These Robots Come to the Rescue after a Disaster | Robin Murphy | TED Talks

130,817 views ・ 2015-09-18

TED


请双击下面的英文字幕来播放视频。

翻译人员: Gabriella Hu 校对人员: Hong Li
00:12
Over a million people are killed each year in disasters.
0
12999
4976
每年超过100万人在灾难中丧生。
00:17
Two and a half million people will be permanently disabled or displaced,
1
17999
5234
250万人因意外而终生残疾或流离失所,
00:23
and the communities will take 20 to 30 years to recover
2
23257
3924
重建家园需要20到30年的时间,
00:27
and billions of economic losses.
3
27205
2401
花费高达数十亿。
00:31
If you can reduce the initial response by one day,
4
31054
4371
如果最初的应急响应能提前一天,
00:35
you can reduce the overall recovery
5
35449
3527
灾后重建工作就能缩短
00:39
by a thousand days, or three years.
6
39000
2808
1000天,大约3年。
00:41
See how that works?
7
41832
1753
知道为什么吗?
00:43
If the initial responders can get in, save lives,
8
43609
2850
如果应急响应小组 能够(及时)行动,拯救遇难者,
00:46
mitigate whatever flooding danger there is,
9
46483
2516
缓解洪水或者其他灾害的影响,
00:49
that means the other groups can get in
10
49023
2284
其他团队就可以(尽快)开始
00:51
to restore the water, the roads, the electricity,
11
51331
2985
恢复供水,交通,电力,
00:54
which means then the construction people, the insurance agents,
12
54340
3116
这样的话,施工人员,保险代理人,
00:57
all of them can get in to rebuild the houses,
13
57480
2614
所有人都可以(尽快)开始重建房屋,
01:00
which then means you can restore the economy,
14
60118
2988
经济就能(迅速)恢复,
01:03
and maybe even make it better and more resilient to the next disaster.
15
63130
4873
甚至变得更好, 提高今后对灾难的抗打击能力。
01:09
A major insurance company told me
16
69899
1796
一家大型的保险公司曾告诉我
01:11
that if they can get a homeowner's claim processed one day earlier,
17
71719
5112
如果他们能够提早一天处理房主的理赔申请,
01:16
it'll make a difference of six months
18
76855
2120
房主的房屋就可以
01:18
in that person getting their home repaired.
19
78999
2240
提前六个月修好。
01:22
And that's why I do disaster robotics --
20
82118
2329
这就是为什么我研究救灾机器人——
01:24
because robots can make a disaster go away faster.
21
84471
4499
因为机器人能够更快地应对灾难。
01:30
Now, you've already seen a couple of these.
22
90305
2017
相信大家以前都见过无人机。
01:32
These are the UAVs.
23
92346
1720
这些是无人机
01:34
These are two types of UAVs:
24
94090
1861
这里有两种无人机:
01:35
a rotorcraft, or hummingbird;
25
95975
1865
一种是旋翼机,也叫“蜂鸟”;
01:37
a fixed-wing, a hawk.
26
97864
2070
另一种是固定翼的,也叫“雄鹰”。
01:39
And they're used extensively since 2005 --
27
99958
3390
它们从2005年卡特里娜飓风起
01:43
Hurricane Katrina.
28
103372
1175
就被广泛使用。
01:44
Let me show you how this hummingbird, this rotorcraft, works.
29
104571
3324
我们来看看“蜂鸟”是如何工作的。
01:47
Fantastic for structural engineers.
30
107919
3056
“蜂鸟”对结构工程师帮助巨大。
01:50
Being able to see damage from angles you can't get from binoculars on the ground
31
110999
4420
能帮助你从不同角度观察受损情况, 而这些角度无论是地面望远镜,
01:55
or from a satellite image,
32
115443
1310
还是卫星图像,
01:56
or anything flying at a higher angle.
33
116777
3192
或者其他任何高空飞行器都无法提供。
02:00
But it's not just structural engineers and insurance people who need this.
34
120530
4372
(无人机)不光能帮助 结构工程师和保险业者。
02:04
You've got things like this fixed-wing, this hawk.
35
124926
2467
比如这架“雄鹰”固定翼无人机,
02:07
Now, this hawk can be used for geospatial surveys.
36
127417
3271
可以用来做地理空间测绘。
02:10
That's where you're pulling imagery together
37
130712
2849
将它拍摄的图像拼在一起,
02:13
and getting 3D reconstruction.
38
133585
1825
就能生成3D图像。
02:15
We used both of these at the Oso mudslides up in Washington State,
39
135434
4074
我们在华盛顿州的奥索泥石流灾害 中用到了这两种无人机,
02:19
because the big problem
40
139532
2199
因为难点在于
02:21
was geospatial and hydrological understanding of the disaster --
41
141755
3158
了解灾害的地理和水文性质,
02:24
not the search and rescue.
42
144937
1246
而不是搜寻和救援。
02:26
The search and rescue teams had it under control
43
146207
2319
这是搜寻救援队的工作,
02:28
and knew what they were doing.
44
148550
1478
他们是专业的。
02:30
The bigger problem was that river and mudslide might wipe them out
45
150052
3870
更严重的问题是河水和泥石流可能会把
02:33
and flood the responders.
46
153946
1494
救援队冲走。
02:35
And not only was it challenging to the responders and property damage,
47
155464
3742
这不仅会造成救援队人身和财产损失,
02:39
it's also putting at risk the future of salmon fishing
48
159230
3279
还会对未来华盛顿州地区的三文鱼捕捞
02:42
along that part of Washington State.
49
162533
1716
带来不利影响。
02:44
So they needed to understand what was going on.
50
164273
2476
所以他们需要了解灾害情况。
02:46
In seven hours, going from Arlington,
51
166773
2609
在7小时内,(我们)从阿灵顿的
02:49
driving from the Incident Command Post to the site, flying the UAVs,
52
169406
4814
灾难指挥所开车到事发现场,操控无人机,
02:54
processing the data, driving back to Arlington command post --
53
174244
3731
处理得到的数据,开车回到阿灵顿指挥所,
02:57
seven hours.
54
177999
1406
(总共)七个小时。
02:59
We gave them in seven hours data that they could take
55
179429
3534
我们在七个小时内提供给他们的数据,
03:02
only two to three days to get any other way --
56
182987
3750
如果用别的方式可能需要两三天。
03:06
and at higher resolution.
57
186761
1837
而且(我们的数据)分辨率更高。
03:09
It's a game changer.
58
189064
1373
这是一个巨大的突破。
03:11
And don't just think about the UAVs.
59
191773
2069
但还有比它们更厉害的。
03:13
I mean, they are sexy -- but remember,
60
193866
2628
没错,无人机确实很神奇——但请记住,
03:16
80 percent of the world's population lives by water,
61
196518
3336
世界上80%的人口都生活在水边,
03:19
and that means our critical infrastructure is underwater --
62
199878
2864
这就意味着我们关键的基础设施都在水里——
03:22
the parts that we can't get to, like the bridges and things like that.
63
202766
3286
而我们无法到达,比如桥梁等设施。
03:26
And that's why we have unmanned marine vehicles,
64
206076
2592
于是我们发明了水下无人机器人,
03:28
one type of which you've already met, which is SARbot, a square dolphin.
65
208692
4452
大家看到的这个是SARbot, 又叫“方形海豚”。
03:33
It goes underwater and uses sonar.
66
213168
2696
它能潜入水中并使用声纳。
03:35
Well, why are marine vehicles so important
67
215888
2333
为什么水下机器人如此重要?
03:38
and why are they very, very important?
68
218245
3124
原因是什么?
03:41
They get overlooked.
69
221393
1516
(因为)它们常被人忽视。
03:42
Think about the Japanese tsunami --
70
222933
2402
回顾一下日本海啸——
03:45
400 miles of coastland totally devastated,
71
225359
3966
总共400英里的海岸线被完全摧毁,
03:49
twice the amount of coastland devastated by Hurricane Katrina in the United States.
72
229349
4696
是美国卡特里娜飓风 摧毁的海岸线长度的两倍。
03:54
You're talking about your bridges, your pipelines, your ports -- wiped out.
73
234069
3856
所有的桥梁,管道,港口都被完全摧毁。
03:57
And if you don't have a port,
74
237949
1612
如果没有港口,
03:59
you don't have a way to get in enough relief supplies
75
239585
3246
就无法运输足够的救灾物资
04:02
to support a population.
76
242855
1221
去支援受灾人群。
04:04
That was a huge problem at the Haiti earthquake.
77
244100
2572
这在海地地震时就是一个巨大的难题。
04:07
So we need marine vehicles.
78
247565
2122
所以,我们需要水下机器人。
04:09
Now, let's look at a viewpoint from the SARbot
79
249711
2431
现在,我们从SARbot的角度
04:12
of what they were seeing.
80
252166
1471
看看它能看见什么。
04:13
We were working on a fishing port.
81
253661
2246
我们曾帮助过一个渔港。
04:15
We were able to reopen that fishing port, using her sonar, in four hours.
82
255931
5716
在(SARbot的)声纳帮助下, 我们在四个小时内就让渔港恢复了工作。
04:21
That fishing port was told it was going to be six months
83
261671
2653
渔港原本被告知,潜水员
04:24
before they could get a manual team of divers in,
84
264348
2706
要六个月之后才能开始工作,
04:27
and it was going to take the divers two weeks.
85
267078
2687
工作时间还需要两个星期。
04:29
They were going to miss the fall fishing season,
86
269789
2294
这样一来他们会错过秋季渔汛,
04:32
which was the major economy for that part, which is kind of like their Cape Cod.
87
272107
4226
那是当地的主要经济来源, 有点像咱们的鲟鱼角。
04:36
UMVs, very important.
88
276357
2268
水下机器人,非常重要。
04:38
But you know, all the robots I've shown you have been small,
89
278649
3248
我给大家展示的机器人都很小,
04:41
and that's because robots don't do things that people do.
90
281921
3777
因为它们需要做的, 是人类做不了的事。
04:45
They go places people can't go.
91
285722
2253
需要前往的, 是人类去不了的地方。
04:47
And a great example of that is Bujold.
92
287999
2976
其中具有代表性的机器人是布约德。
04:50
Unmanned ground vehicles are particularly small,
93
290999
2976
陆地无人机都特别小,
04:53
so Bujold --
94
293999
1318
布约德
04:55
(Laughter)
95
295341
1508
(笑声)
04:56
Say hello to Bujold.
96
296873
1183
向布约德问好。
04:58
(Laughter)
97
298080
2684
(笑声)
05:01
Bujold was used extensively at the World Trade Center
98
301606
3369
布约德在世贸中心救援中被广泛使用,
05:04
to go through Towers 1, 2 and 4.
99
304999
2380
它可以穿过一、二和三号大楼,
05:07
You're climbing into the rubble, rappelling down, going deep in spaces.
100
307403
4645
从上方钻入废墟, 一路向下,进到很深的地方。
05:12
And just to see the World Trade Center from Bujold's viewpoint, look at this.
101
312072
4559
这是从布约德的角度来看世界贸易中心。
05:16
You're talking about a disaster where you can't fit a person or a dog --
102
316655
5069
在这场灾难中,你无法派人或狗进入现场,
05:21
and it's on fire.
103
321748
2142
而且到处都是大火。
05:23
The only hope of getting to a survivor way in the basement,
104
323914
3734
想要救出被困在地下室的幸存者,
05:27
you have to go through things that are on fire.
105
327672
2195
只能通过熊熊燃烧的火场。
05:29
It was so hot, on one of the robots, the tracks began to melt and come off.
106
329891
4504
现场温度很高,其中一个机器人 的履带都融化脱落了。
05:35
Robots don't replace people or dogs,
107
335161
2788
机器人并不能取代人或者狗,
05:37
or hummingbirds or hawks or dolphins.
108
337973
2521
也不能取代蜂鸟,老鹰或海豚。
05:40
They do things new.
109
340518
2036
它们能够做与众不同的事。
05:42
They assist the responders, the experts, in new and innovative ways.
110
342578
5689
它们用创新的方式协助救援队和专家。
05:48
The biggest problem is not making the robots smaller, though.
111
348291
4429
现在最大的挑战 并不是把机器人变得更小。
05:52
It's not making them more heat-resistant.
112
352744
2231
也不是让它们更加耐热。
05:54
It's not making more sensors.
113
354999
1757
也不是安装更多的传感器。
05:56
The biggest problem is the data, the informatics,
114
356780
3610
最大的难题是(处理)数据和信息,
06:00
because these people need to get the right data at the right time.
115
360414
4036
因为人们需要在正确的时间得到准确的信息。
06:04
So wouldn't it be great if we could have experts immediately access the robots
116
364474
5501
如果专家们能实时获取机器人取得的数据,
06:09
without having to waste any time of driving to the site,
117
369999
2976
不需要等机器人回到指挥所,
06:12
so whoever's there, use their robots over the Internet.
118
372999
2933
可以直接在线使用机器人,那该有多棒。
06:15
Well, let's think about that.
119
375956
1382
让我们想象一下。
06:17
Let's think about a chemical train derailment in a rural county.
120
377362
3372
如果一列装载化学品的列车 在偏远地区脱轨,
06:20
What are the odds that the experts, your chemical engineer,
121
380758
3842
专家们,比如化学工程师,
06:24
your railroad transportation engineers,
122
384624
1862
铁道运输工程师,
06:26
have been trained on whatever UAV that particular county happens to have?
123
386510
4861
有多大的几率当地正好有 他们会使用的无人机呢?
06:31
Probably, like, none.
