請雙擊下方英文字幕播放視頻。
譯者: Steven Shi
審譯者: Alice Hsueh
00:13
Information technology grows in an exponential manner.
0
13160
3000
資訊科技正在以指數的幅度發展
00:16
It's not linear. And our intuition is linear.
1
16160
4000
它並不是線性的。可是對我們來講,直覺知識卻是線性的
00:20
When we walked through the savanna a thousand years ago
2
20160
2000
一千年以前,當我們走過熱帶草原
00:22
we made linear predictions where that animal would be,
3
22160
2000
我們直接推斷獵物會在哪邊
00:24
and that worked fine. It's hardwired in our brains.
4
24160
3000
這樣的推斷是行得通的。我們已經習慣利用線性的方式來估計
00:27
But the pace of exponential growth
5
27160
3000
但是指數發展的速度
00:30
is really what describes information technologies.
6
30160
3000
才能準確地形容目前的資訊科技.
00:33
And it's not just computation.
7
33160
3000
這不僅僅是計算方式的差異.
00:36
There is a big difference between linear and exponential growth.
8
36160
2000
線性和指數增長有著很大的不同.
00:38
If I take 30 steps linearly -- one, two, three, four, five --
9
38160
4000
假如我直線地走個30步, 1, 2, 3, 4, 5
00:42
I get to 30.
10
42160
2000
我到達30.
00:44
If I take 30 steps exponentially -- two, four, eight, 16 --
11
44160
3000
假如我以指數方式走30步, 2, 4, 8, 16,
00:47
I get to a billion.
12
47160
2000
我到達10億多.
00:49
It makes a huge difference.
13
49160
2000
這相差了十萬八千里.
00:51
And that really describes information technology.
14
51160
2000
指數增長確切地描述了資訊科技
00:53
When I was a student at MIT,
15
53160
2000
當年我還在麻省理工學院上學的時候,
00:55
we all shared one computer that took up a whole building.
16
55160
2000
我們班上共用的一台電腦就佔掉了整棟樓的能量資源.
00:57
The computer in your cellphone today is a million times cheaper,
17
57160
3000
現在手機裡面的電腦程式便宜了一百萬倍,
01:00
a million times smaller,
18
60160
2000
小了一百萬倍,
01:02
a thousand times more powerful.
19
62160
2000
強大了一百萬倍.
01:04
That's a billion-fold increase in capability per dollar
20
64160
3000
這相當於一美元就有一億倍的增長能力
01:07
that we've actually experienced since I was a student.
21
67160
2000
從我還是個學生至今, 這就是我們所經歷的.
01:09
And we're going to do it again in the next 25 years.
22
69160
3000
在未來, 這樣的快速發展還會持續25年.
01:12
Information technology progresses
23
72160
2000
通過一系列的S-曲線
01:14
through a series of S-curves
24
74160
2000
資訊科技將會持續進步
01:16
where each one is a different paradigm.
25
76160
2000
到不同的模式.
01:18
So people say, "What's going to happen when Moore's Law comes to an end?"
26
78160
3000
所以人們問, "當摩爾定律到達終點, 這世界會變成怎樣?"
01:21
Which will happen around 2020.
27
81160
2000
當摩爾定律在2020到達終點,
01:23
We'll then go to the next paradigm.
28
83160
2000
我們會進入下一個發展模式.
01:25
And Moore's Law was not the first paradigm
29
85160
2000
但是摩爾定律並不是第一個導致
01:27
to bring exponential growth to computing.
30
87160
2000
資訊科技指數發展的思維模式.
01:29
The exponential growth of computing started
31
89160
2000
資訊科技指數性的進步發生於
01:31
decades before Gordon Moore was even born.
32
91160
2000
戈登.摩爾出生幾十年前
01:33
And it doesn't just apply to computation.
33
93160
4000
科技的指數發展並不限於電腦科技,
01:37
It's really any technology where we can measure
34
97160
2000
它包含任何一樣
01:39
the underlying information properties.
35
99160
3000
我們所知道到的科技.
01:42
Here we have 49 famous computers. I put them in a logarithmic graph.
