Robots that fly ... and cooperate | Vijay Kumar

2,183,324 views ・ 2012-03-01

TED


Dvaput kliknite na engleske titlove ispod za reprodukciju videozapisa.

Prevoditelj: Recezent: Tilen Pigac - EFZG
00:20
Good morning.
0
20566
1159
Dobro jutro.
00:22
I'm here today to talk about autonomous flying beach balls.
1
22853
4153
Danas ću govoriti
o samoupravljajućim, letećim... loptama za plažu.
00:27
(Laughter)
2
27030
1008
Ma ne, o okretnim lebdećim robotima poput ovog.
00:28
No, agile aerial robots like this one.
3
28062
2865
00:31
I'd like to tell you a little bit about the challenges in building these,
4
31624
3460
Nekoliko riječi o izazovima pri građenju robota
kao i mogućnostima koje pruža
00:35
and some of the terrific opportunities for applying this technology.
5
35108
3392
primjena ove tehnologije.
00:38
So these robots are related to unmanned aerial vehicles.
6
38957
4608
Dakle, ovi roboti
su svojevrsne bezpilotne letjelice.
Međutim ovdje prikazane letjelice su velike.
00:44
However, the vehicles you see here are big.
7
44199
2651
Budući da teže stotine kilograma、
00:47
They weigh thousands of pounds, are not by any means agile.
8
47318
3269
pokretljivost im je otežana.
00:50
They're not even autonomous.
9
50611
1625
Štoviše nisu niti samoupravljajuće.
00:52
In fact, many of these vehicles are operated by flight crews
10
52886
4182
U stvarnosti, mnoge od ovih letjelica
su upravljane stručnim osobljem
poput grupe pilota
00:57
that can include multiple pilots,
11
57092
2560
00:59
operators of sensors,
12
59676
2206
kontrolorima senzora
01:01
and mission coordinators.
13
61906
1330
i zapovjednicima misije.
01:03
What we're interested in is developing robots like this --
14
63922
2743
Mi smo se pozabavili razvojem robota poput ovih --
prikazana su dva primjera
01:06
and here are two other pictures --
15
66689
1690
robota koji se mogu kupiti u trgovini.
01:08
of robots that you can buy off the shelf.
16
68403
2683
Dakle to su helikopteri sa četiri rotora-propelera
01:11
So these are helicopters with four rotors,
17
71110
3284
otprilike promjera jednog metra
01:14
and they're roughly a meter or so in scale,
18
74418
3690
i teže koji kilogram.
01:18
and weigh several pounds.
19
78132
1460
Opremili smo ih sa senzorima i procesorima,
01:20
And so we retrofit these with sensors and processors,
20
80076
3355
da bi mogli letjeti u zatvorenom prostoru
01:23
and these robots can fly indoors.
21
83455
2206
bez GPSa.
01:25
Without GPS.
22
85685
1319
Robot kojeg držim
01:27
The robot I'm holding in my hand
23
87457
1888
...ovaj...
01:29
is this one,
24
89369
1650
su kreirala dva studenta.
01:31
and it's been created by two students,
25
91043
3143
Alex i Daniel.
01:34
Alex and Daniel.
26
94210
1648
Težak je jedva
01:36
So this weighs a little more than a tenth of a pound.
27
96493
3115
40-tak grama
01:39
It consumes about 15 watts of power.
28
99632
2579
i pokreće ga snaga od 15 wati.
Kao što možete ocijeniti
01:42
And as you can see, it's about eight inches in diameter.
29
102235
2833
u promjeru je oko 20 cm.
Dopustite da ukratko pojasnim
01:46
So let me give you just a very quick tutorial
30
106330
2595
01:48
on how these robots work.
31
108949
1666
na koji način ovi roboti rade.
Robot ima četiri propelera.
01:51
So it has four rotors.
32
111043
1193
01:52
If you spin these rotors at the same speed,
33
112260
2048
Ako se svi propeleri okreću istom brzinom
01:54
the robot hovers.
34
114332
1199
robot lebdi u zraku.
01:56
If you increase the speed of each of these rotors,
35
116420
3636
Kada povećamo okretaje propelera
robot se uzdiže.
02:00
then the robot flies up, it accelerates up.
36
120080
2539
02:02
Of course, if the robot were tilted,
37
122643
2432
Ako je robot nagnut
prema horizontali
02:05
inclined to the horizontal,
38
125099
1310
02:06
then it would accelerate in this direction.
