How we're using AI to discover new antibiotics | Jim Collins

41,324 views ・ 2020-05-26

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jinhao Ma 校对人员: Wanting Zhong
00:12
So how are we going to beat this novel coronavirus?
0
12917
2908
我们要如何击败新型冠状病毒?
00:16
By using our best tools:
1
16317
2631
通过使用我们最好的工具:
00:18
our science and our technology.
2
18972
2039
我们的科学和技术。
00:21
In my lab, we're using the tools of artificial intelligence
3
21594
3132
在我的实验室中, 我们正在使用人工智能
00:24
and synthetic biology
4
24750
1579
和合成生物学的工具,
00:26
to speed up the fight against this pandemic.
5
26353
3060
加快与这场疫情的战斗。
00:30
Our work was originally designed
6
30078
1863
我们工作的初衷
00:31
to tackle the antibiotic resistance crisis.
7
31965
2853
是想解决抗生素耐药性的危机。
00:34
Our project seeks to harness the power of machine learning
8
34842
4689
我们的项目试图利用 机器学习的力量
00:39
to replenish our antibiotic arsenal
9
39555
1846
补充我们的抗生素“弹药库”,
00:41
and avoid a globally devastating postantibiotic era.
10
41425
3838
并避免会造成全球性危害的 后抗生素时代。
00:45
Importantly, the same technology can be used
11
45685
2820
重要的是,同样的技术能用来寻找
00:48
to search for antiviral compounds
12
48529
2072
可以帮助我们应对当前疫情的
00:50
that could help us fight the current pandemic.
13
50625
2678
抗病毒化合物。
00:54
Machine learning is turning the traditional model of drug discovery
14
54080
3902
机器学习正在颠覆
传统的药物开发模型。
00:58
on its head.
15
58006
1404
00:59
With this approach,
16
59434
1225
通过这种方法,
01:00
instead of painstakingly testing thousands of existing molecules
17
60683
4078
我们不再需要在实验室里 一个接一个费力地测试
01:04
one by one in a lab
18
64785
1436
成千上万
现有分子的效力,
01:06
for their effectiveness,
19
66245
1587
01:07
we can train a computer to explore the exponentially larger space
20
67856
4657
而是可以训练电脑探索更大的、
01:12
of essentially all possible molecules that could be synthesized,
21
72537
3584
基本上涵盖了所有 可能合成的分子的空间。
01:16
and thus, instead of looking for a needle in a haystack,
22
76145
5614
因此,相比在“海底捞针”,
01:21
we can use the giant magnet of computing power
23
81783
3760
我们可以使用计算能力 这块“巨型磁铁”,
01:25
to find many needles in multiple haystacks simultaneously.
24
85567
3915
同时在几个“海”底 捞很多很多根“针”。
01:30
We've already had some early success.
25
90423
1992
我们的早期尝试 已经取得了一些成功。
01:33
Recently, we used machine learning to discover new antibiotics
26
93010
5465
最近,我们使用机器学习 发现了新的抗生素,
01:38
that can help us fight off the bacterial infections
27
98499
2560
可以帮助我们抵御
可能伴随 SARS-CoV-2 冠状病毒感染 发生的细菌感染。
01:41
that can occur alongside SARS-CoV-2 infections.
28
101083
3611
01:45
Two months ago, TED's Audacious Project approved funding for us
29
105181
4169
两个月前,TED 的“大胆计划” (Audacious Project)
01:49
to massively scale up our work
30
109374
2188
批准了我们的资金申请,
01:51
with the goal of discovering seven new classes of antibiotics
31
111586
4628
这将大规模扩展我们的工作, 目标是在未来的七年里,
01:56
against seven of the world's deadly bacterial pathogens
32
116238
3483
发现七类新型抗生素,
以对抗世界上七种 致命的病原体细菌。
01:59
over the next seven years.
33
119745
2055
02:02
For context:
34
122206
1733
在此说明一下:
02:03
the number of new class of antibiotics
35
123963
1928
在过去三十年内,人类发现的
02:05
that have been discovered over the last three decades is zero.
36
125915
3235
新型抗生素的数量为零。
02:10
While the quest for new antibiotics is for our medium-term future,
37
130030
3571
虽说寻找新的抗生素 是为了我们的中期未来,
02:13
the novel coronavirus poses an immediate deadly threat,
38
133625
4652
新型冠状病毒构成了 迫在眉睫的致命威胁,
02:18
and I'm excited to share that we think we can use the same technology
39
138301
3793
我很高兴能跟大家宣布, 我们认为可以使用相同的技术
02:22
to search for therapeutics to fight this virus.
40
142118
2809
寻找对抗这种病毒的治疗手段。
02:25
So how are we going to do it?
41
145486
1719
那么我们该怎么做呢?
02:27
Well, we're creating a compound training library
42
147229
2948
我们正在创建一个 化合物训练库,
02:30
and with collaborators applying these molecules to SARS-CoV-2-infected cells
43
150201
5542
并与合作者一起,用这些分子处理 被 SARS-CoV-2 感染的细胞,
02:35
to see which of them exhibit effective activity.
