Robots that fly ... and cooperate | Vijay Kumar

2,183,324 views ・ 2012-03-01

TED


請雙擊下方英文字幕播放視頻。

譯者: kane tan 審譯者: Joan Liu
00:20
Good morning.
0
20566
1159
早安。
00:22
I'm here today to talk about autonomous flying beach balls.
1
22853
4153
今天我想要來談一談
會自動飛行的海灘球。
00:27
(Laughter)
2
27030
1008
不是啦,是靈巧的飛行機器人,就像這一個。
00:28
No, agile aerial robots like this one.
3
28062
2865
00:31
I'd like to tell you a little bit about the challenges in building these,
4
31624
3460
我想告訴大家製作這種東西的挑戰性
以及一些很棒的可能性
00:35
and some of the terrific opportunities for applying this technology.
5
35108
3392
來運用這種技術。
00:38
So these robots are related to unmanned aerial vehicles.
6
38957
4608
這些機器人
算是一種無人的飛行器。
不過,如你所見,它們的尺寸都比較大。
00:44
However, the vehicles you see here are big.
7
44199
2651
它們都有幾千磅重,
00:47
They weigh thousands of pounds, are not by any means agile.
8
47318
3269
一點都不靈巧。
00:50
They're not even autonomous.
9
50611
1625
它們甚至並不是自動操作的。
00:52
In fact, many of these vehicles are operated by flight crews
10
52886
4182
事實上,大部分這些飛行器
是由飛行小組所操作,
可能有好幾個駕駛員
00:57
that can include multiple pilots,
11
57092
2560
00:59
operators of sensors,
12
59676
2206
同時在操控著感應器
01:01
and mission coordinators.
13
61906
1330
以及任務協調器。
01:03
What we're interested in is developing robots like this --
14
63922
2743
我們想要開發的機器人是像這個樣子 --
左邊這裡另外兩張照片--
01:06
and here are two other pictures --
15
66689
1690
這些你都可以買到現成的。
01:08
of robots that you can buy off the shelf.
16
68403
2683
這些是一種具有四個螺旋槳的直昇機,
01:11
So these are helicopters with four rotors,
17
71110
3284
它們大約是一公尺大小,
01:14
and they're roughly a meter or so in scale,
18
74418
3690
也有好幾磅重。
01:18
and weigh several pounds.
19
78132
1460
於是我們將它們進行感應器與處理器的改良,
01:20
And so we retrofit these with sensors and processors,
20
80076
3355
讓這些機器人能夠在室內
01:23
and these robots can fly indoors.
21
83455
2206
不靠GPS飛行。
01:25
Without GPS.
22
85685
1319
我手中所拿的這個機器人
01:27
The robot I'm holding in my hand
23
87457
1888
就是這種飛行器,
01:29
is this one,
24
89369
1650
這是由兩位學生所製作的,
01:31
and it's been created by two students,
25
91043
3143
Alex 以及 Daniel。
01:34
Alex and Daniel.
26
94210
1648
它的重量大概是
01:36
So this weighs a little more than a tenth of a pound.
27
96493
3115
十分之一磅左右。
01:39
It consumes about 15 watts of power.
28
99632
2579
它消耗的能量大概是15瓦。
如你所見,
01:42
And as you can see, it's about eight inches in diameter.
29
102235
2833
它的直徑大概是8英吋大。
讓我替大家簡單介紹一下
01:46
So let me give you just a very quick tutorial
30
106330
2595
01:48
on how these robots work.
31
108949
1666
這些機器人的原理。
這裡有四個螺旋槳。
01:51
So it has four rotors.
32
111043
1193
01:52
If you spin these rotors at the same speed,
33
112260
2048
當這四個螺旋槳速度相同時,
01:54
the robot hovers.
34
114332
1199
機器人就會懸浮在空中。
01:56
If you increase the speed of each of these rotors,
35
116420
3636
如果這些螺旋槳速度增加,
機器人就會飛起來,往上加速。
02:00
then the robot flies up, it accelerates up.
36
120080
2539
02:02
Of course, if the robot were tilted,
37
122643
2432
當然,如果機器人傾斜了,
相對於水平線來說,
02:05
inclined to the horizontal,
38
125099
1310
02:06
then it would accelerate in this direction.