39
126433
2803
onda će se kretati u tom smjeru.
02:09
So to get it to tilt,
40
129686
1413
Evo jednog od dva načina kako nakrenuti robota.
02:11
there's one of two ways of doing it.
41
131123
2093
Na ovoj slici
02:13
So in this picture, you see that rotor four is spinning faster
42
133240
3636
uočite kako se 4. propeler okreće brže,
02:16
and rotor two is spinning slower.
43
136900
1968
a 2. propeler se okreće sporije.
02:18
And when that happens,
44
138892
1560
U tom trenutku
02:20
there's a moment that causes this robot to roll.
45
140476
3051
robot se nakrene.
I drugi način je
02:24
And the other way around,
46
144495
1255
02:25
if you increase the speed of rotor three and decrease the speed of rotor one,
47
145774
5579
da povećate brzinu 3. propelera
i smanjite brzinu 1. propelera,
čime je robot usmjeren prema naprijed.
02:31
then the robot pitches forward.
48
151377
1859
02:33
And then finally,
49
153820
1168
Konačno
02:35
if you spin opposite pairs of rotors
50
155012
2894
ako ubrzate dva
02:37
faster than the other pair,
51
157930
1692
nasuprotna propelera
02:39
then the robot yaws about the vertical axis.
52
159646
2721
robot će se okretati oko vertikalne osi.
U osnovi, ugrađeni procesor
02:42
So an on-board processor
53
162391
1460
02:43
essentially looks at what motions need to be executed
54
163875
3307
opaža koje kretnje trebaju biti izvršene,
usklađuje kretnje
02:47
and combines these motions,
55
167206
1970
te šalje primjerenu naredbu motorima
02:49
and figures out what commands to send to the motors --
56
169200
3110
600 puta u sekundi.
02:52
600 times a second.
57
172334
1412
02:53
That's basically how this thing operates.
58
173770
1969
Tako u osnovi robot radi.
Prednost ovakvog dizajna
02:56
So one of the advantages of this design
59
176247
2142
je, da s manjim komponentama
02:58
is when you scale things down,
60
178413
1899
robot postaje okretniji.
03:00
the robot naturally becomes agile.
61
180336
2318
Na ovoj slici R predstavlja
03:03
So here, R is the characteristic length of the robot.
62
183194
4063
karakterističnu duljinu robota.
U osnovi to je radius robota.
03:07
It's actually half the diameter.
63
187281
1674
03:09
And there are lots of physical parameters that change as you reduce R.
64
189595
4641
Mnogi fizikalni parametri se mijenjaju
kako smanjujemo R.
03:14
The one that's most important is the inertia,
65
194968
2631
Najvažniji parametar
je tromost, ili otpor kretanju.
03:17
or the resistance to motion.
66
197623
1921
Ispada da je
03:19
So it turns out the inertia, which governs angular motion,
67
199568
4476
tromost, o kojoj ovisi kretanje pod kutom,
proporcionalna R na petu potenciju.
03:24
scales as a fifth power of R.
68
204068
2600
Sa smanjivanjem R
03:27
So the smaller you make R,
69
207046
1696
03:28
the more dramatically the inertia reduces.
70
208766
2317
tromost dramatično pada.
03:31
So as a result, the angular acceleration,
71
211956
2935
To rezultira kutnom akceleracijom
03:34
denoted by the Greek letter alpha here,
72
214915
2039
označenom grčkim slovom alfa
03:36
goes as 1 over R.
73
216978
1619
približno 1/R.
03:38
It's inversely proportional to R.
74
218621
1729
Dakle, obrnuto proporcionalna s R.
03:40
The smaller you make it, the more quickly you can turn.
75
220374
2770
Što je robot manji, to je okretniji.
Što je očito iz ovih snimki.
03:44
So this should be clear in these videos.
76
224219
1961
Promotrite robota, desno dolje,
03:46
On the bottom right, you see a robot performing a 360-degree flip
77
226204
4459
kako se okrenuo 360 stupnjeva.
03:50
in less than half a second.
78
230687
1548
u djeliću sekunde.
03:52
Multiple flips, a little more time.
79
232656
2580
Višestruki okreti - malo više vremena.