44
155767
3894
看看哪个分子表现出了有效的活性。
02:40
These data will be use to train a machine learning model
45
160175
3192
这些数据将用于训练 一个机器学习模型,
02:43
that will be applied to an in silico library of over a billion molecules
46
163391
4070
这个模型将被应用于包含 超过十亿个分子的计算机模拟数据库,
02:47
to search for potential novel antiviral compounds.
47
167485
4204
以寻找潜在的新型抗病毒化合物。
02:52
We will synthesize and test the top predictions
48
172324
2658
我们将合成并测试 算法预测出的最优分子,
02:55
and advance the most promising candidates into the clinic.
49
175006
2889
并让最有潜力的备选分子 进入临床实验。
02:58
Sound too good to be true?
50
178356
1778
听起来是不是过于美好了?
03:00
Well, it shouldn't.
51
180158
1432
并非如此。
03:01
The Antibiotics AI Project is founded on our proof of concept research
52
181614
3325
抗生素人工智能项目的设立 是基于我们的概念验证研究,
03:04
that led to the discovery of a novel broad-spectrum antibiotic
53
184963
3401
这项研究最终发现了 一种新型广谱抗生素,
03:08
called halicin.
54
188388
1185
叫做 Halocin。
03:10
Halicin has potent antibacterial activity
55
190443
2813
Halocin 具有强大的抗菌活性,
03:13
against almost all antibiotic-resistant bacterial pathogens,
56
193280
4102
能杀死几乎所有 对抗生素耐药的病原体细菌,
包括无法治疗的多重耐药感染。
03:17
including untreatable panresistant infections.
57
197406
3641
03:21
Importantly, in contrast to current antibiotics,
58
201862
2270
重要的是,与目前的抗生素相比,
细菌对 Halocin 产生耐药性的频率
03:24
the frequency at which bacteria develop resistance against halicin
59
204156
3694
非常低。
03:27
is remarkably low.
60
207874
1484
03:30
We tested the ability of bacteria to evolve resistance against halicin
61
210303
4710
我们在实验室里测试了 细菌对 Halocin
以及环丙沙星(Cipro) 产生耐药性的能力。
03:35
as well as Cipro in the lab.
62
215037
1788
03:37
In the case of Cipro,
63
217299
1542
结果发现,
03:38
after just one day, we saw resistance.
64
218865
2825
仅仅一天后,细菌就对 环丙沙星产生了耐药性。
03:42
In the case of halicin,
65
222213
1478
而对于 Halocin,
03:43
after one day, we didn't see any resistance.
66
223715
2115
经过一天后, 细菌没有产生任何耐药性。
03:46
Amazingly, after even 30 days,
67
226479
3302
不可思议的是, 甚至在 30 天后,
03:49
we didn't see any resistance against halicin.
68
229805
2601
我们也没有发现细菌 对 Halocin 产生任何耐药性。
在这个试点项目中,我们首先对大肠杆菌 测试了大约 2500 种化合物。
03:53
In this pilot project, we first tested roughly 2,500 compounds against E. coli.
69
233098
5526
03:59
This training set included known antibiotics,
70
239259
2780
这个训练集包括了已知的抗生素,
例如环丙沙星和青霉素,
04:02
such as Cipro and penicillin,
71
242063
1746
04:03
as well as many drugs that are not antibiotics.
72
243833
2272
以及许多不是抗生素的药物。
04:06
These data we used to train a model
73
246984
2587
我们用这些数据来训练模型,
04:09
to learn molecular features associated with antibacterial activity.
74
249595
3978
让它学习与抗菌活性 有关的分子特征。
然后我们把这个模型 应用到由数千个分子组成的
04:14
We then applied this model to a drug-repurposing library
75
254269
2701
04:16
consisting of several thousand molecules
76
256994
2478
药物再定位数据库上,
04:19
and asked the model to identify molecules
77
259496
2618
并要求模型识别
被预测具有抗菌性能
04:22
that are predicted to have antibacterial properties
78
262138
2784
04:24
but don't look like existing antibiotics.
79
264946
2473
但长得不像现有抗生素的分子。
04:28
Interestingly, only one molecule in that library fit these criteria,
80
268427
4797
有趣的是,数据库里 只有一个分子符合这些条件,
04:33
and that molecule turned out to be halicin.
81
273248
2336
那个分子就是 Halocin。
04:36
Given that halicin does not look like any existing antibiotic,
82
276444
3088
由于 Halocin 看起来 不像任何现有的抗生素,
04:39
it would have been impossible for a human, including an antibiotic expert,
83
279556
4154
人类,包括抗生素专家,
04:43
to identify halicin in this manner.
84
283734
2184
都不可能以这种方式 发现 Halocin 的。
04:46
Imagine now what we could do with this technology
85
286574
2630
想象一下,我们能如何使用这项技术
04:49
against SARS-CoV-2.