39
126433
2803
它就會往這個方向前進。
02:09
So to get it to tilt,
40
129686
1413
想讓它傾斜的話,這裡有兩種方法可以辦到。
02:11
there's one of two ways of doing it.
41
131123
2093
在這圖片中,
02:13
So in this picture, you see that rotor four is spinning faster
42
133240
3636
你可以看見4號螺旋槳轉速變快一點,
02:16
and rotor two is spinning slower.
43
136900
1968
而2號螺旋槳轉速變慢一點。
02:18
And when that happens,
44
138892
1560
當這種情況發生時,
02:20
there's a moment that causes this robot to roll.
45
140476
3051
就會讓機器人進行翻轉。
另一種狀況是,
02:24
And the other way around,
46
144495
1255
02:25
if you increase the speed of rotor three and decrease the speed of rotor one,
47
145774
5579
當3號螺旋槳的速度上升,
1號螺旋槳的速度下降時,
機器人就會往前傾斜。
02:31
then the robot pitches forward.
48
151377
1859
02:33
And then finally,
49
153820
1168
而最後一種可能,
02:35
if you spin opposite pairs of rotors
50
155012
2894
當對角線的兩組螺旋槳
02:37
faster than the other pair,
51
157930
1692
轉得比另外一組快時,
02:39
then the robot yaws about the vertical axis.
52
159646
2721
機器人就會在垂直方向偏移。
有一個內置處理器
02:42
So an on-board processor
53
162391
1460
02:43
essentially looks at what motions need to be executed
54
163875
3307
一直在監控著該進行什麼動作,
並且將這些動作進行組合,
02:47
and combines these motions,
55
167206
1970
然後以每秒600次的速度
02:49
and figures out what commands to send to the motors --
56
169200
3110
決定出該對這些螺旋槳下達什麼指令。
02:52
600 times a second.
57
172334
1412
02:53
That's basically how this thing operates.
58
173770
1969
這就是它操作的基本概念。
這種設計的其中一項優點是,
02:56
So one of the advantages of this design
59
176247
2142
當你將它的尺寸縮小時,
02:58
is when you scale things down,
60
178413
1899
機器人自然就會變得很靈巧。
03:00
the robot naturally becomes agile.
61
180336
2318
這邊的 R
03:03
So here, R is the characteristic length of the robot.
62
183194
4063
代表著機器人特性的長度。
事實上是直徑的一半。
03:07
It's actually half the diameter.
63
187281
1674
03:09
And there are lots of physical parameters that change as you reduce R.
64
189595
4641
而當你將 R 縮減時,
許多物理係數就會跟著變動。
03:14
The one that's most important is the inertia,
65
194968
2631
其中最重要的
就是慣性或稱為阻止變動的抵抗力。
03:17
or the resistance to motion.
66
197623
1921
結果,
03:19
So it turns out the inertia, which governs angular motion,
67
199568
4476
控制了角運動的慣性,
大小約是 R 的 5 次方。
03:24
scales as a fifth power of R.
68
204068
2600
所以當 R 變小時,
03:27
So the smaller you make R,
69
207046
1696
03:28
the more dramatically the inertia reduces.
70
208766
2317
慣性會急遽的下降。
03:31
So as a result, the angular acceleration,
71
211956
2935
結果,角加速度,
03:34
denoted by the Greek letter alpha here,
72
214915
2039
這裡用希臘字母的 α 表示,
03:36
goes as 1 over R.
73
216978
1619
變成了 1 / R 。
03:38
It's inversely proportional to R.
74
218621
1729
它和 R 成反比。
03:40
The smaller you make it, the more quickly you can turn.
75
220374
2770
當尺寸越小時,它就越容易旋轉。
用這個影片說明會清楚一點。
03:44
So this should be clear in these videos.
76
224219
1961
在右下角,你可以看見一個機器人
03:46
On the bottom right, you see a robot performing a 360-degree flip
77
226204
4459
正在進行 360 度翻轉
03:50
in less than half a second.
78
230687
1548
在不到 1/2 秒的時間內。
03:52
Multiple flips, a little more time.
79
232656
2580
多次的翻轉,只要稍微長一點點的時間。
在這種狀況下,內置的處理器
03:56
So here the processes on board
80
236259
1881
接收了加速器
03:58
are getting feedback from accelerometers and gyros on board,
81
238164
3184
以及陀螺儀回傳的資訊,
04:01
and calculating, like I said before,
82
241372
2118
然後進行計算,如先前所說,
04:03
commands at 600 times a second,
83
243514
1809
用每秒600次的速度發出指令,
04:05
to stabilize this robot.
84
245347
1889
讓機器人保持平衡。
04:07
So on the left, you see Daniel throwing this robot up into the air,
85
247607
3350
在左下角,Daniel 正將機器人拋向空中。
04:10
and it shows you how robust the control is.
86
250981
2027
這會讓你知道它的操控能力有多強大。
不論你怎麼丟,
04:13
No matter how you throw it,
87
253032
1310
04:14
the robot recovers and comes back to him.
88
254366
2912
機器人都能恢復平衡然後回到他的手中。
04:18
So why build robots like this?
89
258881
1777
為什麼要將機器人設計成這樣呢?
嗯,這種機器人有很多種運用方式。
04:21
Well, robots like this have many applications.
90
261079
2571
你可以將它派遣到這種建築物裡,
04:24
You can send them inside buildings like this,
91
264198
2471
04:26
as first responders to look for intruders,
92
266693
3587
擔任先遣部隊去找出侵入者,
或是去找尋生化物質洩漏,
04:30
maybe look for biochemical leaks,
93
270304
3301
或是瓦斯洩漏等。
04:33
gaseous leaks.
94
273629
1151
你也可以將它們運用在
04:35
You can also use them for applications like construction.
95
275102
3714
例如建築上面。
04:38
So here are robots carrying beams, columns
96
278840
4524
這裡的機器人正運送著橫梁、柱子,
並且組合成立方體形狀的建築物。
04:43
and assembling cube-like structures.
97
283388
1848
04:45
I'll tell you a little bit more about this.
98
285260
2056
我再告訴大家詳細一點。
04:48
The robots can be used for transporting cargo.
99
288695
2541
這些機器人可以用來運送貨櫃。
04:51
So one of the problems with these small robots
100
291583
3113
但這些小機器人的困難在於
04:54
is their payload-carrying capacity.
101
294720
2001
它們對於重物的負載能力有限。
04:56
So you might want to have multiple robots carry payloads.
102
296745
3017
所以如果你可能會希望能有多一點機器人
一起來搬運這個重物。
05:00
This is a picture of a recent experiment we did --
103
300746
2355
這是我們近期實驗的照片 --
事實上已經不算是近期了 --
05:03
actually not so recent anymore --
104
303125
1595
05:04
in Sendai, shortly after the earthquake.
105
304744
2492
在地震過後的仙台市(日本)。
05:07
So robots like this could be sent into collapsed buildings,
106
307938
3191
這種機器人可以被派遣進入傾倒的建築物裡面
去評估天災造成的損害,
05:11
to assess the damage after natural disasters,
107
311153
2891
或是派遣到反應爐裡
05:14
or sent into reactor buildings,
108
314068
1582
05:15
to map radiation levels.
109
315674
1619
去勘查輻射等級。
05:19
So one fundamental problem that the robots have to solve
110
319583
3521
如果這些機器人想有自主能力的話,
它們必須先解決這個問題,
05:23
if they are to be autonomous,
111
323128
1579
05:24
is essentially figuring out how to get from point A to point B.
112
324731
3505
就是必須能夠判斷
怎麼從 A 點到達 B 點。
05:28
So this gets a little challenging,
113
328937
1667
這有一點難度,
05:30
because the dynamics of this robot are quite complicated.
114
330628
3007
因為這個機器人的動力學是相當複雜的。
05:33
In fact, they live in a 12-dimensional space.
115
333659
2492
事實上,它們活在 12 維空間裡。
所以我們運用了一些技巧。
05:36
So we use a little trick.
116
336524
1444
05:37
We take this curved 12-dimensional space,
117
337992
3413
我們將這個 12 維空間的曲線
轉換成為
05:41
and transform it into a flat, four-dimensional space.
118
341429
3894
一個平面的四維空間。
在這個四維空間之中,
05:45
And that four-dimensional space consists of X, Y, Z,
119
345347
3071
包含了 X, Y, Z 還有偏移的角度。
05:48
and then the yaw angle.
120
348442
1412
05:49
And so what the robot does,
121
349878
1358
所以這個機器人所做的是,
05:51
is it plans what we call a minimum-snap trajectory.
122
351260
3976
去找出我們所說的最小震盪軌跡。
複習一下物理參數,
05:56
So to remind you of physics:
123
356209
1397
05:57
You have position, derivative, velocity;
124
357630
2054
我們有位置,接著衍生出速度,
05:59
then acceleration;
125
359708
1856
以及加速度,
06:01
and then comes jerk,
126
361588
2101
還有加加速度,
06:03
and then comes snap.
127
363713
1420
然後是震盪。
06:05
So this robot minimizes snap.
128
365578
2452
所以機器人將震盪進行最小化。
06:08
So what that effectively does,
129
368800
1436
這實際上的結果就是
06:10
is produce a smooth and graceful motion.
130
370260
2624
產生出柔順且優美的動作。
06:12
And it does that avoiding obstacles.
131
372908
2842
它還可以用來避開障礙物。
而這些最小震盪軌跡在這個平面空間中
06:16
So these minimum-snap trajectories in this flat space are then transformed
132
376313
3563
又會被轉換回
06:19
back into this complicated 12-dimensional space,
133
379900
3325
這個複雜的 12 維空間,
才能夠讓機器人去進行
06:23
which the robot must do for control and then execution.
134
383249
2986
控制以及執行任務。
06:26
So let me show you some examples
135
386749
1540
讓我給大家看一些例子
06:28
of what these minimum-snap trajectories look like.
136
388313
2777
說明這些最小震盪軌跡是什麼樣子。
在第一段影片中,
06:31
And in the first video,
137
391114
1151
06:32
you'll see the robot going from point A to point B,
138
392289
2729
你可以看見機器人經過中繼點
由 A 點到達 B 點。
06:35
through an intermediate point.
139
395042
1623
06:36
(Whirring noise)
140
396990
2730
所以機器人確實可以
06:43
So the robot is obviously capable of executing any curve trajectory.
141
403377
3621
去執行任何曲線軌跡。
這些是環狀軌跡,
06:47
So these are circular trajectories,
142
407022
1714
06:48
where the robot pulls about two G's.
143
408760
2500
機器人牽引著大約 2 G 的重力。
06:52
Here you have overhead motion capture cameras on the top
144
412844
3702
在上面有個置頂動態影像攝影機,
06:56
that tell the robot where it is 100 times a second.
145
416570
3206
它會以每秒100次的速度告訴機器人自己在哪裡。
06:59
It also tells the robot where these obstacles are.
146
419800
2436
它也會告訴機器人這些障礙物的位置。
這些也可以是移動中的障礙物。
07:03
And the obstacles can be moving.
147
423140
1556
07:04
And here, you'll see Daniel throw this hoop into the air,
148
424720
3127
你將會看見 Daniel 將這個鐵環丟向空中,
07:07
while the robot is calculating the position of the hoop,
149
427871
2659
機器人會計算鐵環的位置,
然後試著去找出穿過鐵環的最佳方式。
07:10
and trying to figure out how to best go through the hoop.
150
430554
2880
身為一個學術人員,
07:14
So as an academic,
151
434002
1234
07:15
we're always trained to be able to jump through hoops
152
435260
2528
我們總是被訓練得能夠赴湯蹈火才能籌措研究經費,
07:17
to raise funding for our labs,
153
437812
1485
所以我們也要我們的機器人做到。
07:19
and we get our robots to do that.
154
439321
1915
07:21
(Applause)
155
441260
6365
(掌聲)
這機器人還能做另一件事,
07:28
So another thing the robot can do
156
448524
1611
就是去記住軌跡的片段,
07:30
is it remembers pieces of trajectory
157
450159
2077
07:32
that it learns or is pre-programmed.
158
452260
2904
不論是它自行發現的或是事先輸入的。
所以你可以看見機器人會去
07:35
So here, you see the robot combining a motion that builds up momentum,
159
455466
4770
組合一項動作
讓它產生動量,
07:40
and then changes its orientation and then recovers.
160
460260
2976
接著改變自己的行進方向在回復過來。
它必須這麼做,因為這個窗戶的缺口大小
07:44
So it has to do this because this gap in the window
161
464004
2960
07:46
is only slightly larger than the width of the robot.
162
466988
3458
只比機器人的寬度稍微大一點。
就像是跳水選手站在跳板上,
07:51
So just like a diver stands on a springboard
163
471050
2753
07:53
and then jumps off it to gain momentum,
164
473827
2453
接著會跳起來用以產生動量,
然後快速旋轉,翻轉兩周半進行穿越,
07:56
and then does this pirouette, this two and a half somersault through
165
476304
3229
最後優雅的回復,
07:59
and then gracefully recovers,
166
479557
1402
08:00
this robot is basically doing that.
167
480983
1698
這就是機器人所做的事。
08:02
So it knows how to combine little bits and pieces of trajectories
168
482705
3080
它懂得如何去結合這些零碎的軌跡
08:05
to do these fairly difficult tasks.
169
485809
2999
以達成這些相當困難的任務。
我想換個話題。
08:10
So I want change gears.
170
490018
1218
08:11
So one of the disadvantages of these small robots is its size.
171
491260
3839
這些小機器人的缺點之一就是尺寸。
如同先前所提,
08:15
And I told you earlier
172
495654
1152
08:16
that we may want to employ lots and lots of robots
173
496830
2349
我們想使用大量的機器人
來解決尺寸上的限制。
08:19
to overcome the limitations of size.
174
499203
2033
但有個困難點是
08:22
So one difficulty is:
175
502010
1574
08:23
How do you coordinate lots of these robots?
176
503608
2793
你要如何去協調這些機器人呢?
08:26
And so here, we looked to nature.
177
506425
1811
這部份我們觀察了自然界。
08:28
So I want to show you a clip of Aphaenogaster desert ants,
178
508544
4608
我想讓大家看一段影片,
關於沙漠盤腹蟻
在 Stephen Pratt 教授的實驗室裡搬運東西。
08:33
in Professor Stephen Pratt's lab, carrying an object.
179
513176
3388
事實上這是一小塊無花果。
08:36
So this is actually a piece of fig.
180
516588
1715
事實上你可以把任何東西沾附一層無花果汁
08:38
Actually you take any object coated with fig juice,
181
518327
2400
螞蟻們就會將它搬回巢穴裡。
08:40
and the ants will carry it back to the nest.
182
520751
2091
08:42
So these ants don't have any central coordinator.
183
522866
3169
這些螞蟻並沒有中樞協調者。
它們能感覺到旁邊的鄰居們。
08:46
They sense their neighbors.
184
526487
1547
不用進行明確的溝通。
08:48
There's no explicit communication.
185
528058
2285
但因為它們能感覺到鄰居,
08:50
But because they sense the neighbors
186
530367
1739
因為它們能感覺到東西,
08:52
and because they sense the object,
187
532130
1776
08:53
they have implicit coordination across the group.
188
533930
2830
它們在團體間有著隱性協調能力。
這種協調能力
08:57
So this is the kind of coordination we want our robots to have.
189
537474
3420
就是我們希望機器人能有的。
09:01
So when we have a robot which is surrounded by neighbors --
190
541569
4778
當我們的一個機器人
被周圍的機器人包圍時 --
看看機器人 I 和機器人 J --
09:06
and let's look at robot I and robot J --
191
546371
2229
我們希望機器人做的事情是
09:08
what we want the robots to do,
192
548624
1548
當它們以特定隊形飛行時
09:10
is to monitor the separation between them,
193
550196
2111
09:12
as they fly in formation.
194
552331
1905
去偵測它們之間的距離。
09:14
And then you want to make sure
195
554537
1481
你期望能夠確保
09:16
that this separation is within acceptable levels.