Ugrađeni procesori
03:56
So here the processes on board
80
236259
1881
zaprimaju informaciju od ugrađenih
03:58
are getting feedback from accelerometers and gyros on board,
81
238164
3184
akcelerometara i žiroskopa
04:01
and calculating, like I said before,
82
241372
2118
te procesiraju, kao što rekoh,
04:03
commands at 600 times a second,
83
243514
1809
te informacije 600 puta u sekundi
04:05
to stabilize this robot.
84
245347
1889
stabilizirajući robota.
04:07
So on the left, you see Daniel throwing this robot up into the air,
85
247607
3350
Na dnu lijevo, uočite Daniela kako baca robota u zrak
04:10
and it shows you how robust the control is.
86
250981
2027
demonstrirajući koliko je robot robustan.
Bez obzira kako ga bacite
04:13
No matter how you throw it,
87
253032
1310
04:14
the robot recovers and comes back to him.
88
254366
2912
robot se dočeka na noge i doleti nazad.
04:18
So why build robots like this?
89
258881
1777
Koja je svrha graditi ovakve robote?
Može biti višestruka.
04:21
Well, robots like this have many applications.
90
261079
2571
Robote možete poslati u zgrade pod ugrozom
04:24
You can send them inside buildings like this,
91
264198
2471
04:26
as first responders to look for intruders,
92
266693
3587
primjerice kao izvidnicu za otkrivanje provalnika,
otkrivanje biokemijskog hazarda,
04:30
maybe look for biochemical leaks,
93
270304
3301
ili curenja plina.
04:33
gaseous leaks.
94
273629
1151
Možete ih koristiti i kao
04:35
You can also use them for applications like construction.
95
275102
3714
programirane graditelje.
04:38
So here are robots carrying beams, columns
96
278840
4524
Uočite kako roboti nose gredice i stupiće
i sklapaju ih u kockaste konstrukcije.
04:43
and assembling cube-like structures.
97
283388
1848
04:45
I'll tell you a little bit more about this.
98
285260
2056
O tome malo više kasnije.
04:48
The robots can be used for transporting cargo.
99
288695
2541
Ove robote možemo koristiti i za prijenos tereta.
04:51
So one of the problems with these small robots
100
291583
3113
Međutim, s obzirom na njihovu veličinu
04:54
is their payload-carrying capacity.
101
294720
2001
kapacitet nosivosti je malen.
04:56
So you might want to have multiple robots carry payloads.
102
296745
3017
Stoga bi bilo dobro udružiti robote
za prijenos tereta.
05:00
This is a picture of a recent experiment we did --
103
300746
2355
Evo snimke nedavnog pokusa --
doduše već ima tome --
05:03
actually not so recent anymore --
104
303125
1595
05:04
in Sendai, shortly after the earthquake.
105
304744
2492
u Sendaiu, netom iza potresa.
05:07
So robots like this could be sent into collapsed buildings,
106
307938
3191
Roboti mogu biti poslani u ruševine
kako bi se procjenila šteta
05:11
to assess the damage after natural disasters,
107
311153
2891
ili u objekte s reaktorima
05:14
or sent into reactor buildings,
108
314068
1582
05:15
to map radiation levels.
109
315674
1619
da izmjere razinu radijacije.
05:19
So one fundamental problem that the robots have to solve
110
319583
3521
Osnovni problem
s kojim se roboti moraju nositi, samoinicijativno
05:23
if they are to be autonomous,
111
323128
1579
05:24
is essentially figuring out how to get from point A to point B.
112
324731
3505
je u biti zaključivanje
kako doći od točke A do točke B.
05:28
So this gets a little challenging,
113
328937
1667
Dakle stvari postaju složenije
05:30
because the dynamics of this robot are quite complicated.
114
330628
3007
s porašću dinamike robota.
05:33
In fact, they live in a 12-dimensional space.
115
333659
2492
U načelu, roboti žive u 12-dimenzionalnom prostoru.
Pa smo morali tome doskočiti.
05:36
So we use a little trick.
116
336524
1444
05:37
We take this curved 12-dimensional space,
117
337992
3413
Uzeli smo zakrivljeni 12-dimenzionalni prostor
i transformirali ga
05:41
and transform it into a flat, four-dimensional space.
118
341429
3894
u ravninski 4-dimenzionalni prostor.
Ovaj 4-dimenzionalni prostor
05:45
And that four-dimensional space consists of X, Y, Z,
119
345347
3071
se sastoji od X, Y, Z i osnog kuta.
05:48
and then the yaw angle.
120
348442
1412
05:49
And so what the robot does,
121
349878
1358
Što je robotu činiti
05:51
is it plans what we call a minimum-snap trajectory.
122
351260
3976
je isplanirati putanju najmanje akceleracije.
Da se prisjetimo fizike,
05:56
So to remind you of physics:
123
356209
1397
05:57
You have position, derivative, velocity;
124
357630
2054
imamo položaj, te 1. derivaciju položaja - brzinu,
05:59
then acceleration;
125
359708
1856
zatim akceleraciju - 2. vremenska derivacija položaja (d2x/dt2)
06:01
and then comes jerk,
126
361588
2101
impuls - 3. derivacija položaja (d3x/dt3)
06:03
and then comes snap.
127
363713
1420
'cimanje' - 4. derivacija položaja (d4x/dt4).
06:05
So this robot minimizes snap.
128
365578
2452
Robot minimizira cimanje.
06:08
So what that effectively does,
129
368800
1436
Rezultat toga je
06:10
is produce a smooth and graceful motion.
130
370260
2624
glatko, ravnomjerno kretanje robota.
06:12
And it does that avoiding obstacles.
131
372908
2842
I to pri zaobilaženju zapreka.
Dakle, putanje najmanje akceleracije u ovom ravninskom prostoru
06:16
So these minimum-snap trajectories in this flat space are then transformed
132
376313
3563
potom transformiramo nazad
06:19
back into this complicated 12-dimensional space,
133
379900
3325
u složeni 12-dimenzionalni prostor,
koje robot mora slijediti
06:23
which the robot must do for control and then execution.
134
383249
2986
radi provjere i potom izvršavanja.
06:26
So let me show you some examples
135
386749
1540
Evo nekoliko primjera
06:28
of what these minimum-snap trajectories look like.
136
388313
2777
kako putanje najmanje akceleracije izgledaju.
U prvoj snimci
06:31
And in the first video,
137
391114
1151
06:32
you'll see the robot going from point A to point B,
138
392289
2729
vidjet ćete kretanje robota od točke A do točke B
ali kroz zadanu točku.
06:35
through an intermediate point.
139
395042
1623
06:36
(Whirring noise)
140
396990
2730
Robot je sposoban
06:43
So the robot is obviously capable of executing any curve trajectory.
141
403377
3621
pratiti zakrivljene putanje.
Ovo su kružne putanje
06:47
So these are circular trajectories,
142
407022
1714
06:48
where the robot pulls about two G's.
143
408760
2500
na kojima robot potegne 2G.
06:52
Here you have overhead motion capture cameras on the top
144
412844
3702
Ovdje imamo stropne kamere
06:56
that tell the robot where it is 100 times a second.
145
416570
3206
koje signaliziraju robotu njegov položaj 100 puta u sekundi.
06:59
It also tells the robot where these obstacles are.
146
419800
2436
Također daju robotu do znanja gdje su prepreke.
Te prepreke mogu biti pokretne.
07:03
And the obstacles can be moving.
147
423140
1556
07:04
And here, you'll see Daniel throw this hoop into the air,
148
424720
3127
Ovdje vidite Daniela kako baca kolut u zrak,
07:07
while the robot is calculating the position of the hoop,
149
427871
2659
a robot računa položaj koluta
pokušavajući odrediti pravi trenutak za prolazak kroz kolut.
07:10
and trying to figure out how to best go through the hoop.
150
430554
2880
Kao znanstvenici, primorani smo izvoditi
07:14
So as an academic,
151
434002
1234
07:15
we're always trained to be able to jump through hoops
152
435260
2528
akrobacije kako bi fondovi za naše projekte bili odobreni,
07:17
to raise funding for our labs,
153
437812
1485
pa smo odlučili i robote naučiti akrobacijama.
07:19
and we get our robots to do that.
154
439321
1915
07:21
(Applause)
155
441260
6365
(Pljesak)
Dodatna stvar koju robot može učiniti
07:28
So another thing the robot can do
156
448524
1611
je memoriranje dijelova putanje
07:30
is it remembers pieces of trajectory
157
450159
2077
07:32
that it learns or is pre-programmed.
158
452260
2904
koju je savladao ili mu je predprogramirana.
