These Robots Come to the Rescue after a Disaster | Robin Murphy | TED Talks

132,897 views ・ 2015-09-18

TED


请双击下面的英文字幕来播放视频。

翻译人员: Gabriella Hu 校对人员: Hong Li
00:12
Over a million people are killed each year in disasters.
0
12999
4976
每年超过100万人在灾难中丧生。
00:17
Two and a half million people will be permanently disabled or displaced,
1
17999
5234
250万人因意外而终生残疾或流离失所,
00:23
and the communities will take 20 to 30 years to recover
2
23257
3924
重建家园需要20到30年的时间,
00:27
and billions of economic losses.
3
27205
2401
花费高达数十亿。
00:31
If you can reduce the initial response by one day,
4
31054
4371
如果最初的应急响应能提前一天,
00:35
you can reduce the overall recovery
5
35449
3527
灾后重建工作就能缩短
00:39
by a thousand days, or three years.
6
39000
2808
1000天,大约3年。
00:41
See how that works?
7
41832
1753
知道为什么吗?
00:43
If the initial responders can get in, save lives,
8
43609
2850
如果应急响应小组 能够(及时)行动,拯救遇难者,
00:46
mitigate whatever flooding danger there is,
9
46483
2516
缓解洪水或者其他灾害的影响,
00:49
that means the other groups can get in
10
49023
2284
其他团队就可以(尽快)开始
00:51
to restore the water, the roads, the electricity,
11
51331
2985
恢复供水,交通,电力,
00:54
which means then the construction people, the insurance agents,
12
54340
3116
这样的话,施工人员,保险代理人,
00:57
all of them can get in to rebuild the houses,
13
57480
2614
所有人都可以(尽快)开始重建房屋,
01:00
which then means you can restore the economy,
14
60118
2988
经济就能(迅速)恢复,
01:03
and maybe even make it better and more resilient to the next disaster.
15
63130
4873
甚至变得更好, 提高今后对灾难的抗打击能力。
01:09
A major insurance company told me
16
69899
1796
一家大型的保险公司曾告诉我
01:11
that if they can get a homeowner's claim processed one day earlier,
17
71719
5112
如果他们能够提早一天处理房主的理赔申请,
01:16
it'll make a difference of six months
18
76855
2120
房主的房屋就可以
01:18
in that person getting their home repaired.
19
78999
2240
提前六个月修好。
01:22
And that's why I do disaster robotics --
20
82118
2329
这就是为什么我研究救灾机器人——
01:24
because robots can make a disaster go away faster.
21
84471
4499
因为机器人能够更快地应对灾难。
01:30
Now, you've already seen a couple of these.
22
90305
2017
相信大家以前都见过无人机。
01:32
These are the UAVs.
23
92346
1720
这些是无人机
01:34
These are two types of UAVs:
24
94090
1861
这里有两种无人机:
01:35
a rotorcraft, or hummingbird;
25
95975
1865
一种是旋翼机,也叫“蜂鸟”;
01:37
a fixed-wing, a hawk.
26
97864
2070
另一种是固定翼的,也叫“雄鹰”。
01:39
And they're used extensively since 2005 --
27
99958
3390
它们从2005年卡特里娜飓风起
01:43
Hurricane Katrina.
28
103372
1175
就被广泛使用。
01:44
Let me show you how this hummingbird, this rotorcraft, works.
29
104571
3324
我们来看看“蜂鸟”是如何工作的。
01:47
Fantastic for structural engineers.
30
107919
3056
“蜂鸟”对结构工程师帮助巨大。
01:50
Being able to see damage from angles you can't get from binoculars on the ground
31
110999
4420
能帮助你从不同角度观察受损情况, 而这些角度无论是地面望远镜,
01:55
or from a satellite image,
32
115443
1310
还是卫星图像,
01:56
or anything flying at a higher angle.
33
116777
3192
或者其他任何高空飞行器都无法提供。
02:00
But it's not just structural engineers and insurance people who need this.
34
120530
4372
(无人机)不光能帮助 结构工程师和保险业者。
02:04
You've got things like this fixed-wing, this hawk.
35
124926
2467
比如这架“雄鹰”固定翼无人机,
02:07
Now, this hawk can be used for geospatial surveys.
36
127417
3271
可以用来做地理空间测绘。
02:10
That's where you're pulling imagery together
37
130712
2849
将它拍摄的图像拼在一起,
02:13
and getting 3D reconstruction.
38
133585
1825
就能生成3D图像。
02:15
We used both of these at the Oso mudslides up in Washington State,
39
135434
4074
我们在华盛顿州的奥索泥石流灾害 中用到了这两种无人机,
02:19
because the big problem
40
139532
2199
因为难点在于
02:21
was geospatial and hydrological understanding of the disaster --
41
141755
3158
了解灾害的地理和水文性质,
02:24
not the search and rescue.