86
289228
1741
对抗 SARS-CoV-2。
04:51
And that's not all.
87
291783
1365
还不止这些。
04:53
We're also using the tools of synthetic biology,
88
293172
2820
我们也在使用合成生物学的工具
修补 DNA 和其他细胞成分,
04:56
tinkering with DNA and other cellular machinery,
89
296016
2611
04:58
to serve human purposes like combating COVID-19,
90
298651
3910
为人类服务,比如对抗 COVID-19。
05:02
and of note, we are working to develop a protective mask
91
302585
3647
值得一提的是,我们正在努力开发
05:06
that can also serve as a rapid diagnostic test.
92
306256
3432
可作为快速诊断测试的防护口罩。
05:10
So how does that work?
93
310192
1472
它的原理是什么?
05:11
Well, we recently showed
94
311688
1205
我们最近发现
05:12
that you can take the cellular machinery out of a living cell
95
312917
2943
你可以从活细胞中 提取出细胞成分,
05:15
and freeze-dry it along with RNA sensors onto paper
96
315884
4092
然后把它连同 RNA 检测器 在试纸上进行冷冻干燥,
05:20
in order to create low-cost diagnostics for Ebola and Zika.
97
320000
4916
从而制作出廉价的 埃博拉和寨卡病毒诊断测试工具。
05:25
The sensors are activated when they're rehydrated by a patient sample
98
325503
5227
在通过添加患者的样本, 如血液或唾液进行重新溶解后,
05:30
that could consist of blood or saliva, for example.
99
330754
2822
RNA 检测器就能被激活。
05:33
It turns out, this technology is not limited to paper
100
333600
3261
事实证明,除了纸制品,
05:36
and can be applied to other materials, including cloth.
101
336885
2886
这项技术还可以应用于 其他材料,包括布料。
05:40
For the COVID-19 pandemic,
102
340671
1942
对于 COVID-19 疫情,
05:42
we're designing RNA sensors to detect the virus
103
342637
4346
我们正在设计 针对病毒的 RNA 检测器,
然后把它们和所需的细胞成分一起
05:47
and freeze-drying these along with the needed cellular machinery
104
347007
3210
05:50
into the fabric of a face mask,
105
350241
2707
在口罩的面料上进行冷冻干燥,
05:52
where the simple act of breathing,
106
352972
2229
简单的呼吸行为
05:55
along with the water vapor that comes with it,
107
355225
2277
连同呼出的水蒸气,
05:57
can activate the test.
108
357526
1760
就可以激活测试。
05:59
Thus, if a patient is infected with SARS-CoV-2,
109
359804
4260
如果患者感染了 SARS-CoV-2,
口罩就会产生荧光信号,
06:04
the mask will produce a fluorescent signal
110
364088
2073
06:06
that could be detected by a simple, inexpensive handheld device.
111
366185
3830
可以通过简单廉价的 手持设备检测出来。
06:10
In one or two hours, a patient could thus be diagnosed
112
370534
4484
一两个小时内,病人就能得到
安全、准确、无接触的诊断。
06:15
safely, remotely and accurately.
113
375042
2972
06:18
We're also using synthetic biology
114
378735
2520
我们也在使用合成生物学
06:21
to design a candidate vaccine for COVID-19.
115
381279
2720
设计 COVID-19 的备选疫苗。
06:25
We are repurposing the BCG vaccine,
116
385014
2653
我们正在重新利用卡介苗,
06:27
which had been used against TB for almost a century.
117
387691
2870
这种疫苗在近一个世纪前 就被用来预防结核病。
06:30
It's a live attenuated vaccine,
118
390585
1541
这是一种减毒活疫苗,
06:32
and we're engineering it to express SARS-CoV-2 antigens,
119
392150
4657
我们通过生物工程 让它表达 SARS-CoV-2 抗原,
06:36
which should trigger the production of protective antibodies
120
396831
2814
以此来触发免疫系统
06:39
by the immune system.
121
399669
1635
产生保护性抗体。
06:41
Importantly, BCG is massively scalable
122
401328
2734
重要的是,卡介苗可大规模生产,
并且它的安全性在所有 有记录的疫苗中是最好的。
06:44
and has a safety profile that's among the best of any reported vaccine.
123
404086
4573
06:49
With the tools of synthetic biology and artificial intelligence,
124
409881
5105
借助合成生物学与人工智能的工具,
06:55
we can win the fight against this novel coronavirus.
125
415010
3348
我们可以打赢 和新型冠状病毒的战争。
06:58
This work is in its very early stages, but the promise is real.
126
418844
3319
这项工作尚处于初期阶段, 但它的前景是真实的。
07:02
Science and technology can give us an important advantage
127
422798
3445
在人类智慧与超级细菌基因的战斗中,
07:06
in the battle of human wits versus the genes of superbugs,
128
426267
3161
科学和技术能给予我们重要的优势,
07:09
a battle we can win.
129
429452
1747
帮助我们取得胜利。
07:11
Thank you.
130
431990
1233
谢谢。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog