How big is infinity? - Dennis Wildfogel

无限有多大?- 丹尼斯·瓦弗杰

3,517,446 views ・ 2012-08-06

TED-Ed


请双击下面的英文字幕来播放视频。

翻译人员: Geoff Chen 校对人员: Zhiting Chen
00:13
When I was in fourth grade, my teacher said to us one day:
0
13999
2723
我在四年级的时候, 小学老师有一天跟我们说:
00:16
"There are as many even numbers as there are numbers."
1
16746
2529
“偶数的个数 和正整数的个数一样多。”
00:19
"Really?", I thought.
2
19745
1353
“真的吗?”我心想。 噢对!两个都是无限多个,所以一样多。
00:21
Well, yeah, there are infinitely many of both,
3
21122
2336
00:23
so I suppose there are the same number of them.
4
23482
2396
00:25
But even numbers are only part of the whole numbers,
5
25902
3031
但另一方面,偶数只是正整数的一部份, 而奇数就是剩下的部份,
00:28
all the odd numbers are left over,
6
28957
1627
00:30
so there's got to be more whole numbers than even numbers, right?
7
30608
3049
所以正整数应该要比偶数还多,对吧?
00:33
To see what my teacher was getting at,
8
33681
1848
要了解老师那段话的道理, 我们必须知道两个集合一样大 是什么意思。
00:35
let's first think about what it means for two sets to be the same size.
9
35553
3508
当我说我左手的手指 和右手的手指一样多时,这意谓着什么?
00:39
What do I mean when I say I have the same number of fingers
10
39085
2800
00:41
on my right hand as I do on left hand?
11
41909
2448
00:44
Of course, I have five fingers on each, but it's actually simpler than that.
12
44381
3634
当然,两只手都是五根手指, 但是可以更简单一些。
我不用去算,我只要知道 我能够将它们“一对一”对应起来。
00:48
I don't have to count, I only need to see that I can match them up, one to one.
13
48039
4451
00:52
In fact, we think that some ancient people
14
52514
2106
事实上,我们认为古代那些 语言里数字只到三的人们
00:54
who spoke languages that didn't have words for numbers greater than three
15
54644
3443
就是用这个技俩。 如果你把你的羊从羊圈里放出去吃草,
00:58
used this sort of magic.
16
58111
1372
00:59
For instance, if you let your sheep out of a pen to graze,
17
59507
2726
01:02
you can keep track of how many went out by setting aside a stone for each one,
18
62257
3681
你可以随时知道有几只羊跑出去。 你只要在羊出去时将一颗石子放旁边,
01:05
and putting those stones back one by one when the sheep return,
19
65962
3130
然后在羊回来的时候 再把石子放回来就好。
01:09
so you know if any are missing without really counting.
20
69116
2793
这样你就不会乱掉, 尽管你没有真的去算羊的数目。
01:11
As another example of matching being more fundamental than counting,
21
71933
3239
另一个“一对一”的例子 比计数更单纯一些。
01:15
if I'm speaking to a packed auditorium,
22
75196
2143
如果在一个拥挤的礼堂里, 每个位子都有人坐而且没人站着,
01:17
where every seat is taken and no one is standing,
23
77363
2304
01:19
I know that there are the same number of chairs as people in the audience,
24
79691
3530
这样我就知道 人数跟椅子数一样多,
01:23
even though I don't know how many there are of either.
25
83245
2526
虽然说我并不知道 这两者的个数。
01:25
So, what we really mean when we say that two sets are the same size
26
85795
3143
所以,我们说两个集合一样大时, 它真正的意思就是
01:28
is that the elements in those sets
27
88962
1728
两集合里的元素 有办法“一对一”对应在一起。
01:30
can be matched up one by one in some way.
28
90714
2229
01:32
My fourth grade teacher showed us
29
92967
1667
所以小学老师将正整数写成一列, 并将数字的两倍写在下面。
01:34
the whole numbers laid out in a row, and below each we have its double.
30
94658
3341
你可以看到,底部那列 包含了所有的偶数, 这样就有了“一对一”的对应。
01:38
As you can see, the bottom row contains all the even numbers,
31
98023
2869
01:40
and we have a one-to-one match.
32
100916
1541
01:42
That is, there are as many even numbers as there are numbers.
33
102481
2905
也就是说,偶数和正整数一样多。
01:45
But what still bothers us is our distress
34
105410
2290
但依旧困扰着我们的是 偶数只是正整数的一部份这件事实。
01:47
over the fact that even numbers seem to be only part of the whole numbers.