42
144937
1246
而不是搜寻和救援。
02:26
The search and rescue teams had it under control
43
146207
2319
这是搜寻救援队的工作,
02:28
and knew what they were doing.
44
148550
1478
他们是专业的。
02:30
The bigger problem was that river and mudslide might wipe them out
45
150052
3870
更严重的问题是河水和泥石流可能会把
02:33
and flood the responders.
46
153946
1494
救援队冲走。
02:35
And not only was it challenging to the responders and property damage,
47
155464
3742
这不仅会造成救援队人身和财产损失,
02:39
it's also putting at risk the future of salmon fishing
48
159230
3279
还会对未来华盛顿州地区的三文鱼捕捞
02:42
along that part of Washington State.
49
162533
1716
带来不利影响。
02:44
So they needed to understand what was going on.
50
164273
2476
所以他们需要了解灾害情况。
02:46
In seven hours, going from Arlington,
51
166773
2609
在7小时内,(我们)从阿灵顿的
02:49
driving from the Incident Command Post to the site, flying the UAVs,
52
169406
4814
灾难指挥所开车到事发现场,操控无人机,
02:54
processing the data, driving back to Arlington command post --
53
174244
3731
处理得到的数据,开车回到阿灵顿指挥所,
02:57
seven hours.
54
177999
1406
(总共)七个小时。
02:59
We gave them in seven hours data that they could take
55
179429
3534
我们在七个小时内提供给他们的数据,
03:02
only two to three days to get any other way --
56
182987
3750
如果用别的方式可能需要两三天。
03:06
and at higher resolution.
57
186761
1837
而且(我们的数据)分辨率更高。
03:09
It's a game changer.
58
189064
1373
这是一个巨大的突破。
03:11
And don't just think about the UAVs.
59
191773
2069
但还有比它们更厉害的。
03:13
I mean, they are sexy -- but remember,
60
193866
2628
没错,无人机确实很神奇——但请记住,
03:16
80 percent of the world's population lives by water,
61
196518
3336
世界上80%的人口都生活在水边,
03:19
and that means our critical infrastructure is underwater --
62
199878
2864
这就意味着我们关键的基础设施都在水里——
03:22
the parts that we can't get to, like the bridges and things like that.
63
202766
3286
而我们无法到达,比如桥梁等设施。
03:26
And that's why we have unmanned marine vehicles,
64
206076
2592
于是我们发明了水下无人机器人,
03:28
one type of which you've already met, which is SARbot, a square dolphin.
65
208692
4452
大家看到的这个是SARbot, 又叫“方形海豚”。
03:33
It goes underwater and uses sonar.
66
213168
2696
它能潜入水中并使用声纳。
03:35
Well, why are marine vehicles so important
67
215888
2333
为什么水下机器人如此重要?
03:38
and why are they very, very important?
68
218245
3124
原因是什么?
03:41
They get overlooked.
69
221393
1516
(因为)它们常被人忽视。
03:42
Think about the Japanese tsunami --
70
222933
2402
回顾一下日本海啸——
03:45
400 miles of coastland totally devastated,
71
225359
3966
总共400英里的海岸线被完全摧毁,
03:49
twice the amount of coastland devastated by Hurricane Katrina in the United States.
72
229349
4696
是美国卡特里娜飓风 摧毁的海岸线长度的两倍。
03:54
You're talking about your bridges, your pipelines, your ports -- wiped out.
73
234069
3856
所有的桥梁,管道,港口都被完全摧毁。
03:57
And if you don't have a port,
74
237949
1612
如果没有港口,
03:59
you don't have a way to get in enough relief supplies
75
239585
3246
就无法运输足够的救灾物资
04:02
to support a population.
76
242855
1221
去支援受灾人群。
04:04
That was a huge problem at the Haiti earthquake.
77
244100
2572
这在海地地震时就是一个巨大的难题。
04:07
So we need marine vehicles.
78
247565
2122
所以,我们需要水下机器人。
04:09
Now, let's look at a viewpoint from the SARbot
79
249711
2431
现在,我们从SARbot的角度
04:12
of what they were seeing.
80
252166
1471
看看它能看见什么。
04:13
We were working on a fishing port.
81
253661
2246
我们曾帮助过一个渔港。
04:15
We were able to reopen that fishing port, using her sonar, in four hours.
82
255931
5716
在(SARbot的)声纳帮助下, 我们在四个小时内就让渔港恢复了工作。
04:21
That fishing port was told it was going to be six months
83
261671
2653
渔港原本被告知,潜水员
04:24
before they could get a manual team of divers in,
84
264348
2706
要六个月之后才能开始工作,
04:27
and it was going to take the divers two weeks.
85
267078
2687
工作时间还需要两个星期。
04:29
They were going to miss the fall fishing season,
86
269789
2294
这样一来他们会错过秋季渔汛,
04:32
which was the major economy for that part, which is kind of like their Cape Cod.
87
272107
4226
那是当地的主要经济来源, 有点像咱们的鲟鱼角。
04:36
UMVs, very important.
88
276357
2268
水下机器人,非常重要。
04:38
But you know, all the robots I've shown you have been small,
89
278649
3248
我给大家展示的机器人都很小,
04:41
and that's because robots don't do things that people do.
90
281921
3777
因为它们需要做的, 是人类做不了的事。
04:45
They go places people can't go.
91
285722
2253
需要前往的, 是人类去不了的地方。
04:47
And a great example of that is Bujold.
92
287999
2976
其中具有代表性的机器人是布约德。
04:50
Unmanned ground vehicles are particularly small,
93
290999
2976
陆地无人机都特别小,
04:53
so Bujold --
94
293999
1318
布约德
04:55
(Laughter)
95
295341
1508
(笑声)
04:56
Say hello to Bujold.
96
296873
1183
向布约德问好。
04:58
(Laughter)
97
298080
2684
(笑声)
05:01
Bujold was used extensively at the World Trade Center
98
301606
3369
布约德在世贸中心救援中被广泛使用,
05:04
to go through Towers 1, 2 and 4.
99
304999
2380
它可以穿过一、二和三号大楼,
05:07
You're climbing into the rubble, rappelling down, going deep in spaces.
100
307403
4645
从上方钻入废墟, 一路向下,进到很深的地方。
05:12
And just to see the World Trade Center from Bujold's viewpoint, look at this.
101
312072
4559
这是从布约德的角度来看世界贸易中心。
05:16
You're talking about a disaster where you can't fit a person or a dog --
102
316655
5069
在这场灾难中,你无法派人或狗进入现场,
05:21
and it's on fire.
103
321748
2142
而且到处都是大火。
05:23
The only hope of getting to a survivor way in the basement,
104
323914
3734
想要救出被困在地下室的幸存者,
05:27
you have to go through things that are on fire.
105
327672
2195
只能通过熊熊燃烧的火场。
05:29
It was so hot, on one of the robots, the tracks began to melt and come off.
106
329891
4504
现场温度很高,其中一个机器人 的履带都融化脱落了。
05:35
Robots don't replace people or dogs,
107
335161
2788
机器人并不能取代人或者狗,
05:37
or hummingbirds or hawks or dolphins.
108
337973
2521
也不能取代蜂鸟,老鹰或海豚。
05:40
They do things new.
109
340518
2036
它们能够做与众不同的事。
05:42
They assist the responders, the experts, in new and innovative ways.
110
342578
5689
它们用创新的方式协助救援队和专家。
05:48
The biggest problem is not making the robots smaller, though.
111
348291
4429
现在最大的挑战 并不是把机器人变得更小。
05:52
It's not making them more heat-resistant.
112
352744
2231
也不是让它们更加耐热。
05:54
It's not making more sensors.
113
354999
1757
也不是安装更多的传感器。
05:56
The biggest problem is the data, the informatics,
114
356780
3610
最大的难题是(处理)数据和信息,
06:00
because these people need to get the right data at the right time.
115
360414
4036
因为人们需要在正确的时间得到准确的信息。
06:04
So wouldn't it be great if we could have experts immediately access the robots
116
364474
5501
如果专家们能实时获取机器人取得的数据,
06:09
without having to waste any time of driving to the site,
117
369999
2976
不需要等机器人回到指挥所,
06:12
so whoever's there, use their robots over the Internet.
118
372999
2933
可以直接在线使用机器人,那该有多棒。
06:15
Well, let's think about that.
119
375956
1382
让我们想象一下。
06:17
Let's think about a chemical train derailment in a rural county.
120
377362
3372
如果一列装载化学品的列车 在偏远地区脱轨,
06:20
What are the odds that the experts, your chemical engineer,
121
380758
3842
专家们,比如化学工程师,
06:24
your railroad transportation engineers,
122
384624
1862
铁道运输工程师,
06:26
have been trained on whatever UAV that particular county happens to have?
123
386510
4861
有多大的几率当地正好有 他们会使用的无人机呢?
06:31
Probably, like, none.
124
391395
1533
也许完全没有。
06:32
So we're using these kinds of interfaces
125
392952
2390
所以我们开发了一种(通用)界面,
06:35
to allow people to use the robots without knowing what robot they're using,
126
395366
4340
人们即使对自己使用的机器人不熟悉, 也能(正常)操纵它们,
06:39
or even if they're using a robot or not.
127
399730
2786
甚至都不需要知道他们在操纵机器人。
06:44
What the robots give you, what they give the experts, is data.
128
404252
6034
机器人提供给我们的,给专家的,是数据。
06:50
The problem becomes: who gets what data when?
129
410310
3580
接下来的问题是: (如何决定)谁在什么时候得到何种数据?
06:53
One thing to do is to ship all the information to everybody
130
413914
3893
一种办法是把所有的信息给所有的人
06:57
and let them sort it out.
131
417831
1512
让他们自己筛选。
06:59
Well, the problem with that is it overwhelms the networks,
132
419367
3856
但这样做可能会导致 (传输数据的)网络超载。
07:03
and worse yet, it overwhelms the cognitive abilities
133
423247
3686
更糟的是,它可能超越了 人类认知能力(的极限),
07:06
of each of the people trying to get that one nugget of information
134
426957
4509
因为每个人都需要从(海量)数据中 筛选出自己所需要的那一小部分,
07:11
they need to make the decision that's going to make the difference.
135
431490
3805
来作决定,而这决定可能关乎生死。
07:15
So we need to think about those kinds of challenges.
136
435999
3094
所以我们要再三斟酌。
07:19
So it's the data.
137
439117
1265
这是关于数据的难题。
07:20
Going back to the World Trade Center,
138
440406
2236
再来看世贸中心救援,
07:22
we tried to solve that problem by just recording the data from Bujold
139
442666
4309
我们是在布约德进入废墟深处后
07:26
only when she was deep in the rubble,
140
446999
1976
才开始记录数据的,
07:28
because that's what the USAR team said they wanted.
141
448999
2564
因为这是坍塌搜救专队的要求。
07:32
What we didn't know at the time
142
452523
2588
而有一件事我们当时不知道,
07:35
was that the civil engineers would have loved,
143
455135
2598
就是土木工程师十分需要了解
07:37
needed the data as we recorded the box beams, the serial numbers,
144
457757
4218
箱型梁的编号和位置, 而这些数据在机器人刚进入废墟时,
07:41
the locations, as we went into the rubble.
145
461999
2619
就应该开始记录。
07:45
We lost valuable data.
146
465343
1467
我们失去了重要的数据。
07:46
So the challenge is getting all the data
147
466834
2379
所以难题就在于收集所有的数据
07:49
and getting it to the right people.
148
469237
2180
并交给需要的人。
07:51
Now, here's another reason.
149
471441
2077
还有另一个原因。
07:53
We've learned that some buildings --
150
473542
2311
我们得知一些建筑物——
07:55
things like schools, hospitals, city halls --
151
475877
3272
比如学校、医院、市政府——
07:59
get inspected four times by different agencies
152
479173
4019
在应急响应过程中被不同的机构
08:03
throughout the response phases.
153
483216
2250
检查了四次。
08:06
Now, we're looking, if we can get the data from the robots to share,
154
486156
3269
如果我们能够分享机器人收集的数据,
08:09
not only can we do things like compress that sequence of phases
155
489449
4850
我们不仅能简化响应程序,
08:14
to shorten the response time,
156
494323
1653
缩短响应时间,
08:16
but now we can begin to do the response in parallel.
157
496000
4358
我们还可以同时开展多项工作。
08:20
Everybody can see the data.
158
500382
1379
(因为)数据是共享的,
08:21
We can shorten it that way.
159
501785
1462
我们可以节约时间。
08:23
So really, "disaster robotics" is a misnomer.
160
503999
3406
其实,“灾难机器人”这个描述不是很贴切。
08:28
It's not about the robots.
161
508227
1895
因为关键不在于机器人,
08:30
It's about the data.
162
510146
1882
而是数据。
08:32
(Applause)
163
512433
3330
(掌声)
08:35
So my challenge to you:
164
515787
1957
交给大家一项任务:
08:37
the next time you hear about a disaster,
165
517768
2300
如果之后听到关于灾难的报道,
08:40
look for the robots.
166
520092
1325
多关注一下机器人。
08:41
They may be underground, they may be underwater,
167
521441
3125
它们可能在地下,可能在水底,
08:44
they may be in the sky,
168
524590
1694
也可能在空中,
08:46
but they should be there.
169
526308
1965
但是它们肯定在现场。
08:48
Look for the robots,
170
528297
1167
去找一找机器人的身影,
08:49
because robots are coming to the rescue.
171
529488
2747
因为机器人来救援了。
08:52
(Applause)
172
532259
5661
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog