These Robots Come to the Rescue after a Disaster | Robin Murphy | TED Talks

132,897 views ・ 2015-09-18

TED


請雙擊下方英文字幕播放視頻。

譯者: Regina Chu 審譯者: Marssi Draw
00:12
Over a million people are killed each year in disasters.
0
12999
4976
每年超過百萬人死於災難。
00:17
Two and a half million people will be permanently disabled or displaced,
1
17999
5234
二百五十萬人 永久傷殘或流離失所,
00:23
and the communities will take 20 to 30 years to recover
2
23257
3924
受災社區要花 二三十年重建恢復,
00:27
and billions of economic losses.
3
27205
2401
還有大量的經濟損失。
00:31
If you can reduce the initial response by one day,
4
31054
4371
如果你能將 初始應變時間縮短一天,
00:35
you can reduce the overall recovery
5
35449
3527
就能加快整體恢復時間
00:39
by a thousand days, or three years.
6
39000
2808
一千天,即三年。
00:41
See how that works?
7
41832
1753
這要如何達成?
00:43
If the initial responders can get in, save lives,
8
43609
2850
如果第一批救災人員 能進入災區、拯救生命、
00:46
mitigate whatever flooding danger there is,
9
46483
2516
減輕各種危險造成的災害,
00:49
that means the other groups can get in
10
49023
2284
那麼其他團體就能進入
00:51
to restore the water, the roads, the electricity,
11
51331
2985
恢復供水、供電、搶修道路,
00:54
which means then the construction people, the insurance agents,
12
54340
3116
也就是說之後 施工人員及保險公司
00:57
all of them can get in to rebuild the houses,
13
57480
2614
都可以進入重建房子,
01:00
which then means you can restore the economy,
14
60118
2988
也就是說你能恢復經濟,
01:03
and maybe even make it better and more resilient to the next disaster.
15
63130
4873
甚至還能變得更好, 更有能力應變下一場災害。
01:09
A major insurance company told me
16
69899
1796
一家大保險公司告訴我
01:11
that if they can get a homeowner's claim processed one day earlier,
17
71719
5112
如果他們能早一天 處理屋主的索賠,
01:16
it'll make a difference of six months
18
76855
2120
就能讓屋主
早六個月修好房屋。
01:18
in that person getting their home repaired.
19
78999
2240
01:22
And that's why I do disaster robotics --
20
82118
2329
這就是為什麼 我要做「救災機器人學」,
01:24
because robots can make a disaster go away faster.
21
84471
4499
因為機器人能讓災難更快消失。
01:30
Now, you've already seen a couple of these.
22
90305
2017
現在你們已經看到其中幾種了。
01:32
These are the UAVs.
23
92346
1720
這些是無人機。
01:34
These are two types of UAVs:
24
94090
1861
這裡有兩種無人機:
01:35
a rotorcraft, or hummingbird;
25
95975
1865
一種叫旋翼機,又稱蜂鳥;
01:37
a fixed-wing, a hawk.
26
97864
2070
一種是定翼機,又叫隼。
01:39
And they're used extensively since 2005 --
27
99958
3390
這兩種自 2005 年 颶風卡崔娜以後
01:43
Hurricane Katrina.
28
103372
1175
已被廣泛使用。
01:44
Let me show you how this hummingbird, this rotorcraft, works.
29
104571
3324
我跟大家展示一下 這種蜂鳥旋翼機如何運作。
01:47
Fantastic for structural engineers.
30
107919
3056
這是結構工程師的夢啊!
01:50
Being able to see damage from angles you can't get from binoculars on the ground
31
110999
4420
這些能從不同角度看受損狀況, 是你無法從地面用望遠鏡
01:55
or from a satellite image,
32
115443
1310
或從衛星圖,
01:56
or anything flying at a higher angle.
33
116777
3192
或從任何高一點的飛行角度看到。
02:00
But it's not just structural engineers and insurance people who need this.
34
120530
4372
但不只是結構工程師 及保險公司有這樣的需求。
02:04
You've got things like this fixed-wing, this hawk.
35
124926
2467
你還能從這種定翼機, 這個隼看到東西。
02:07
Now, this hawk can be used for geospatial surveys.
36
127417
3271
這個隼能拿來做地理空間調查。
02:10
That's where you're pulling imagery together
37
130712
2849
你能把成像組合起來
02:13
and getting 3D reconstruction.
38
133585
1825
得到立體影像重建。
02:15
We used both of these at the Oso mudslides up in Washington State,
39
135434
4074
這兩種機器人都曾用於 華盛頓州的奧所山崩上,
02:19
because the big problem
40
139532
2199
因為很大的問題出在
02:21
was geospatial and hydrological understanding of the disaster --
41
141755
3158
瞭解這場災難的 地理空間及水文狀況,
02:24
not the search and rescue.
42
144937
1246
而不是搜救。
02:26
The search and rescue teams had it under control
43
146207
2319
搜救隊伍已控制情況,
02:28
and knew what they were doing.
44
148550
1478
也很清楚知道他們要做什麼。
02:30
The bigger problem was that river and mudslide might wipe them out
45
150052
3870
但更大的問題是河水及山崩 可能會毀了他們,
02:33
and flood the responders.
46
153946
1494
並淹沒救災人員。
02:35
And not only was it challenging to the responders and property damage,
47
155464
3742
這不只對救災人員造成挑戰, 並造成財物損失,
02:39
it's also putting at risk the future of salmon fishing
48
159230
3279
這還對將來在華盛頓州
02:42
along that part of Washington State.
49
162533
1716
那一帶的釣鮭魚活動造成威脅。
02:44
So they needed to understand what was going on.
50
164273
2476
所以他們需要知道情況。
02:46
In seven hours, going from Arlington,
51
166773
2609
在七個小時內,從阿靈頓出發,
02:49
driving from the Incident Command Post to the site, flying the UAVs,
52
169406
4814
從事故指揮所開車到現場、 飛無人機、
02:54
processing the data, driving back to Arlington command post --
53
174244
3731
處理數據、 開車回阿靈頓的指揮所,
02:57
seven hours.
54
177999
1406
只花了七個小時。
02:59
We gave them in seven hours data that they could take
55
179429
3534
我們在七個小時內 就給他們數據,
03:02
only two to three days to get any other way --
56
182987
3750
用其他方法要花兩三天——
03:06
and at higher resolution.
57
186761
1837
而且是更高的解析度。
03:09
It's a game changer.
58
189064
1373
這改變了局勢。
03:11
And don't just think about the UAVs.
59
191773
2069
而且不要只想到無人機。
03:13
I mean, they are sexy -- but remember,
60
193866
2628
我是說,它們是很迷人, 但你要記住,
03:16
80 percent of the world's population lives by water,
61
196518
3336
80% 的世界人口住在水邊,
03:19
and that means our critical infrastructure is underwater --
62
199878
2864
意指我們關鍵的 基礎建設都在水下,
03:22
the parts that we can't get to, like the bridges and things like that.
63
202766
3286
我們無法進入的地方, 像橋梁或是類似的東西。
03:26
And that's why we have unmanned marine vehicles,
64
206076
2592
這就是為什麼我們有 無人駕駛的海陸兩棲車,
03:28
one type of which you've already met, which is SARbot, a square dolphin.
65
208692
4452
你們已經看到的其中一種, 沙霸,方型海豚。
03:33
It goes underwater and uses sonar.
66
213168
2696
它可以進入水下,使用聲納。
03:35
Well, why are marine vehicles so important
67
215888
2333
為什麼兩棲車這麼重要?
03:38
and why are they very, very important?
68
218245
3124
為什麼它們真的非常重要?
03:41
They get overlooked.
69
221393
1516
它們都被忽視了。
03:42
Think about the Japanese tsunami --
70
222933
2402
想想日本海嘯。
03:45
400 miles of coastland totally devastated,
71
225359
3966
650 公里的沿海地區被徹底摧毀,
03:49
twice the amount of coastland devastated by Hurricane Katrina in the United States.
72
229349
4696
比美國的颶風卡崔娜 所破壞的沿岸區還大兩倍。
03:54
You're talking about your bridges, your pipelines, your ports -- wiped out.
73
234069
3856
你在談的是你的橋梁、 你的管線、你的港口——全沒了。
03:57
And if you don't have a port,
74
237949
1612
如果你沒有港口,
03:59
you don't have a way to get in enough relief supplies
75
239585
3246
你就沒有辦法 運進足夠的救災物資
04:02
to support a population.
76
242855
1221
以支援災民。
04:04
That was a huge problem at the Haiti earthquake.
77
244100
2572
這在海地地震 就造成很大的問題。
04:07
So we need marine vehicles.
78
247565
2122
所以我們需要兩棲車輛。
04:09
Now, let's look at a viewpoint from the SARbot
79
249711
2431
現在我們從沙霸的角度
04:12
of what they were seeing.
80
252166
1471
看他們看到的東西。
04:13
We were working on a fishing port.
81
253661
2246
我們在搶救一座漁港。
04:15
We were able to reopen that fishing port, using her sonar, in four hours.
82
255931
5716
我們能用沙霸的聲納系統 在四小時內重新開放那座漁港。
04:21
That fishing port was told it was going to be six months
83
261671
2653
那座漁港被告知要六個月
04:24
before they could get a manual team of divers in,
84
264348
2706
才能找到一組潛水員下去看,
04:27
and it was going to take the divers two weeks.