196
556042
2904
這個距離是在可接受的範圍內。
於是機器人們偵測著這個誤差值
09:19
So again, the robots monitor this error
197
559303
2468
09:21
and calculate the control commands 100 times a second,
198
561795
4149
然後以每秒100次的速度
去估算控制指令,
09:25
which then translates into motor commands,
199
565968
2023
接著以每秒600次的速度對螺旋槳進行動作指令。
09:28
600 times a second.
200
568015
1215
這必須是在
09:29
So this also has to be done in a decentralized way.
201
569254
3222
沒有中央控制的方式下進行。
09:32
Again, if you have lots and lots of robots,
202
572785
2334
當你有許許多多機器人的時候,
想要以中央協調訊息的方式
09:35
it's impossible to coordinate all this information centrally
203
575143
3277
09:38
fast enough in order for the robots to accomplish the task.
204
578444
3177
快速的讓所有機器人完成任務是不可能的。
09:41
Plus, the robots have to base their actions only on local information --
205
581645
4348
再加上機器人們必須依靠
它們自身去偵測到鄰近機器人
以獲得訊息來進行動作。
09:46
what they sense from their neighbors.
206
586017
2119
最後,
09:48
And then finally,
207
588160
1386
09:49
we insist that the robots be agnostic to who their neighbors are.
208
589570
4100
我們堅持機器人必須無法預知
鄰近機器人會是誰。
09:53
So this is what we call anonymity.
209
593694
2117
也就是匿名的方式。
接下來我將要給大家看
09:57
So what I want to show you next is a video of 20 of these little robots,
210
597258
6417
一段影片
關於20個這些小機器人
10:03
flying in formation.
211
603699
1537
以特定隊形進行飛行。
它們正在偵測鄰近機器人的位置。
10:06
They're monitoring their neighbors' positions.
212
606144
2896
它們正在保持著這個隊形。
10:09
They're maintaining formation.
213
609064
1902
10:10
The formations can change.
214
610990
1780
這些隊形可以改變。
10:12
They can be planar formations,
215
612794
1679
可以是平面的隊形,
10:14
they can be three-dimensional formations.
216
614497
2103
也可以是三維空間的隊形。
如你所見的,
10:17
As you can see here,
217
617331
1341
10:18
they collapse from a three-dimensional formation into planar formation.
218
618696
3687
它們從三維空間的隊形變換成平面的隊形。
在穿越障礙物時,
10:22
And to fly through obstacles,
219
622407
1531
10:23
they can adapt the formations on the fly.
220
623962
2952
它們可以在飛行中調整隊形。
這些機器人移動時真的靠得很近。
10:28
So again, these robots come really close together.
221
628026
2463
10:30
As you can see in this figure-eight flight,
222
630513
2388
在這個 8 字飛行隊形中,
10:32
they come within inches of each other.
223
632925
1984
它們的距離只有幾吋而已。
儘管在這些螺旋槳葉片之間
10:35
And despite the aerodynamic interactions with these propeller blades,
224
635377
4317
有著空氣動力的交互影響,
10:39
they're able to maintain stable flight.
225
639718
2148
它們仍然能維持穩定的飛行。
10:41
(Applause)
226
641890
6896
(掌聲)
一旦你知道要怎麼進行特定飛行隊形,
10:49
So once you know how to fly in formation,
227
649246
1999
你就能準確的協力拿起物體。
10:51
you can actually pick up objects cooperatively.
228
651269
2216
而這是要告訴大家
10:53
So this just shows that we can double, triple, quadruple
229
653509
4577
藉由將機器人組合成小組後,
我們可以將機器人們的力量
10:58
the robots' strength,
230
658110
1158
10:59
by just getting them to team with neighbors, as you can see here.
231
659292
3077
放大兩倍、三倍、四倍,就像是你將看到的這樣。
但這樣做有一個缺點,
11:02
One of the disadvantages of doing that is, as you scale things up --
232
662393
4142
當你將尺寸放大以後 --
11:06
so if you have lots of robots carrying the same thing,
233
666559
2564
如果你有很多這些機器人載運同一個東西,
你一定會有效地增加慣性,
11:09
you're essentially increasing the inertia,
234
669147
2720
11:11
and therefore you pay a price; they're not as agile.
235
671891
2619
於是你將會付出代價,它們會失去靈巧性。
11:14
But you do gain in terms of payload-carrying capacity.
236
674978
3096
但你可以相對獲得載運負重能力。
另一項我想給大家看的運用 --
11:18
Another application I want to show you -- again, this is in our lab.
237
678098
3215
這也是在我們的實驗室裡進行的。
11:21
This is work done by Quentin Lindsey, who's a graduate student.
238
681337
3165
這是由 Quentin Lindsey 完成的,他是一位研究生。
他的演算法告訴這些機器人們
11:24
So his algorithm essentially tells these robots
239
684526
2620
如何能夠自主性的
11:27
how to autonomously build cubic structures
240
687170
4072
將綑狀的材料
建造成立體建築。
11:31
from truss-like elements.
241
691266
1970
他的演算法告訴機器人
11:34
So his algorithm tells the robot what part to pick up,
242
694441
3760
該拿起哪一個部份,
以及什麼時候該把它放在哪裡。
11:38
when, and where to place it.
243
698225
1825
你可以在這短片中看到 --
11:40
So in this video you see --
244
700471
1483
11:41
and it's sped up 10, 14 times --
245
701978
2024
這是以 10 倍、14 倍速播放 --
你可以看見這些機器人們建造了三種不同建築。
11:44
you see three different structures being built by these robots.
246
704026
3089
再次提醒,一切都是自主性進行的,
11:47
And again, everything is autonomous,
247
707139
2026
而 Quentin 所做的是
11:49
and all Quentin has to do
248
709189
1283
11:50
is to give them a blueprint of the design that he wants to build.
249
710496
3935
給這些機器人一張藍圖
記載著他想要的建築設計。
11:56
So all these experiments you've seen thus far,
250
716925
2811
你所看見的這些實驗,
11:59
all these demonstrations,
251
719760
1350
這些展示,
12:01
have been done with the help of motion-capture systems.
252
721134
3102
都使用了動作擷取系統。
如果離開了實驗室,
12:05
So what happens when you leave your lab,
253
725029
2507
走進真實世界會變成怎麼樣呢?
12:07
and you go outside into the real world?
254
727560
2037
12:09
And what if there's no GPS?
255
729922
1706
如果沒有 GPS 會怎樣呢?
12:12
So this robot is actually equipped with a camera,
256
732755
4337
這個機器人
裝置了一具攝影機,
一具雷射H搜尋器,雷射掃描器。
12:17
and a laser rangefinder, laser scanner.
257
737116
2373
它使用這些感應器
12:20
And it uses these sensors to build a map of the environment.
258
740140
3920
來製作一張周圍的地圖。
這地圖然有著一些環境特徵 --
12:24
What that map consists of are features --
259
744084
3286
例如大門、窗戶、
12:27
like doorways, windows, people, furniture --
260
747394
3871
人、家具 --
接著它會辨識出相對於這些環境特徵
12:31
and it then figures out where its position is,
261
751289
2143
它所處的位置。
12:33
with respect to the features.
262
753456
1401
12:34
So there is no global coordinate system.
263
754881
2210
這裡並沒有整體座標系統。
座標系統是機器人自身定義出來的,
12:37
The coordinate system is defined based on the robot,
264
757115
2506
12:39
where it is and what it's looking at.
265
759645
2057
藉由它所在的位置以及它所看到的東西。
12:42
And it navigates with respect to those features.
266
762575
2755
接著它對這些環境特徵進行探索。
我想給大家看一段影片,
12:46
So I want to show you a clip
267
766316
1420
12:47
of algorithms developed by Frank Shen and Professor Nathan Michael,
268
767760
3952
關於 Frank Shen 以及 Nathan Michael 教授
所開發出來的演算法,
12:51
that shows this robot entering a building for the very first time,
269
771736
3769
這個機器人第一次進入一個建築物,
12:55
and creating this map on the fly.
270
775529
2422
然後在飛行中製作了這個地圖。
12:58
So the robot then figures out what the features are,
271
778642
3158
於是機器人知道環境特徵是什麼東西。
13:01
it builds the map,
272
781824
1151
它製作出地圖。
13:02
it figures out where it is with respect to the features,
273
782999
2967
它知道自己相對於環境特徵的位置,
13:05
and then estimates its position 100 times a second,
274
785990
3948
然後每秒100次的速度
估算出自己的位置,
13:09
allowing us to use the control algorithms that I described to you earlier.
275
789962
3818
讓我們可以利用
剛剛說過的控制演算法。
13:13
So this robot is actually being commanded remotely by Frank,
276
793804
4433
事實上這個機器人正被
Frank 以遠端遙控的方式下指令。
但這個機器人也能自行判斷
13:18
but the robot can also figure out where to go on its own.
277
798261
3539
它應該往哪裡走。
假設我把它送進一個建築物,
13:22
So suppose I were to send this into a building,
278
802125
2207
而我完全不知道這個建築物的樣子,
13:24
and I had no idea what this building looked like.
279
804356
2302
我可以命令機器人進入,
13:26
I can ask this robot to go in,
280
806682
1444
製作出一張地圖,
13:28
create a map,
281
808150
1904
然後回來告訴我建築物的樣子。
13:30
and then come back and tell me what the building looks like.
282
810078
2865
13:32
So here, the robot is not only solving the problem
283
812967
3168
所以機器人並不只是解決
如何從地圖上的A點到B點這個問題,
13:36
of how to go from point A to point B in this map,
284
816159
2634
13:38
but it's figuring out what the best point B is at every time.
285
818817
4399
它甚至知道
每一次的最佳B點是哪個位置。
於是它知道該往哪裡去
13:43
So essentially it knows where to go
286
823240
2054
13:45
to look for places that have the least information,
287
825318
2785
以找出還沒有訊息的位置。
這就是它如何把地圖裝滿的方法。
13:48
and that's how it populates this map.
288
828127
1968
13:50
So I want to leave you with one last application.
289
830944
2998
最後,
我想再給大家看一樣應用。
13:54
And there are many applications of this technology.
290
834982
2524
這個技術有許多運用方式。
13:57
I'm a professor, and we're passionate about education.
291
837823
2548
我是一個教授,我們對教育充滿熱情。
這種機器人可以改變
14:00
Robots like this can really change the way we do K-12 education.
292
840395
3936
我們進行12年國教的方式。
我們身在南加州,
14:04
But we're in Southern California,
293
844355
1825
很靠近洛杉磯,
14:06
close to Los Angeles,
294
846204
1833
所以我想用關於娛樂的例子
14:08
so I have to conclude with something focused on entertainment.
295
848061
3250
來作為最後的結尾。
我想用一段音樂影片來作為結尾。
14:12
I want to conclude with a music video.
296
852407
1834
我要為大家介紹
14:14
I want to introduce the creators, Alex and Daniel, who created this video.
297
854265
4714
這個影片的作者,Alex 和 Daniel。
(掌聲)
14:19
(Applause)
298
859003
6878
14:25
So before I play this video,
299
865905
1434
在我播放影片之前,
14:27
I want to tell you that they created it in the last three days,
300
867363
3197
我想告訴大家他們在接到 Chris 電話後的三天內
14:30
after getting a call from Chris.
301
870584
1652
就將這段影片製作完了。
14:32
And the robots that play in the video are completely autonomous.
302
872743
3817
影片中演奏的機器人
都是完全自主性的進行。
14:36
You will see nine robots play six different instruments.
303
876584
3502
你可以看見 9 個機器人們演奏著 6 種不同的樂器。
當然,這是為了 TED 2012 特別製作的。
14:40
And of course, it's made exclusively for TED 2012.
304
880697
2971
讓我們一起來欣賞。
14:44
Let's watch.
305
884533
1152
14:46
(Sound of air escaping from valve)
306
886824
4404
14:53
(Music)
307
893547
3336
14:56
(Whirring sound)
308
896907
5520
15:19
(Music)
309
919442
6629
(音樂聲)
(掌聲)
16:24
(Applause) (Cheers)
310
984029
5984
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7