36
102160
4000
這裡有49台不同年代的電腦,我用對數線圖做個整理
01:46
The logarithmic scale hides the scale of the increase,
37
106160
4000
對數線的大小影藏了真正增長的比率.
01:50
because this represents trillions-fold increase
38
110160
2000
但是這圖表描繪了自1890以來
01:52
since the 1890 census.
39
112160
3000
科技億萬倍的增長.
01:55
In 1950s they were shrinking vacuum tubes,
40
115160
2000
在50年代, 電腦工程師盡可能的縮小真空管,
01:57
making them smaller and smaller. They finally hit a wall;
41
117160
3000
他們一直改良又改良, 最後到達了極限.
02:00
they couldn't shrink the vacuum tube any more and keep the vacuum.
42
120160
2000
他們不能再縮小真空管,只能保留真空部分
02:02
And that was the end of the shrinking of vacuum tubes,
43
122160
3000
而那就是真空管縮小技術的終點
02:05
but it was not the end of the exponential growth of computing.
44
125160
3000
但那可不是資訊科技指數發展的結局.
02:08
We went to the fourth paradigm, transistors,
45
128160
2000
我們到了第四個發展模式, 改良電晶體
02:10
and finally integrated circuits.
46
130160
2000
然後我們又去整合電路.
02:12
When that comes to an end we'll go to the sixth paradigm;
47
132160
2000
當上個步驟結束了, 我們將到達第六個發展模式,
02:14
three-dimensional self-organizing molecular circuits.
48
134160
4000
開發三維自組織分子電路.
02:18
But what's even more amazing, really, than this
49
138160
3000
但比這個驚人的進步更難以置信的,
02:21
fantastic scale of progress,
50
141160
2000
我說真的,
02:23
is that -- look at how predictable this is.
51
143160
2000
是科技的發展有多麼好預測.
02:25
I mean this went through thick and thin,
52
145160
2000
科技的發展經過大跟小,
02:27
through war and peace, through boom times and recessions.
53
147160
3000
戰爭跟和平, 繁榮跟衰退.
02:30
The Great Depression made not a dent in this exponential progression.
54
150160
4000
1930年的經濟大蕭條根本沒影響到科技的指數發展.
02:34
We'll see the same thing in the economic recession we're having now.
55
154160
4000
在這金融危機裡我們會見識到一樣的結果.
02:38
At least the exponential growth of information technology capability
56
158160
3000
至少資訊科技的指數增長的能力
02:41
will continue unabated.
57
161160
3000
將不會減弱.
02:44
And I just updated these graphs.
58
164160
2000
我更新了這些圖
02:46
Because I had them through 2002 in my book, "The Singularity is Near."
59
166160
3000
因為在我的書"奇點迫近"(The Singularity is Near), 數據只延伸到2002年,
02:49
So we updated them,
60
169160
2000
所以我們更新了資料
02:51
so I could present it here, to 2007.
61
171160
3000
讓我才能夠在2007年發表.
02:54
And I was asked, "Well aren't you nervous?
62
174160
2000
很多人問我, "你不緊張嗎?
02:56
Maybe it kind of didn't stay on this exponential progression."
63
176160
4000
說不定數據並不證明你所說的指數發展."
03:00
I was a little nervous
64
180160
2000
我是有點緊張.
03:02
because maybe the data wouldn't be right,
65
182160
2000
害怕數據可能會不合.
03:04
but I've done this now for 30 years,
66
184160
2000
可是我做這行30多年了,
03:06
and it has stayed on this exponential progression.
67
186160
3000
數據總是證明科技是朝向指數發展的.
03:09
Look at this graph here.You could buy one transistor for a dollar in 1968.
68
189160
3000
看. 在1968年你要花一美元才能買一個電晶體
03:12
You can buy half a billion today,
69
192160
2000
今天一美元可以買五千萬個電晶體
03:14
and they are actually better, because they are faster.
70
194160
2000
實際上今天的晶體管更好, 更快.
03:16
But look at how predictable this is.
71
196160
2000
看科技的發展有多麼好預測.
03:18
And I'd say this knowledge is over-fitting to past data.
72
198160
3000
我會說這資訊是過去式了.
03:21
I've been making these forward-looking predictions for about 30 years.
73
201160
4000
我做了超過30年的前瞻性預測.
03:25
And the cost of a transistor cycle,
74
205160
2000
電晶體的費用,
03:27
which is a measure of the price performance of electronics,
75
207160
2000
相應地呈現了電子的市場價格,
03:29
comes down about every year.
76
209160
2000
每年都下降.
03:31
That's a 50 percent deflation rate.
77
211160
2000
那說明了百分之五十的下降.
03:33
And it's also true of other examples,
78
213160
2000
而且它也適用於其他的例子
03:35
like DNA data or brain data.
79
215160
2000
例如DNA數據或大腦的數據.
03:37
But we more than make up for that.
80
217160
2000
但是我們的社會進步的更快.
03:39
We actually ship more than twice as much
81
219160
2000
實際上我們生產一倍以上
03:41
of every form of information technology.
82
221160
2000
一種同樣的科技.
03:43
We've had 18 percent growth in constant dollars
83
223160
3000
過去半個世紀,不管哪種資訊科技,
03:46
in every form of information technology for the last half-century,
84
226160
3000
衡定價值都有百分之十八的增長
03:49
despite the fact that you can get twice as much of it each year.
85
229160
4000
儘管你每年都可以得到一倍以上的回報
03:53
This is a completely different example.
86
233160
2000
這是個完全不同的例子.
03:55
This is not Moore's Law.
87
235160
2000
這不是摩爾定律.
03:57
The amount of DNA data
88
237160
2000
我們所獲得DNA數據的總量
03:59
we've sequenced has doubled every year.
89
239160
2000
總是增加一倍以上.
04:01
The cost has come down by half every year.
90
241160
3000
而每年費用卻下跌一半.
04:04
And this has been a smooth progression
91
244160
2000
自從人類基因定序計劃(Human Genome Project),
04:06
since the beginning of the genome project.
92
246160
2000
這已經成為了一個持續的發展定律.
04:08
And halfway through the project, skeptics said,
93
248160
2000
當這計劃進行到一半時, 有人懷疑
04:10
"Well, this is not working out. You're halfway through the genome project
94
250160
3000
"這不會成功的. 已過了一半的計劃時間,
04:13
and you've finished one percent of the project."
95
253160
2000
你卻只完成了百分之一的任務."
04:15
But that was really right on schedule.
96
255160
2000
可是那工程是如期進行.
04:17
Because if you double one percent seven more times,
97
257160
2000
因為如果你將百分之一乘兩倍,並連乘七次以上
04:19
which is exactly what happened,
98
259160
2000
實際上所產生的,
04:21
you get 100 percent. And the project was finished on time.
99
261160
3000
就是百分之百. 如此工程按照時間地完成了.
04:24
Communication technologies:
100
264160
2000
傳播科技
04:26
50 different ways to measure this,
101
266160
2000
可用50種不同的方式來評量
04:28
the number of bits being moved around, the size of the Internet.
102
268160
3000
正在移動的位元數目, 網路的大小.
04:31
But this has progressed at an exponential pace.
103
271160
2000
但科技正在以指數的步伐進步.
04:33
This is deeply democratizing.
104
273160
2000
這是強烈地民主化
04:35
I wrote, over 20 years ago in "The Age of Intelligent Machines,"
105
275160
3000
20年前,我在我的書"誰會代替人類:智能簡史" (The Age of Intelligent Machines) 中寫到,
04:38
when the Soviet Union was going strong, that it would be swept away
106
278160
3000
當蘇聯正強大的時候,
04:41
by this growth of decentralized communication.
107
281160
4000
它會被這鼓增長的非主流通訊勢力瓦解
04:45
And we will have plenty of computation as we go through the 21st century
108
285160
3000
當我們經過21世紀, 我們能運用大量電腦科技
04:48
to do things like simulate regions of the human brain.
109
288160
4000
來做些事,例如模擬人類大腦區域
04:52
But where will we get the software?
110
292160
2000
但是我們要從哪裡得到這科技?
04:54
Some critics say, "Oh, well software is stuck in the mud."
111
294160
3000
有寫評論家說, "喔, 科技還沒那麼發達."
04:57
But we are learning more and more about the human brain.
112
297160
2000
事實上, 我們越來越了解人類大腦
04:59
Spatial resolution of brain scanning is doubling every year.
113
299160
3000
每年腦部掃描的空間分辨率都比前年高了一倍.
05:02
The amount of data we're getting about the brain is doubling every year.
114
302160
3000
每年我們所得到有關人類大腦的訊息都增加了一倍.
05:05
And we're showing that we can actually turn this data
115
305160
3000
我們證明,事實上可以轉化這個數據
05:08
into working models and simulations of brain regions.
116
308160
3000
便成大腦區域的模型和模擬
05:11
There is about 20 regions of the brain that have been modeled,
117
311160
2000
目前人類大概建構,模擬並測試了
05:13
simulated and tested:
118
313160
2000
20個大腦區域:
05:15
the auditory cortex, regions of the visual cortex;
119
315160
3000
不同的聽覺和視覺皮層區域,
05:18
cerebellum, where we do our skill formation;
120
318160
2000
構成不同能力的小腦,
05:20
slices of the cerebral cortex, where we do our rational thinking.
121
320160
4000
做理性思考的大腦等.
05:24
And all of this has fueled
122
324160
2000
所有的發現,
05:26
an increase, very smooth and predictable, of productivity.
123
326160
3000
以相當平穩可預測的模式,增加了生產力.
05:29
We've gone from 30 dollars to 130 dollars
124
329160
2000
因為資訊科技的進步,
05:31
in constant dollars in the value of an average hour of human labor,
125
331160
4000
我們的工作價值從每小時30元美金
05:35
fueled by this information technology.
126
335160
3000
到每小時130元美金.
05:38
And we're all concerned about energy and the environment.
127
338160
3000
這還只是能源和環境的影響.
05:41
Well this is a logarithmic graph.
128
341160
2000
嗯, 這是一個對數圖.
05:43
This represents a smooth doubling,
129
343160
2000
每兩年,
05:45
every two years, of the amount of solar energy we're creating,
130
345160
4000
我們製造的太陽能持續倍增.
05:49
particularly as we're now applying nanotechnology,
131
349160
2000
特別是我們現在正在運用奈米科技,
05:51
a form of information technology, to solar panels.
132
351160
3000
一種資訊科技, 在太陽能電池板上.
05:54
And we're only eight doublings away
133
354160
2000
我們現在只離我們所需要的百分之百能量
05:56
from it meeting 100 percent of our energy needs.
134
356160
2000
八次的雙倍增長.
05:58
And there is 10 thousand times more sunlight than we need.
135
358160
4000
而太陽能則超過我們一萬多倍的需求.
06:02
We ultimately will merge with this technology. It's already very close to us.
136
362160
5000
最後太陽能會和科技結合。時間就快到了。
06:07
When I was a student it was across campus, now it's in our pockets.
137
367160
3000
當我還是個學生, 它在校園的對面. 現在它可以放進我們的口袋裡.
06:10
What used to take up a building now fits in our pockets.
138
370160
3000
以前用掉整棟大樓資源的現在適合放進我們的口袋裡.
06:13
What now fits in our pockets would fit in a blood cell in 25 years.
139
373160
3000
現在放得進我們口袋裡的,25年後將可以放在一個紅血球裡.
06:16
And we will begin to actually deeply influence
140
376160
4000
當我們越來越接近這科技,
06:20
our health and our intelligence,
141
380160
2000
我們會真正開始左右
06:22
as we get closer and closer to this technology.
142
382160
4000
我們的健康跟智慧.
06:26
Based on that we are announcing, here at TED,
143
386160
3000
所以我們要以TED一貫的傳統,,
06:29
in true TED tradition, Singularity University.
144
389160
3000
在TED這裡宣布,我們要設立優越大學.
06:32
It's a new university
145
392160
2000
這是一所全新的大學
06:34
that's founded by Peter Diamandis, who is here in the audience,
146
394160
2000
由台下的聽眾,彼得‧岱爾莽第斯先生
06:36
and myself.
147
396160
2000
和我所創立.
06:38
It's backed by NASA and Google,
148
398160
2000
它獲得美國太空總署(NASA)和Google的贊助
06:40
and other leaders in the high-tech and science community.
149
400160
4000
還有其他在高科技領域的領袖們的支持.
06:44
And our goal was to assemble the leaders,
150
404160
3000
我們的目標是召集領導人,
06:47
both teachers and students,
151
407160
2000
--老師和學生,
06:49
in these exponentially growing information technologies,
152
409160
2000
來研究這個指數發展的資訊科技
06:51
and their application.
153
411160
2000
和它的用途.
06:53
But Larry Page made an impassioned speech
154
413160
2000
裴基(Larry Page)先生在我們的會議上
06:55
at our organizing meeting,
155
415160
2000
發表了一段熱烈的演講.
06:57
saying we should devote this study
156
417160
5000
他說我們應致力研究於
07:02
to actually addressing some of the major challenges facing humanity.
157
422160
4000
真正解決一些人類面臨的重大挑戰.
07:06
And if we did that, then Google would back this.
158
426160
2000
假如我們做了這選擇, Google會資助我們.
07:08
And so that's what we've done.
159
428160
2000
所以我們做了研究上的一些改變.
07:10
The last third of the nine-week intensive summer session
160
430160
4000
在密集的九週暑期學營裡的最後三週,
07:14
will be devoted to a group project to address
161
434160
2000
我們將會分組專門來提出
07:16
some major challenge of humanity.
162
436160
2000
一些社會上面臨的重大挑戰.
07:18
Like for example, applying the Internet,
163
438160
2000
例如將今天已經很普及的網路,
07:20
which is now ubiquitous, in the rural areas of China or in Africa,
164
440160
5000
提供給中國和非洲的鄉村地區,
07:25
to bringing health information
165
445160
2000
好將健康資訊
07:27
to developing areas of the world.
166
447160
3000
傳播到世界的每個發展地區.
07:30
And these projects will continue past these sessions,
167
450160
3000
這些科研項目會延展到這些學營外,
07:33
using collaborative interactive communication.
168
453160
3000
通過協作地互動溝通討論.
07:36
All the intellectual property that is created and taught
169
456160
4000
所有萌生和傳授的智慧財產
07:40
will be online and available,
170
460160
2000
將會在網路上公開,
07:42
and developed online in a collaborative fashion.
171
462160
3000
並在網路上互相合作發展.
07:45
Here is our founding meeting.
172
465160
2000
這是我們的創校會議的照片.
07:47
But this is being announced today.
173
467160
2000
今天我們在這裡發佈.
07:49
It will be permanently headquartered in Silicon Valley,
174
469160
3000
優越大學(Singulariy University)將會永久設置在矽谷,
07:52
at the NASA Ames research center.
175
472160
2000
在NASA的艾密斯研究中心.
07:54
There are different programs for graduate students,
176
474160
2000
我們提供不同的課程給研究生,
07:56
for executives at different companies.
177
476160
3000
和不同公司的高階主管.
07:59
The first six tracks here -- artificial intelligence,
178
479160
2000
這裡的六種首要研究方向, 人工智能,
08:01
advanced computing technologies, biotechnology, nanotechnology --
179
481160
3000
先進的電腦科技,生物科技,奈米科技
08:04
are the different core areas of information technology.
180
484160
4000
分別是資訊科技不同的的核心領域.
08:08
Then we are going to apply them to the other areas,
181
488160
2000
然後我們將會將它們應用到其他領域,
08:10
like energy, ecology,
182
490160
3000
例如能源, 生態環境,
08:13
policy law and ethics, entrepreneurship,
183
493160
2000
政策法律和道德, 企業態度,
08:15
so that people can bring these new technologies to the world.
184
495160
4000
使人們可以把這些新技術帶給世界.
08:19
So we're very appreciative of the support we've gotten
185
499160
5000
我們非常感謝我們所得到,
08:24
from both the intellectual leaders, the high-tech leaders,
186
504160
2000
來自知識份子和高科技領導人們的支持,
08:26
particularly Google and NASA.
187
506160
2000
特別是Google和NASA.
08:28
This is an exciting new venture.
188
508160
2000
這是個興奮的全新研究.
08:30
And we invite you to participate. Thank you very much.
189
510160
3000
我們誠心地邀請你的加入. 謝謝.
08:33
(Applause)
190
513160
3000
(鼓掌)
New videos
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。