85
267078
2687
而且潛水員還要花兩個星期。
04:29
They were going to miss the fall fishing season,
86
269789
2294
他們會因此錯過秋季魚汛,
04:32
which was the major economy for that part, which is kind of like their Cape Cod.
87
272107
4226
那塊區域主要的經濟來源, 有點像麻省的勝地「鱈魚角」。
04:36
UMVs, very important.
88
276357
2268
自動兩棲車非常重要。
04:38
But you know, all the robots I've shown you have been small,
89
278649
3248
但是你知道嗎, 我展示給大家看的機器人都很小,
04:41
and that's because robots don't do things that people do.
90
281921
3777
那是因為機器人不做人做的事。
04:45
They go places people can't go.
91
285722
2253
他們去人到不了的地方。
04:47
And a great example of that is Bujold.
92
287999
2976
有個很好的例子就是「步足」。
04:50
Unmanned ground vehicles are particularly small,
93
290999
2976
無人駕駛的地面車輛都特別小,
04:53
so Bujold --
94
293999
1318
所以步足
04:55
(Laughter)
95
295341
1508
(笑聲)
04:56
Say hello to Bujold.
96
296873
1183
跟步足打個招呼吧!
04:58
(Laughter)
97
298080
2684
(笑聲)
05:01
Bujold was used extensively at the World Trade Center
98
301606
3369
步足在紐約世貿恐襲中 被大量使用,
05:04
to go through Towers 1, 2 and 4.
99
304999
2380
搜索 1、 2 及 4 號大樓。
05:07
You're climbing into the rubble, rappelling down, going deep in spaces.
100
307403
4645
你爬進廢墟、繞繩下降, 進入位於深處的空間。
05:12
And just to see the World Trade Center from Bujold's viewpoint, look at this.
101
312072
4559
從步足的眼光看紐約世貿, 看一下這個。
05:16
You're talking about a disaster where you can't fit a person or a dog --
102
316655
5069
你在談的是你不能用 人或狗來處理的災難,
05:21
and it's on fire.
103
321748
2142
而且還在燃燒。
05:23
The only hope of getting to a survivor way in the basement,
104
323914
3734
能到地下室找生存者的唯一希望,
05:27
you have to go through things that are on fire.
105
327672
2195
你得通過燃燒的火場。
05:29
It was so hot, on one of the robots, the tracks began to melt and come off.
106
329891
4504
現場非常熱,某個機器人的履帶 都開始熔化脫落。
05:35
Robots don't replace people or dogs,
107
335161
2788
機器人不能取代人或狗,
05:37
or hummingbirds or hawks or dolphins.
108
337973
2521
或蜂鳥或隼或海豚等無人機。
05:40
They do things new.
109
340518
2036
他們做新的事。
05:42
They assist the responders, the experts, in new and innovative ways.
110
342578
5689
他們以創新的方法 幫助救難人員及專家。
05:48
The biggest problem is not making the robots smaller, though.
111
348291
4429
但是最大的問題 不是把機器人做得更小。
05:52
It's not making them more heat-resistant.
112
352744
2231
也不是把他們弄得更耐熱。
05:54
It's not making more sensors.
113
354999
1757
也不是加更多的感應器。
05:56
The biggest problem is the data, the informatics,
114
356780
3610
最大的問題是數據, 是資訊學,
06:00
because these people need to get the right data at the right time.
115
360414
4036
因為這些人需要 在適當的時間取得正確的資料。
06:04
So wouldn't it be great if we could have experts immediately access the robots
116
364474
5501
如果專家能立刻從機器人 取得數據不是很棒嗎?
06:09
without having to waste any time of driving to the site,
117
369999
2976
不用浪費時間開車到現場,
06:12
so whoever's there, use their robots over the Internet.
118
372999
2933
所以無論是誰在那, 都可以用網路操縱機器人。
06:15
Well, let's think about that.
119
375956
1382
好好想一下。
06:17
Let's think about a chemical train derailment in a rural county.
120
377362
3372
想一下載了化學品的火車 在郊區縣城脫軌。
06:20
What are the odds that the experts, your chemical engineer,
121
380758
3842
你想這機率有多高, 你的專家、化學工程師、
06:24
your railroad transportation engineers,
122
384624
1862
你的鐵路運輸工程師,
06:26
have been trained on whatever UAV that particular county happens to have?
123
386510
4861
剛好就在那個縣城, 還受過無人機訓練?
06:31
Probably, like, none.
124
391395
1533
大概是零吧?