35
107724
3479
不过这样能说服你 我左右手手指数目不同吗?
01:51
But does this convince you
36
111227
1454
01:52
that I don't have the same number of fingers
37
112705
2175
01:54
on my right hand as I do on my left?
38
114904
1726
01:56
Of course not.
39
116654
1015
当然没有!就算有的方法 配对失败,那也没关系,
01:57
It doesn't matter if you try to match
40
117693
1843
01:59
the elements in some way and it doesn't work,
41
119560
2169
因为这并没说服我们什么。
02:01
that doesn't convince us of anything.
42
121753
1762
如果你可以找到一种方法 让两边元素配对起来,
02:03
If you can find one way
43
123539
1191
02:04
in which the elements of two sets do match up,
44
124754
2224
那我们就说这两个集合个数一样。
02:07
then we say those two sets have the same number of elements.
45
127002
2893
02:10
Can you make a list of all the fractions?
46
130472
2015
你有办法将分数像正整数那样列出来吗? 这可能有点难,分数有很多!
02:12
This might be hard, there are a lot of fractions!
47
132511
2659
而且不太明显哪个要放前面, 或是怎样把它们串起来。
02:15
And it's not obvious what to put first,
48
135194
1877
02:17
or how to be sure all of them are on the list.
49
137095
2143
不过,有一个办法 我们可以把所有分数依序串起来。
02:19
Nevertheless, there is a very clever way
50
139262
2656
02:21
that we can make a list of all the fractions.
51
141942
2173
这是十九世纪末 数学家康托尔的贡献。
02:24
This was first done by Georg Cantor, in the late eighteen hundreds.
52
144139
3846
首先,我们把分数上下左右对好。 全部的分数都在这。比如说,你可以找到 117/243
02:28
First, we put all the fractions into a grid.
53
148009
3008
02:31
They're all there.
54
151041
1090
02:32
For instance, you can find, say, 117/243,
55
152155
3757
02:35
in the 117th row and 243rd column.
56
155936
3060
它在第 117 列第 243 行。
02:39
Now we make a list out of this
57
159020
1801
现在我们要把它们串起来, 从左上开始,然后 斜对角地串下来、串上去。
02:40
by starting at the upper left and sweeping back and forth diagonally,
58
160845
3400
02:44
skipping over any fraction, like 2/2,
59
164269
2327
其中像 2/2 这类之前已经算过的分数 就把它跳掉。
02:46
that represents the same number as one the we've already picked.
60
166620
3039
02:49
We get a list of all the fractions,
61
169683
1878
因此我们就把分数串成一串了, 这意思是分数
02:51
which means we've created a one-to-one match
62
171585
2113
02:53
between the whole numbers and the fractions,
63
173722
2078
和正整数有“一对一”的对应, 虽然我们直觉是分数比较多个。
02:55
despite the fact that we thought maybe there ought to be more fractions.
64
175818
3381
好,这就是有趣的地方了。
02:59
OK, here's where it gets really interesting.
65
179223
2107
你也许知道用分数没办法表示所有的实数 ──也就是那些数线上的数。
03:01
You may know that not all real numbers
66
181354
1965
03:03
-- that is, not all the numbers on a number line -- are fractions.
67
183343
3148
03:06
The square root of two and pi, for instance.
68
186515
2147
像是根号 2,还有圆周率 π 这些。
03:08
Any number like this is called irrational.
69
188686
2427
这类的数字叫作“无理数”。 不只是因为它们很难懂, 而是因为分数包含了
03:11
Not because it's crazy, or anything,
70
191137
1927
03:13
but because the fractions are ratios of whole numbers,
71
193088
3014
所有整数的“比率”,所以被叫“可比的”, 而剩的就被叫作“不可比的”, 也就是“无理的”。
03:16
and so are called rationals;
72
196126
1467
03:17
meaning the rest are non-rational, that is, irrational.
73
197617
3211
03:20
Irrationals are represented by infinite, non-repeating decimals.
74
200852
3842
无理数可以用无穷小数表示, 而且各位数没有规律。
03:24
So, can we make a one-to-one match
75
204718
2135
那么,我们可以将正整数和 所有无理、有理的小数
03:26
between the whole numbers and the set of all the decimals,
76
206877
2729
03:29
both the rationals and the irrationals?
77
209630
1888
“一对一”对应吗? 也就是,我们可以将所有小数串起来吗?