124
391395
1533
也许完全没有。
06:32
So we're using these kinds of interfaces
125
392952
2390
所以我们开发了一种(通用)界面,
06:35
to allow people to use the robots without knowing what robot they're using,
126
395366
4340
人们即使对自己使用的机器人不熟悉, 也能(正常)操纵它们,
06:39
or even if they're using a robot or not.
127
399730
2786
甚至都不需要知道他们在操纵机器人。
06:44
What the robots give you, what they give the experts, is data.
128
404252
6034
机器人提供给我们的,给专家的,是数据。
06:50
The problem becomes: who gets what data when?
129
410310
3580
接下来的问题是: (如何决定)谁在什么时候得到何种数据?
06:53
One thing to do is to ship all the information to everybody
130
413914
3893
一种办法是把所有的信息给所有的人
06:57
and let them sort it out.
131
417831
1512
让他们自己筛选。
06:59
Well, the problem with that is it overwhelms the networks,
132
419367
3856
但这样做可能会导致 (传输数据的)网络超载。
07:03
and worse yet, it overwhelms the cognitive abilities
133
423247
3686
更糟的是,它可能超越了 人类认知能力(的极限),
07:06
of each of the people trying to get that one nugget of information
134
426957
4509
因为每个人都需要从(海量)数据中 筛选出自己所需要的那一小部分,
07:11
they need to make the decision that's going to make the difference.
135
431490
3805
来作决定,而这决定可能关乎生死。
07:15
So we need to think about those kinds of challenges.
136
435999
3094
所以我们要再三斟酌。
07:19
So it's the data.
137
439117
1265
这是关于数据的难题。
07:20
Going back to the World Trade Center,
138
440406
2236
再来看世贸中心救援,
07:22
we tried to solve that problem by just recording the data from Bujold
139
442666
4309
我们是在布约德进入废墟深处后
07:26
only when she was deep in the rubble,
140
446999
1976
才开始记录数据的,
07:28
because that's what the USAR team said they wanted.
141
448999
2564
因为这是坍塌搜救专队的要求。
07:32
What we didn't know at the time
142
452523
2588
而有一件事我们当时不知道,
07:35
was that the civil engineers would have loved,
143
455135
2598
就是土木工程师十分需要了解
07:37
needed the data as we recorded the box beams, the serial numbers,
144
457757
4218
箱型梁的编号和位置, 而这些数据在机器人刚进入废墟时,
07:41
the locations, as we went into the rubble.
145
461999
2619
就应该开始记录。
07:45
We lost valuable data.
146
465343
1467
我们失去了重要的数据。
07:46
So the challenge is getting all the data
147
466834
2379
所以难题就在于收集所有的数据
07:49
and getting it to the right people.
148
469237
2180
并交给需要的人。
07:51
Now, here's another reason.
149
471441
2077
还有另一个原因。
07:53
We've learned that some buildings --
150
473542
2311
我们得知一些建筑物——
07:55
things like schools, hospitals, city halls --
151
475877
3272
比如学校、医院、市政府——
07:59
get inspected four times by different agencies
152
479173
4019
在应急响应过程中被不同的机构
08:03
throughout the response phases.
153
483216
2250
检查了四次。
08:06
Now, we're looking, if we can get the data from the robots to share,
154
486156
3269
如果我们能够分享机器人收集的数据,
08:09
not only can we do things like compress that sequence of phases
155
489449
4850
我们不仅能简化响应程序,
08:14
to shorten the response time,
156
494323
1653
缩短响应时间,
08:16
but now we can begin to do the response in parallel.
157
496000
4358
我们还可以同时开展多项工作。
08:20
Everybody can see the data.
158
500382
1379
(因为)数据是共享的,
08:21
We can shorten it that way.
159
501785
1462
我们可以节约时间。
08:23
So really, "disaster robotics" is a misnomer.
160
503999
3406
其实,“灾难机器人”这个描述不是很贴切。
08:28
It's not about the robots.
161
508227
1895
因为关键不在于机器人,
08:30
It's about the data.
162
510146
1882
而是数据。
08:32
(Applause)
163
512433
3330
(掌声)
08:35
So my challenge to you:
164
515787
1957
交给大家一项任务:
08:37
the next time you hear about a disaster,
165
517768
2300
如果之后听到关于灾难的报道,
08:40
look for the robots.
166
520092
1325
多关注一下机器人。
08:41
They may be underground, they may be underwater,
167
521441
3125
它们可能在地下,可能在水底,
08:44
they may be in the sky,
168
524590
1694
也可能在空中,
08:46
but they should be there.
169
526308
1965
但是它们肯定在现场。
08:48
Look for the robots,
170
528297
1167
去找一找机器人的身影,
08:49
because robots are coming to the rescue.
171
529488
2747
因为机器人来救援了。
08:52
(Applause)
172
532259
5661
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7