Ovdje vidite robota
07:35
So here, you see the robot combining a motion that builds up momentum,
159
455466
4770
kako kombinira kretnje
i vreba pravi trenutak
07:40
and then changes its orientation and then recovers.
160
460260
2976
u kojem će se nagnuti i potom vratiti u početni položaj.
Na to je prisiljen jer svjetli otvor prozora
07:44
So it has to do this because this gap in the window
161
464004
2960
07:46
is only slightly larger than the width of the robot.
162
466988
3458
je tijesan za njegovu širinu.
Poput skakača s daske
07:51
So just like a diver stands on a springboard
163
471050
2753
07:53
and then jumps off it to gain momentum,
164
473827
2453
kada odskoči da bi dobio zamah,
potreban za piruetu, i dvostruki salto
07:56
and then does this pirouette, this two and a half somersault through
165
476304
3229
da bi se na kraju ponovo ispružio,
07:59
and then gracefully recovers,
166
479557
1402
08:00
this robot is basically doing that.
167
480983
1698
ovaj robot u osnovi čini isto.
08:02
So it knows how to combine little bits and pieces of trajectories
168
482705
3080
Dakle zna kako usuglasiti više manjih putanja
08:05
to do these fairly difficult tasks.
169
485809
2999
u jednu znatno složeniju.
Promjenimo temu.
08:10
So I want change gears.
170
490018
1218
08:11
So one of the disadvantages of these small robots is its size.
171
491260
3839
Jedan od nedostataka robota je veličina.
I kao što rekoh
08:15
And I told you earlier
172
495654
1152
08:16
that we may want to employ lots and lots of robots
173
496830
2349
trebat ćemo upregnuti veliki broj robota
da bi nadomjestili taj nedostatak.
08:19
to overcome the limitations of size.
174
499203
2033
Prva poteškoća je
08:22
So one difficulty is:
175
502010
1574
08:23
How do you coordinate lots of these robots?
176
503608
2793
kako koordinirati jato robota?
08:26
And so here, we looked to nature.
177
506425
1811
Okrenuli smo se majci prirodi.
08:28
So I want to show you a clip of Aphaenogaster desert ants,
178
508544
4608
Pogledajmo slijedeći prilog
s pustinjskim mravima Aphaenogaster.
kako nose teret, u laboratoriju profesora Stephen Pratta.
08:33
in Professor Stephen Pratt's lab, carrying an object.
179
513176
3388
Ovo je komadić smokve.
08:36
So this is actually a piece of fig.
180
516588
1715
Ako im podmetnete bilo koji predmet preliven smokvinim sokom
08:38
Actually you take any object coated with fig juice,
181
518327
2400
mravi će ga odvući u mravinjak.
08:40
and the ants will carry it back to the nest.
182
520751
2091
08:42
So these ants don't have any central coordinator.
183
522866
3169
Mravi očito nemaju koordinatora.
Ali osjećaju ostale iz skupine.
08:46
They sense their neighbors.
184
526487
1547
Ne postoji izravna komunikacija.
08:48
There's no explicit communication.
185
528058
2285
Ali kako osjećaju ostale u skupini
08:50
But because they sense the neighbors
186
530367
1739
i kako osjećaju predmet,
08:52
and because they sense the object,
187
532130
1776
08:53
they have implicit coordination across the group.
188
533930
2830
koordinacija je ostvarena posredno.
Takvu sličnu koordinaciju
08:57
So this is the kind of coordination we want our robots to have.
189
537474
3420
smo željeli ostvariti kod robota.
09:01
So when we have a robot which is surrounded by neighbors --
190
541569
4778
Ako imamo robota
grupiranog u jato
promotrimo robota I i robota J --
09:06
and let's look at robot I and robot J --
191
546371
2229
želimo robote osvijestiti
09:08
what we want the robots to do,
192
548624
1548
da paze na međusobni razmak
09:10
is to monitor the separation between them,
193
550196
2111
09:12
as they fly in formation.
194
552331
1905
kada tvore formaciju.
09:14
And then you want to make sure
195
554537
1481
Želimo da se taj razmak
09:16
that this separation is within acceptable levels.
196
556042
2904
održava unutar određene tolerancije.
Da ponovimo, roboti prate ovu toleranciju
09:19
So again, the robots monitor this error
197
559303
2468
09:21
and calculate the control commands 100 times a second,
198
561795
4149
i proračunavaju kontrolne naredbe
100 puta u sekundi,
09:25
which then translates into motor commands,
199
565968
2023
što znači da motor zaprima 600 naredbi u sekundi.
09:28
600 times a second.
200
568015
1215
I to treba biti učinjeno
09:29
So this also has to be done in a decentralized way.
201
569254
3222
decentralizirano.
09:32
Again, if you have lots and lots of robots,
202
572785
2334
Ako imate jato robota,
bilo bi nemoguće koordinirati ih centralno
09:35
it's impossible to coordinate all this information centrally
203
575143
3277
09:38
fast enough in order for the robots to accomplish the task.
204
578444
3177
zadovoljavajućom brzinom za ostvarenje zadaće.
09:41
Plus, the robots have to base their actions only on local information --
205
581645
4348
Dodatno, roboti moraju zasnivati kretnje
isključivo na lokalnim informacijama
koje zaprimaju od susjednih robota.
09:46
what they sense from their neighbors.
206
586017
2119
I napokon
09:48
And then finally,
207
588160
1386
09:49
we insist that the robots be agnostic to who their neighbors are.
208
589570
4100
inzistirali smo da su roboti agnostični
prema susjedima.
09:53
So this is what we call anonymity.
209
593694
2117
To smo nazvali anonimnost.
Sada ću vam pokazati
09:57
So what I want to show you next is a video of 20 of these little robots,
210
597258
6417
snimak
sa 20 robota
10:03
flying in formation.
211
603699
1537
koji lete u formaciji.
Svaki robot promatra položaj susjeda.
10:06
They're monitoring their neighbors' positions.
212
606144
2896
I tako održavaju formaciju.
10:09
They're maintaining formation.
213
609064
1902
10:10
The formations can change.
214
610990
1780
Formacija se može mijenjati.
10:12
They can be planar formations,
215
612794
1679
Može biti ravninska
10:14
they can be three-dimensional formations.
216
614497
2103
ili prostorna.
Kao što ovdje vidite,
10:17
As you can see here,
217
617331
1341
10:18
they collapse from a three-dimensional formation into planar formation.
218
618696
3687
roboti iz prostorne formacije tvore ravninsku.
I da bi letjeli kroz prepreke
10:22
And to fly through obstacles,
219
622407
1531
10:23
they can adapt the formations on the fly.
220
623962
2952
sposobni su prilagoditi formaciju u letu.
Roboti mogu prići blizu jedan drugom.
10:28
So again, these robots come really close together.
221
628026
2463
10:30
As you can see in this figure-eight flight,
222
630513
2388
Kao što vidite u ovoj formaciji u obliku osmice,
10:32
they come within inches of each other.
223
632925
1984
roboti prilaze jedni drugima unutar par centimetara.
I unatoč aerodinamičnom utjecaju
10:35
And despite the aerodynamic interactions with these propeller blades,
224
635377
4317
propelerskih elisa
10:39
they're able to maintain stable flight.
225
639718
2148
održavaju stabilan let.
10:41
(Applause)
226
641890
6896
(Pljesak)
Kada ih jednom naučite letjeti u formaciji
10:49
So once you know how to fly in formation,
227
649246
1999
možete podići predmete surađujući.
10:51
you can actually pick up objects cooperatively.
228
651269
2216
To ujedno znači
10:53
So this just shows that we can double, triple, quadruple
229
653509
4577
da možemo udvostručiti, utrostručiti ili učetverostručiti
snagu robota
10:58
the robots' strength,
230
658110
1158
10:59
by just getting them to team with neighbors, as you can see here.
231
659292
3077
usklađujući njihovo djelovanje, kao što je prikazano.
Jedan od nedostataka ovakvog pristupa
11:02
One of the disadvantages of doing that is, as you scale things up --
232
662393
4142
je, kako teret postaje teži...
11:06
so if you have lots of robots carrying the same thing,
233
666559
2564
i ako uposlite jato robota za prijenos tereta
u osnovi povećavate tromost,
11:09
you're essentially increasing the inertia,
234
669147
2720
11:11
and therefore you pay a price; they're not as agile.
235
671891
2619
čime naravno jato postaje manje okretno.
11:14
But you do gain in terms of payload-carrying capacity.
236
674978
3096
Ali tako možete prenašati teže objekte.
Još jedna primjena koju želim pokazati --
11:18
Another application I want to show you -- again, this is in our lab.
237
678098
3215
ponovo, u našem laboratoriju.
11:21
This is work done by Quentin Lindsey, who's a graduate student.
238
681337
3165
Ovo je napravio naš postdiplomac Quentin Lindsey.
Njegov algoritam u osnovi naređuje robotima
11:24
So his algorithm essentially tells these robots
239
684526
2620
kako da samostalno sklope
11:27
how to autonomously build cubic structures
240
687170
4072
prostorne rešetkaste konstrukcije
iz gredica.
11:31
from truss-like elements.
241
691266
1970
Njegov algoritam govori robotu
11:34
So his algorithm tells the robot what part to pick up,
242
694441
3760
koji dio podići,
te kada i gdje ga ugraditi.
11:38
when, and where to place it.
243
698225
1825
Na ovoj snimci možete vidjeti --
11:40
So in this video you see --
244
700471
1483
11:41
and it's sped up 10, 14 times --
245
701978
2024
ubrzano 10 - 14 puta --
tri različite konstrukcije sklapane robotima.
11:44
you see three different structures being built by these robots.
246
704026
3089
Roboti su samoupravljajući,
11:47
And again, everything is autonomous,
247
707139
2026
i sve što Quentin treba učiniti
11:49
and all Quentin has to do
248
709189
1283
11:50
is to give them a blueprint of the design that he wants to build.
249
710496
3935
je dostaviti im nacrt
konstrukcije koja treba biti sklopljena.
11:56
So all these experiments you've seen thus far,
250
716925
2811
Dakle, svi ovi pokusi koje ste vidjeli,
11:59
all these demonstrations,
251
719760
1350
sve ove demonstracije,
12:01
have been done with the help of motion-capture systems.
252
721134
3102
su ostvarene uz pomoć sustava za praćenje kretnji.
Međutim, što se događa kada napustite laboratorij
12:05
So what happens when you leave your lab,
253
725029
2507
i otisnete se u stvaran svijet?
12:07
and you go outside into the real world?
254
727560
2037
12:09
And what if there's no GPS?
255
729922
1706
I što kada nema GPSa?
12:12
So this robot is actually equipped with a camera,
256
732755
4337
Primjerice, ovaj robot
je opremljen kamerom
i laserskim daljinomjerom, laserskim skenerom.
12:17
and a laser rangefinder, laser scanner.
257
737116
2373
I koristi ove senzore
12:20
And it uses these sensors to build a map of the environment.
258
740140
3920
kako bi izgradio kartu okruženja.
Takva karta sadrži objekte --
12:24
What that map consists of are features --
259
744084
3286
poput vrata, prozora,
12:27
like doorways, windows, people, furniture --
260
747394
3871
ljudi, namještaja --
i onda robot procjenjuje gdje se nalazi
12:31
and it then figures out where its position is,
261
751289
2143
u odnosu na te objekte.
12:33
with respect to the features.
262
753456
1401
12:34
So there is no global coordinate system.
263
754881
2210
Sve bez globalnog koordinatnog sustava (GPS).
Koordinatni sustav je definiran robotom,
12:37
The coordinate system is defined based on the robot,
264
757115
2506
12:39
where it is and what it's looking at.
265
759645
2057
njegovim položajem, i time što promatra.
12:42
And it navigates with respect to those features.
266
762575
2755
I navođenje se odvija u odnosu na te objekte.
Evo isječka
12:46
So I want to show you a clip
267
766316
1420
12:47
of algorithms developed by Frank Shen and Professor Nathan Michael,
268
767760
3952
s algoritmima koje je razvio Frank Shen
i profesor Nathan Michael
12:51
that shows this robot entering a building for the very first time,
269
771736
3769
koji prikazuje robota kako ulazi u zgradu po prvi puta
12:55
and creating this map on the fly.
270
775529
2422
i stvara kartu u letu.
12:58
So the robot then figures out what the features are,
271
778642
3158
Robot razaznaje objekte i
13:01
it builds the map,
272
781824
1151
iscrtava kartu (model).
13:02
it figures out where it is with respect to the features,
273
782999
2967
Izračunavajući udaljenosti do objekata
13:05
and then estimates its position 100 times a second,
274
785990
3948
robot određuje svoj položaj
100 puta u sekundi
13:09
allowing us to use the control algorithms that I described to you earlier.
275
789962
3818
uz korištenje kontrolnog algoritma
koji sam opisao ranije.
13:13
So this robot is actually being commanded remotely by Frank,
276
793804
4433
Dakle ovaj robot zaprima
Frankove naredbe sa udaljene lokacije.
Ali robot također može
13:18
but the robot can also figure out where to go on its own.
277
798261
3539
samostalno procijeniti gdje treba ići.
Recimo da želim poslati robota u zgradu
13:22
So suppose I were to send this into a building,
278
802125
2207
za koju nemam predodžbu o unutrašnjosti.
13:24
and I had no idea what this building looked like.
279
804356
2302
Jednostavno pošaljem robota da
13:26
I can ask this robot to go in,
280
806682
1444
kreira kartu (model)
13:28
create a map,
281
808150
1904
i pozovem ga nazad da mi predoči što je zabilježio.
13:30
and then come back and tell me what the building looks like.
282
810078
2865
13:32
So here, the robot is not only solving the problem
283
812967
3168
Dakle, robot ne samo da rješava problem
kako stići od točke A do točke B na ovoj karti,
13:36
of how to go from point A to point B in this map,
284
816159
2634
13:38
but it's figuring out what the best point B is at every time.
285
818817
4399
nego i procjenjuje
koja je optimalna točka B.
U osnovi, robot zna da treba ići
13:43
So essentially it knows where to go
286
823240
2054
13:45
to look for places that have the least information,
287
825318
2785
prema lokacijama o kojima ima najmanje informacija.
I na taj način iscrtava kartu (model).
13:48
and that's how it populates this map.
288
828127
1968
13:50
So I want to leave you with one last application.
289
830944
2998
I da zaključim
s još jednom primjenom robota.
13:54
And there are many applications of this technology.
290
834982
2524
A postoje i mnoge druge primjene.
13:57
I'm a professor, and we're passionate about education.
291
837823
2548
Ja sam profesor, i kao takav strastven za edukaciju.
Ovakvi roboti mogu promijeniti
14:00
Robots like this can really change the way we do K-12 education.
292
840395
3936
način na koji se odvija nastava.
Ali s obzirom da smo u Južnoj Kaliforniji,
14:04
But we're in Southern California,
293
844355
1825
blizu Los Angelesa,
14:06
close to Los Angeles,
294
846204
1833
morat ću zaključiti
14:08
so I have to conclude with something focused on entertainment.
295
848061
3250
u holivudskom tonu.
Neka to bude glazbeni video.
14:12
I want to conclude with a music video.
296
852407
1834
Želim predstaviti Alexa i Daniela,
14:14
I want to introduce the creators, Alex and Daniel, who created this video.
297
854265
4714
kreatore videa.
(Pljesak)
14:19
(Applause)
298
859003
6878
14:25
So before I play this video,
299
865905
1434
No prije nego prikažemo video,
14:27
I want to tell you that they created it in the last three days,
300
867363
3197
želim napomenuti da su ga snimili u zadnja tri dana
14:30
after getting a call from Chris.
301
870584
1652
nakon poziva od Chrisa (TED kuratora).
14:32
And the robots that play in the video are completely autonomous.
302
872743
3817
I roboti koji sviraju na snimci
su potpuno samostalni.
14:36
You will see nine robots play six different instruments.
303
876584
3502
Vidjet ćete 9 robota kako svira 6 instrumenata.
Naravno, eksluzivno za TED 2012.
14:40
And of course, it's made exclusively for TED 2012.
304
880697
2971
Pogledajmo.
14:44
Let's watch.
305
884533
1152
14:46
(Sound of air escaping from valve)
306
886824
4404
14:53
(Music)
307
893547
3336
14:56
(Whirring sound)
308
896907
5520
15:19
(Music)
309
919442
6629
(Glazba)
(Pljesak)
16:24
(Applause) (Cheers)
310
984029
5984
O ovoj web stranici

Ova stranica će vas upoznati s YouTube videozapisima koji su korisni za učenje engleskog jezika. Vidjet ćete lekcije engleskog koje vode vrhunski profesori iz cijelog svijeta. Dvaput kliknite na engleske titlove prikazane na svakoj video stranici da biste reproducirali video s tog mjesta. Titlovi se pomiču sinkronizirano s reprodukcijom videozapisa. Ako imate bilo kakvih komentara ili zahtjeva, obratite nam se putem ovog obrasca za kontakt.

https://forms.gle/WvT1wiN1qDtmnspy7