03:31
That is, can we make a list of all the decimal numbers?
78
211542
2572
康托尔证明了这行不通。 不只想不到办法,而是真的没办法。
03:34
Cantor showed that you can't.
79
214138
2050
03:36
Not merely that we don't know how, but that it can't be done.
80
216212
3297
来看看,如果你声称你把小数串好了。 我要来告诉你这是不可能的,
03:40
Look, suppose you claim you have made a list of all the decimals.
81
220045
3855
03:43
I'm going to show you that you didn't succeed,
82
223924
2218
03:46
by producing a decimal that is not on your list.
83
226166
2286
因为我要找一个你那串那面没有的小数。
03:48
I'll construct my decimal one place at a time.
84
228476
2319
我要在小数点后一个一个位数决定。
03:50
For the first decimal place of my number,
85
230819
2325
我要用你那串的第 1 个数字的第 1 位数 来决定我的第 1 位数。
03:53
I'll look at the first decimal place of your first number.
86
233168
2762
03:55
If it's a one, I'll make mine a two;
87
235954
2454
如果它是 1,我的就是 2;否则我的就是 1。
03:58
otherwise I'll make mine a one.
88
238432
1956
04:00
For the second place of my number,
89
240412
2108
再用你的第 2 个数字的第 2 位数 来决定我的第 2 位数。
04:02
I'll look at the second place of your second number.
90
242544
2477
一样,如果你的是 1,我的就是 2; 否则我的就是 1。
04:05
Again, if yours is a one, I'll make mine a two,
91
245045
2515
04:07
and otherwise I'll make mine a one.
92
247584
2310
04:09
See how this is going?
93
249918
1303
看出怎么算下去了吗? 我找到的这个小数,不可能在你那串里。
04:11
The decimal I've produced can't be on your list.
94
251245
2975
为什么?比如它和你的 第 143 个数会一样吗? 不可能,因为第 143 位数里,
04:14
Why? Could it be, say, your 143rd number?
95
254244
3287
04:17
No, because the 143rd place of my decimal
96
257555
3158
04:20
is different from the 143rd place of your 143rd number.
97
260737
3637
你的和我的不一样。 这是我特别挑的。
04:24
I made it that way.
98
264398
1567
04:25
Your list is incomplete.
99
265989
1477
你没串成功。 没有串到所有小数。
04:27
It doesn't contain my decimal number.
100
267490
1994
04:29
And, no matter what list you give me, I can do the same thing,
101
269508
2905
而不论你怎么串,我都可以做同样的事, 然后找到一个你那串里没出现的小数。
04:32
and produce a decimal that's not on that list.
102
272437
2213
04:34
So we're faced with this astounding conclusion:
103
274674
2521
所以我们得到了 令人讶异的结论:
04:37
The decimal numbers cannot be put on a list.
104
277219
2865
所有小数没办法串成一串。 它的“无限大”比正整数的“无限大”还大。
04:40
They represent a bigger infinity that the infinity of whole numbers.
105
280108
3918
所以,尽管你只熟悉几个无理数, 像是根号 2 和圆周率 π,
04:44
So, even though we're familiar with only a few irrationals,
106
284050
2762
04:46
like square root of two and pi,
107
286836
1781
04:48
the infinity of irrationals
108
288641
1493
无理数的“无限大”实际上也比 分数的“无限大”还要大。
04:50
is actually greater than the infinity of fractions.
109
290158
2436
04:52
Someone once said that the rationals
110
292618
1769
有人曾这样比喻: 有理数,或者说分数,就像天空的星星;
04:54
-- the fractions -- are like the stars in the night sky.
111
294411
2924
04:57
The irrationals are like the blackness.
112
297998
3121
而无理数就像是无尽的黑暗。
05:01
Cantor also showed that, for any infinite set,
113
301143
2521
康托尔同时也证明任何无穷大的集合, 只要把它的所有子集都搜集起来,
05:03
forming a new set made of all the subsets of the original set
114
303688
3406
新的集合的“无限大”就比原本的还大。 意思是说,只要你有一种“无限大”
05:07
represents a bigger infinity than that original set.
115
307118
3268
05:10
This means that, once you have one infinity,
116
310410
2049
05:12
you can always make a bigger one
117
312483
1558
那你就可以用它的所有子集 来做出比它更“无限大”的集合。
05:14
by making the set of all subsets of that first set.
118
314065
2901
05:16
And then an even bigger one
119
316990
1416
05:18
by making the set of all the subsets of that one.
120
318430
2309
接着再用这集合做出更加“无限大”的集合。 不断做下去。
05:20
And so on.
121
320763
1226
所以,“无限大”之间也是有分不同的大小。
05:22
And so, there are an infinite number of infinities of different sizes.
122
322013
3588
05:25
If these ideas make you uncomfortable, you are not alone.
123
325625
3465
如果你觉得这令人不适,这并不奇怪。 一些康托尔那年代的伟大数学家
05:29
Some of the greatest mathematicians of Cantor's day
124
329114
2391
05:31
were very upset with this stuff.
125
331529
1524
也对这观念非常反感。 他们试着要把无限这观念抽离,
05:33
They tried to make these different infinities irrelevant,
126
333077
2620
05:35
to make mathematics work without them somehow.
127
335721
2292
让数学可以 没有无限也能运作。
康托尔甚至受到人身攻击, 严重到让他饱受忧郁之苦,
05:38
Cantor was even vilified personally,
128
338037
2033
05:40
and it got so bad for him that he suffered severe depression,
129
340094
2905
并且在精神疗院渡过后半余生。
05:43
and spent the last half of his life in and out of mental institutions.
130
343023
3286
不过他的想法最终得到肯定。 今天,这观念被认为是基础并重要的。
05:46
But eventually, his ideas won out.
131
346333
2329
05:48
Today, they're considered fundamental and magnificent.
132
348686
2958
05:51
All research mathematicians accept these ideas,
133
351668
2577
所有数学研究者都接受这观念, 每个数学系都也都在教,
05:54
every college math major learns them,
134
354269
1795
而我刚刚已经花了几分钟来解释。
05:56
and I've explained them to you in a few minutes.
135
356088
2239
05:58
Some day, perhaps, they'll be common knowledge.
136
358351
2493
也许有一天,这会变成大家的常识。
06:00
There's more.
137
360868
1174
还有一点。我们刚刚指出 小数,也就是实数,
06:02
We just pointed out that the set of decimal numbers
138
362066
2430
06:04
-- that is, the real numbers -- is a bigger infinity
139
364520
2450
06:06
than the set of whole numbers.
140
366994
1435
比正整数的“无限大”还多。 康托尔在想两个“无限大”之间
06:08
Cantor wondered whether there are infinities
141
368453
2057
是否还有不同层级的“无限大”。 我们不这么认为,但也没办法证明。
06:10
of different sizes between these two infinities.
142
370534
2260
06:12
He didn't believe there were, but couldn't prove it.
143
372818
2497
康托尔的猜想变成 有名的“连续统假说”。
06:15
Cantor's conjecture became known as the continuum hypothesis.
144
375339
2911
在 1900 年,大数学家希尔伯特 把连续统假说列为
06:19
In 1900, the great mathematician David Hilbert
145
379402
2457
06:21
listed the continuum hypothesis
146
381883
1751
06:23
as the most important unsolved problem in mathematics.
147
383658
2759
数学里最重要的未解问题。
06:26
The 20th century saw a resolution of this problem,
148
386441
2813
这问题在 20 世纪露出一些端倪, 但是结果和超乎预期,并跌破大家眼镜。
06:29
but in a completely unexpected, paradigm-shattering way.
149
389278
2958
06:32
In the 1920s, Kurt Gödel showed
150
392942
1957
在 1920 年代,哥德尔证明了 你不可能证明连续统假说是错的。
06:34
that you can never prove that the continuum hypothesis is false.
151
394923
3000
06:37
Then, in the 1960s, Paul J. Cohen showed
152
397947
3056
接着在 1960 年代,寇恩证明了 你不可能证明连续统假说是对的。
06:41
that you can never prove that the continuum hypothesis is true.
153
401027
3000
合在一起,这些结果告诉你 数学里也有一些不能回答的问题。
06:44
Taken together, these results mean
154
404051
2149
06:46
that there are unanswerable questions in mathematics.
155
406224
2524
06:48
A very stunning conclusion.
156
408772
1514
这是一个很令人震惊的结论。
06:50
Mathematics is rightly considered the pinnacle of human reasoning,
157
410310
3125
数学被公认是人类逻辑的结晶,
06:53
but we now know that even mathematics has its limitations.
158
413459
3109
但现在我们知道 就算是数学也有它的极限。
还有就是,数学里有一些值得我们思考, 而且很令人着迷的道理。
06:57
Still, mathematics has some truly amazing things for us to think about.
159
417094
3715
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7