你可以隨時知道有幾隻羊跑出去。
你只要在羊出去時將一顆石子放旁邊,
01:05
and putting those stones back
one by one when the sheep return,
19
65962
3130
然後在羊回來的時候
再把石子放回來就好。
01:09
so you know if any are missing
without really counting.
20
69116
2793
這樣你就不會亂掉,
儘管你沒有真的去算羊的數目。
01:11
As another example of matching being
more fundamental than counting,
21
71933
3239
另一個「一對一」的例子
比計數更單純一些。
01:15
if I'm speaking to a packed auditorium,
22
75196
2143
如果在一個擁擠的禮堂裡,
每個位子都有人坐而且沒人站著,
01:17
where every seat is taken
and no one is standing,
23
77363
2304
01:19
I know that there are the same number
of chairs as people in the audience,
24
79691
3530
這樣我就知道
人數跟椅子數一樣多,
01:23
even though I don't know
how many there are of either.
25
83245
2526
雖然說我並不知道
這兩者的個數。
01:25
So, what we really mean when we say
that two sets are the same size
26
85795
3143
所以,我們說兩個集合一樣大時
真正的意思
01:28
is that the elements in those sets
27
88962
1728
就是兩集合裡的元素
有辦法「一對一」對應在一起。
01:30
can be matched up one by one in some way.
28
90714
2229
01:32
My fourth grade teacher showed us
29
92967
1667
所以國小老師將正整數寫成一列,
並將數字的兩倍寫在下面。
01:34
the whole numbers laid out in a row,
and below each we have its double.
30
94658
3341
你可以看到,底部那列包含了所有的偶數,
這樣就有了「一對一」的對應。
01:38
As you can see, the bottom row
contains all the even numbers,
31
98023
2869
01:40
and we have a one-to-one match.
32
100916
1541
01:42
That is, there are as many
even numbers as there are numbers.
33
102481
2905
也就是說,偶數和正整數一樣多。
01:45
But what still bothers us is our distress
34
105410
2290
但依舊苦惱我們的是
偶數只是正整數的一部份這件事實。
01:47
over the fact that even numbers
seem to be only part of the whole numbers.
35
107724
3479
不過這樣能說服你
我左右手手指數目不一樣嗎?
01:51
But does this convince you
36
111227
1454
01:52
that I don't have
the same number of fingers
37
112705
2175
01:54
on my right hand as I do on my left?
38
114904
1726
01:56
Of course not.
39
116654
1015
當然沒有!就算有的方法
配對失敗,那也沒關係,
01:57
It doesn't matter if you try to match
40
117693
1843
01:59
the elements in some way
and it doesn't work,
41
119560
2169
因為這並沒說服我們什麼。
02:01
that doesn't convince us of anything.
42
121753
1762
如果你可以找到一種方法
讓兩邊元素配對起來,
02:03
If you can find one way
43
123539
1191
02:04
in which the elements
of two sets do match up,
44
124754
2224
那我們就說這兩個集合個數一樣。
02:07
then we say those two sets have
the same number of elements.
45
127002
2893
02:10
Can you make a list of all the fractions?
46
130472
2015
你有辦法將分數像正整數那樣列出來嗎?
可能有點難,分數有很多!
02:12
This might be hard,
there are a lot of fractions!
47
132511
2659
而且不太明顯哪個要放前面、
或是怎樣把它們串起來。
02:15
And it's not obvious what to put first,
48
135194
1877
02:17
or how to be sure
all of them are on the list.
49
137095
2143
不過,有一個辦法
我們可以把所有分數依序串起來。
02:19
Nevertheless, there is a very clever way
50
139262
2656
02:21
that we can make a list
of all the fractions.
51
141942
2173
這是十九世紀末
數學家康托爾的貢獻。
02:24
This was first done by Georg Cantor,
in the late eighteen hundreds.
52
144139
3846
首先,我們把分數上下左右對好。
全部的分數都在這。比如說,你可以找到 117/243
02:28
First, we put all
the fractions into a grid.
53
148009
3008
02:31
They're all there.
54
151041
1090
02:32
For instance, you can find, say, 117/243,
55
152155
3757
02:35
in the 117th row and 243rd column.
56
155936
3060
它在第 117 列第 243 行。
02:39
Now we make a list out of this
57
159020
1801
現在我們要把它們串起來,
從左上開始,然後斜對角地串下來、串上去。
02:40
by starting at the upper left
and sweeping back and forth diagonally,
58
160845
3400
02:44
skipping over any fraction, like 2/2,
59
164269
2327
其中像 2/2 這類之前已經算過的分數
就把它跳掉。
02:46
that represents the same number
as one the we've already picked.
60
166620
3039
02:49
We get a list of all the fractions,
61
169683
1878
因此我們就把分數串成一串了,
這意思是分數
02:51
which means we've created
a one-to-one match
62
171585
2113
02:53
between the whole numbers
and the fractions,
63
173722
2078
和正整數有「一對一」的對應,
雖然我們直覺是分數比較多個。
02:55
despite the fact that we thought
maybe there ought to be more fractions.
64
175818
3381
好,這就是有趣的地方了。
02:59
OK, here's where it gets
really interesting.
65
179223
2107
你也許知道用分數沒辦法表示所有的實數
──也就是那些數線上的數。
03:01
You may know that not all real numbers
66
181354
1965
03:03
-- that is, not all the numbers
on a number line -- are fractions.
67
183343
3148
03:06
The square root
of two and pi, for instance.
68
186515
2147
像是根號 2、還有圓周率 π 這些。
03:08
Any number like this is called irrational.
69
188686
2427
這類的數字叫作「無理數」。
不只是因為它們很難懂,而是因為分數包含了
03:11
Not because it's crazy, or anything,
70
191137
1927
03:13
but because the fractions are
ratios of whole numbers,
71
193088
3014
所有整數的「比率」,所以被叫「可比的」,
而剩的就被叫作「不可比的」,也就是「無理的」。
03:16
and so are called rationals;
72
196126
1467
03:17
meaning the rest are
non-rational, that is, irrational.
73
197617
3211
03:20
Irrationals are represented
by infinite, non-repeating decimals.
74
200852
3842
無理數可以用無窮小數表示,
而且各位數沒有規律。
03:24
So, can we make a one-to-one match
75
204718
2135
那麼,我們可以將正整數和
所有無理、有理的小數
03:26
between the whole numbers
and the set of all the decimals,
76
206877
2729
03:29
both the rationals and the irrationals?
77
209630
1888
「一對一」對應嗎?
也就是,我們可以將所有小數串起來嗎?
03:31
That is, can we make
a list of all the decimal numbers?
78
211542
2572
康托爾證明了這行不通。
不只想不到辦法,而是真的沒辦法。
03:34
Cantor showed that you can't.
79
214138
2050
03:36
Not merely that we don't know how,
but that it can't be done.
80
216212
3297
來看看,如果你聲稱你把小數串好了。
我要來告訴你這是不可能的,
03:40
Look, suppose you claim you have made
a list of all the decimals.
81
220045
3855
03:43
I'm going to show you
that you didn't succeed,
82
223924
2218
03:46
by producing a decimal
that is not on your list.
83
226166
2286
因為我要找一個你那串那面沒有的小數。
03:48
I'll construct my decimal
one place at a time.
84
228476
2319
我要在小數點後一個一個位數決定。
03:50
For the first decimal place of my number,
85
230819
2325
我要用你那串的第 1 個數字的第 1 位數
來決定我的第 1 位數。
03:53
I'll look at the first decimal place
of your first number.
86
233168
2762
03:55
If it's a one, I'll make mine a two;
87
235954
2454
如果它是 1,我的就是 2;否則我的就是 1。
03:58
otherwise I'll make mine a one.
88
238432
1956
04:00
For the second place of my number,
89
240412
2108
再用你的第 2 個數字的第 2 位數
來決定我的第 2 位數。
04:02
I'll look at the second place
of your second number.
90
242544
2477
一樣,如果你的是 1,我的就是 2;
否則我的就是 1。
04:05
Again, if yours is a one,
I'll make mine a two,
91
245045
2515
04:07
and otherwise I'll make mine a one.
92
247584
2310
04:09
See how this is going?
93
249918
1303
看出怎麼算下去了嗎?
我找到的這個小數,不可能在你那串裡。
04:11
The decimal I've produced
can't be on your list.
94
251245
2975
為什麼?比如說,它和你的第 143 個數會一樣嗎?
不可能,因為第 143 位數裡
04:14
Why? Could it be, say, your 143rd number?
95
254244
3287
04:17
No, because the 143rd place of my decimal
96
257555
3158
04:20
is different from the 143rd place
of your 143rd number.
97
260737
3637
你的和我的不一樣。
這是我特別挑的。
04:24
I made it that way.
98
264398
1567
04:25
Your list is incomplete.
99
265989
1477
你沒串成功。
沒有串到所有小數。
04:27
It doesn't contain my decimal number.
100
267490
1994
04:29
And, no matter what list you give me,
I can do the same thing,
101
269508
2905
而不論你怎麼串,我都可以做同樣的事,
然後找到一個你那串裡沒出現的小數。
04:32
and produce a decimal
that's not on that list.
102
272437
2213
04:34
So we're faced with this
astounding conclusion:
103
274674
2521
所以我們得到了
令人訝異的結論:
04:37
The decimal numbers
cannot be put on a list.
104
277219
2865
所有小數沒辦法串成一串。
它的「無限大」比正整數的「無限大」還大。
04:40
They represent a bigger infinity
that the infinity of whole numbers.
105
280108
3918
所以,儘管你只熟悉幾個無理數,
像是根號 2 和圓周率 π,
04:44
So, even though we're familiar
with only a few irrationals,
106
284050
2762
04:46
like square root of two and pi,
107
286836
1781
04:48
the infinity of irrationals
108
288641
1493
無理數的「無限大」實際上也比
分數的「無限大」還要大。
04:50
is actually greater
than the infinity of fractions.
109
290158
2436
04:52
Someone once said that the rationals
110
292618
1769
有人曾這樣比喻:
有理數,或者說分數,就像天空中的星星;
04:54
-- the fractions -- are
like the stars in the night sky.
111
294411
2924
04:57
The irrationals are like the blackness.
112
297998
3121
而無理數就像是無盡的黑暗。
05:01
Cantor also showed that,
for any infinite set,
113
301143
2521
康托爾同時也證明任何無窮大的集合,
只要把它的所有子集都蒐集起來,
05:03
forming a new set made of
all the subsets of the original set
114
303688
3406
新的集合的「無限大」就比原本的還大。
意思是說,只要你有一種「無限大」
05:07
represents a bigger infinity
than that original set.
115
307118
3268
05:10
This means that,
once you have one infinity,
116
310410
2049
05:12
you can always make a bigger one
117
312483
1558
那你就可以用它的所有子集
來做出比它更「無限大」的集合。
05:14
by making the set of all subsets
of that first set.
118
314065
2901
05:16
And then an even bigger one
119
316990
1416
05:18
by making the set
of all the subsets of that one.
120
318430
2309
接著再用這集合做出更加「無限大」的集合。
不斷做下去。
05:20
And so on.
121
320763
1226
所以,「無限大」之間也是有分不同的大小。
05:22
And so, there are an infinite number
of infinities of different sizes.
122
322013
3588
05:25
If these ideas make you
uncomfortable, you are not alone.
123
325625
3465
如果你覺得這令人想吐,並不奇怪。
一些康托爾那年代的偉大數學家
05:29
Some of the greatest
mathematicians of Cantor's day
124
329114
2391
05:31
were very upset with this stuff.
125
331529
1524
也對這觀念非常反感。
他們試著要把無限這觀念抽離,
05:33
They tried to make these different
infinities irrelevant,
126
333077
2620
05:35
to make mathematics work
without them somehow.
127
335721
2292
讓數學可以
沒有無限也能運作。
康托爾甚至受到人身攻擊,
嚴重到讓他飽受沮喪之苦,
05:38
Cantor was even vilified personally,
128
338037
2033
05:40
and it got so bad for him
that he suffered severe depression,
129
340094
2905
並且在精神療院渡過後半餘生。
05:43
and spent the last half of his life
in and out of mental institutions.
130
343023
3286
不過他的想法最終得到肯定。
今天,這觀念被認為是基礎並重要的。
05:46
But eventually, his ideas won out.
131
346333
2329
05:48
Today, they're considered
fundamental and magnificent.
132
348686
2958
05:51
All research mathematicians
accept these ideas,
133
351668
2577
所有數學研究者都接受這觀念,
每個數學系都也都在教,
05:54
every college math major learns them,
134
354269
1795
而我剛剛已經花了幾分鐘來解釋。
05:56
and I've explained them
to you in a few minutes.
135
356088
2239
05:58
Some day, perhaps,
they'll be common knowledge.
136
358351
2493
也許有一天,這會變成大家的常識。
06:00
There's more.
137
360868
1174
還有一點。我們剛剛指出
小數,也就是實數,
06:02
We just pointed out
that the set of decimal numbers
138
362066
2430
06:04
-- that is, the real numbers --
is a bigger infinity
139
364520
2450
06:06
than the set of whole numbers.
140
366994
1435
比正整數的「無限大」還多。
康托爾在想兩個「無限大」之間
06:08
Cantor wondered
whether there are infinities
141
368453
2057
是否還有不同層級的「無限大」。
我們不這麼認為,但也沒辦法證明。
06:10
of different sizes
between these two infinities.
142
370534
2260
06:12
He didn't believe there were,
but couldn't prove it.
143
372818
2497
康托爾的猜想變成
有名的「連續統假說」。
06:15
Cantor's conjecture became known
as the continuum hypothesis.
144
375339
2911
在 1900 年,大數學家希爾伯特
把連續統假說列為
06:19
In 1900, the great
mathematician David Hilbert
145
379402
2457
06:21
listed the continuum hypothesis
146
381883
1751
06:23
as the most important
unsolved problem in mathematics.
147
383658
2759
數學裡最重要的未解問題。
06:26
The 20th century saw
a resolution of this problem,
148
386441
2813
這問題在 20 世紀露出一些端倪,
但是結果和超乎預期、並跌破大家眼鏡。
06:29
but in a completely unexpected,
paradigm-shattering way.
149
389278
2958
06:32
In the 1920s, Kurt Gödel showed
150
392942
1957
在 1920 年代,哥德爾證明了
你不可能證明連續統假說是錯的。
06:34
that you can never prove
that the continuum hypothesis is false.
151
394923
3000
06:37
Then, in the 1960s, Paul J. Cohen showed
152
397947
3056
接著在 1960 年代,寇恩證明了
你不可能證明連續統假說是對的。
06:41
that you can never prove
that the continuum hypothesis is true.
153
401027
3000
合在一起,這些結果告訴你
數學裡也有一些不能回答的問題。
06:44
Taken together, these results mean
154
404051
2149
06:46
that there are unanswerable
questions in mathematics.
155
406224
2524
06:48
A very stunning conclusion.
156
408772
1514
這是一個很令人震驚的結論。
06:50
Mathematics is rightly considered
the pinnacle of human reasoning,
157
410310
3125
數學被公認是人類邏輯的結晶,
06:53
but we now know that even mathematics
has its limitations.
158
413459
3109
但現在我們知道
就算是數學也有它的極限。
還有就是,數學裡有一些值得我們思考、
而且很令人著迷的道理。
06:57
Still, mathematics has some truly
amazing things for us to think about.
159
417094
3715
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。