06:32
So we're using these kinds of interfaces
125
392952
2390
所以我們用這種介面
06:35
to allow people to use the robots without knowing what robot they're using,
126
395366
4340
讓大家使用機器人, 無須知道他們在用哪種機器人,
06:39
or even if they're using a robot or not.
127
399730
2786
或根本不用知道 他們有沒有在用機器人。
06:44
What the robots give you, what they give the experts, is data.
128
404252
6034
機器人給你的、 給專家的是數據。
06:50
The problem becomes: who gets what data when?
129
410310
3580
問題變成: 誰在什麼時候拿到什麼數據?
06:53
One thing to do is to ship all the information to everybody
130
413914
3893
有一個方法是把所有的數據 送給每一個人,
06:57
and let them sort it out.
131
417831
1512
讓他們自己選。
06:59
Well, the problem with that is it overwhelms the networks,
132
419367
3856
這個方法的問題是 這樣會讓網路超載,
07:03
and worse yet, it overwhelms the cognitive abilities
133
423247
3686
最糟的是,這還會讓
試著得到那塊數據的人 認知能力不勝負荷。
07:06
of each of the people trying to get that one nugget of information
134
426957
4509
07:11
they need to make the decision that's going to make the difference.
135
431490
3805
他們做的決定會改變一切。
07:15
So we need to think about those kinds of challenges.
136
435999
3094
所以我們必須考慮那種挑戰。
07:19
So it's the data.
137
439117
1265
所以數據才是大問題。
07:20
Going back to the World Trade Center,
138
440406
2236
再回頭來看世界貿易中心,
07:22
we tried to solve that problem by just recording the data from Bujold
139
442666
4309
我們試著解決這個問題, 所以讓步足在深入廢墟後
07:26
only when she was deep in the rubble,
140
446999
1976
才記錄下數據,
07:28
because that's what the USAR team said they wanted.
141
448999
2564
因為那是坍塌搜救專隊 說他們要的。
07:32
What we didn't know at the time
142
452523
2588
那時候我們不知道
07:35
was that the civil engineers would have loved,
143
455135
2598
土木工程師會很愛、
07:37
needed the data as we recorded the box beams, the serial numbers,
144
457757
4218
很需要我們在進入廢墟時
錄下來的箱型梁序號、地點。
07:41
the locations, as we went into the rubble.
145
461999
2619
07:45
We lost valuable data.
146
465343
1467
我們錯失了珍貴的數據。
07:46
So the challenge is getting all the data
147
466834
2379
所以挑戰是得到所有的數據,
07:49
and getting it to the right people.
148
469237
2180
及把數據送到對的人手上。
07:51
Now, here's another reason.
149
471441
2077
現在還有另一個原因。
07:53
We've learned that some buildings --
150
473542
2311
我們得知某些建築物,
07:55
things like schools, hospitals, city halls --
151
475877
3272
像是學校、醫院、市政廳等,
07:59
get inspected four times by different agencies
152
479173
4019
在整個救災反應期, 要被不同的單位檢查四次,
08:03
throughout the response phases.
153
483216
2250
08:06
Now, we're looking, if we can get the data from the robots to share,
154
486156
3269
現在我們來看,如果我們能從機器人 得到數據給大家共用,
08:09
not only can we do things like compress that sequence of phases
155
489449
4850
我們不但能縮短反應期各個階段
08:14
to shorten the response time,
156
494323
1653
以縮短反應時間,
08:16
but now we can begin to do the response in parallel.
157
496000
4358
我們現在還能開始 同時進行不同反應。
08:20
Everybody can see the data.
158
500382
1379
每個人都能看到數據。
08:21
We can shorten it that way.
159
501785
1462
我們可以用那種方法縮短。
08:23
So really, "disaster robotics" is a misnomer.
160
503999
3406
所以說真的, 「救災機器人」學是個誤稱。
08:28
It's not about the robots.
161
508227
1895
這跟機器人無關。
08:30
It's about the data.
162
510146
1882
這跟數據有關。
08:32
(Applause)
163
512433
3330
(掌聲)
08:35
So my challenge to you:
164
515787
1957
所以我給大家的挑戰是,
08:37
the next time you hear about a disaster,
165
517768
2300
下一次你聽到某個災難,
08:40
look for the robots.
166
520092
1325
去找機器人。
08:41
They may be underground, they may be underwater,
167
521441
3125
他們可能在地下, 可能在水下,
08:44
they may be in the sky,
168
524590
1694
也可能在天上,
08:46
but they should be there.
169
526308
1965
但是它們應該就在那兒。
08:48
Look for the robots,
170
528297
1167
去找機器人,
08:49
because robots are coming to the rescue.
171
529488
2747
因為機器人要來拯救大家了!
08:52
(Applause)
172
532259
5661
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog