How we're using AI to discover new antibiotics | Jim Collins

41,124 views ・ 2020-05-26

TED


请双击下面的英文字幕来播放视频。

翻译人员: Jinhao Ma 校对人员: Wanting Zhong
00:12
So how are we going to beat this novel coronavirus?
0
12917
2908
我们要如何击败新型冠状病毒?
00:16
By using our best tools:
1
16317
2631
通过使用我们最好的工具:
00:18
our science and our technology.
2
18972
2039
我们的科学和技术。
00:21
In my lab, we're using the tools of artificial intelligence
3
21594
3132
在我的实验室中, 我们正在使用人工智能
00:24
and synthetic biology
4
24750
1579
和合成生物学的工具,
00:26
to speed up the fight against this pandemic.
5
26353
3060
加快与这场疫情的战斗。
00:30
Our work was originally designed
6
30078
1863
我们工作的初衷
00:31
to tackle the antibiotic resistance crisis.
7
31965
2853
是想解决抗生素耐药性的危机。
00:34
Our project seeks to harness the power of machine learning
8
34842
4689
我们的项目试图利用 机器学习的力量
00:39
to replenish our antibiotic arsenal
9
39555
1846
补充我们的抗生素“弹药库”,
00:41
and avoid a globally devastating postantibiotic era.
10
41425
3838
并避免会造成全球性危害的 后抗生素时代。
00:45
Importantly, the same technology can be used
11
45685
2820
重要的是,同样的技术能用来寻找
00:48
to search for antiviral compounds
12
48529
2072
可以帮助我们应对当前疫情的
00:50
that could help us fight the current pandemic.
13
50625
2678
抗病毒化合物。
00:54
Machine learning is turning the traditional model of drug discovery
14
54080
3902
机器学习正在颠覆
传统的药物开发模型。
00:58
on its head.
15
58006
1404
00:59
With this approach,
16
59434
1225
通过这种方法,
01:00
instead of painstakingly testing thousands of existing molecules
17
60683
4078
我们不再需要在实验室里 一个接一个费力地测试
01:04
one by one in a lab
18
64785
1436
成千上万
现有分子的效力,
01:06
for their effectiveness,
19
66245
1587
01:07
we can train a computer to explore the exponentially larger space
20
67856
4657
而是可以训练电脑探索更大的、
01:12
of essentially all possible molecules that could be synthesized,
21
72537
3584
基本上涵盖了所有 可能合成的分子的空间。
01:16
and thus, instead of looking for a needle in a haystack,
22
76145
5614
因此,相比在“海底捞针”,
01:21
we can use the giant magnet of computing power
23
81783
3760
我们可以使用计算能力 这块“巨型磁铁”,
01:25
to find many needles in multiple haystacks simultaneously.
24
85567
3915
同时在几个“海”底 捞很多很多根“针”。
01:30
We've already had some early success.
25
90423
1992
我们的早期尝试 已经取得了一些成功。
01:33
Recently, we used machine learning to discover new antibiotics
26
93010
5465
最近,我们使用机器学习 发现了新的抗生素,
01:38
that can help us fight off the bacterial infections
27
98499
2560
可以帮助我们抵御
可能伴随 SARS-CoV-2 冠状病毒感染 发生的细菌感染。
01:41
that can occur alongside SARS-CoV-2 infections.
28
101083
3611
01:45
Two months ago, TED's Audacious Project approved funding for us
29
105181
4169
两个月前,TED 的“大胆计划” (Audacious Project)
01:49
to massively scale up our work
30
109374
2188
批准了我们的资金申请,
01:51
with the goal of discovering seven new classes of antibiotics
31
111586
4628
这将大规模扩展我们的工作, 目标是在未来的七年里,
01:56
against seven of the world's deadly bacterial pathogens
32
116238
3483
发现七类新型抗生素,
以对抗世界上七种 致命的病原体细菌。
01:59
over the next seven years.
33
119745
2055
02:02
For context:
34
122206
1733
在此说明一下:
02:03
the number of new class of antibiotics
35
123963
1928
在过去三十年内,人类发现的
02:05
that have been discovered over the last three decades is zero.
36
125915
3235
新型抗生素的数量为零。
02:10
While the quest for new antibiotics is for our medium-term future,
37
130030
3571
虽说寻找新的抗生素 是为了我们的中期未来,
02:13
the novel coronavirus poses an immediate deadly threat,
38
133625
4652
新型冠状病毒构成了 迫在眉睫的致命威胁,
02:18
and I'm excited to share that we think we can use the same technology
39
138301
3793
我很高兴能跟大家宣布, 我们认为可以使用相同的技术
02:22
to search for therapeutics to fight this virus.
40
142118
2809
寻找对抗这种病毒的治疗手段。
02:25
So how are we going to do it?
41
145486
1719
那么我们该怎么做呢?
02:27
Well, we're creating a compound training library
42
147229
2948
我们正在创建一个 化合物训练库,
02:30
and with collaborators applying these molecules to SARS-CoV-2-infected cells
43
150201
5542
并与合作者一起,用这些分子处理 被 SARS-CoV-2 感染的细胞,
02:35
to see which of them exhibit effective activity.
44
155767
3894
看看哪个分子表现出了有效的活性。
02:40
These data will be use to train a machine learning model
45
160175
3192
这些数据将用于训练 一个机器学习模型,
02:43
that will be applied to an in silico library of over a billion molecules
46
163391
4070
这个模型将被应用于包含 超过十亿个分子的计算机模拟数据库,
02:47
to search for potential novel antiviral compounds.
47
167485
4204
以寻找潜在的新型抗病毒化合物。
02:52
We will synthesize and test the top predictions
48
172324
2658
我们将合成并测试 算法预测出的最优分子,
02:55
and advance the most promising candidates into the clinic.
49
175006
2889
并让最有潜力的备选分子 进入临床实验。
02:58
Sound too good to be true?
50
178356
1778
听起来是不是过于美好了?
03:00
Well, it shouldn't.
51
180158
1432
并非如此。
03:01
The Antibiotics AI Project is founded on our proof of concept research
52
181614
3325
抗生素人工智能项目的设立 是基于我们的概念验证研究,
03:04
that led to the discovery of a novel broad-spectrum antibiotic
53
184963
3401
这项研究最终发现了 一种新型广谱抗生素,
03:08
called halicin.
54
188388
1185
叫做 Halocin。
03:10
Halicin has potent antibacterial activity
55
190443
2813
Halocin 具有强大的抗菌活性,
03:13
against almost all antibiotic-resistant bacterial pathogens,
56
193280
4102
能杀死几乎所有 对抗生素耐药的病原体细菌,
包括无法治疗的多重耐药感染。
03:17
including untreatable panresistant infections.
57
197406
3641
03:21
Importantly, in contrast to current antibiotics,
58
201862
2270
重要的是,与目前的抗生素相比,
细菌对 Halocin 产生耐药性的频率
03:24
the frequency at which bacteria develop resistance against halicin
59
204156
3694
非常低。
03:27
is remarkably low.
60
207874
1484
03:30
We tested the ability of bacteria to evolve resistance against halicin
61
210303
4710
我们在实验室里测试了 细菌对 Halocin
以及环丙沙星(Cipro) 产生耐药性的能力。
03:35
as well as Cipro in the lab.
62
215037
1788
03:37
In the case of Cipro,
63
217299
1542
结果发现,
03:38
after just one day, we saw resistance.
64
218865
2825
仅仅一天后,细菌就对 环丙沙星产生了耐药性。
03:42
In the case of halicin,
65
222213
1478
而对于 Halocin,
03:43
after one day, we didn't see any resistance.
66
223715
2115
经过一天后, 细菌没有产生任何耐药性。
03:46
Amazingly, after even 30 days,
67
226479
3302
不可思议的是, 甚至在 30 天后,
03:49
we didn't see any resistance against halicin.
68
229805
2601
我们也没有发现细菌 对 Halocin 产生任何耐药性。
在这个试点项目中,我们首先对大肠杆菌 测试了大约 2500 种化合物。
03:53
In this pilot project, we first tested roughly 2,500 compounds against E. coli.
69
233098
5526
03:59
This training set included known antibiotics,
70
239259
2780
这个训练集包括了已知的抗生素,
例如环丙沙星和青霉素,
04:02
such as Cipro and penicillin,
71
242063
1746
04:03
as well as many drugs that are not antibiotics.
72
243833
2272
以及许多不是抗生素的药物。
04:06
These data we used to train a model
73
246984
2587
我们用这些数据来训练模型,
04:09
to learn molecular features associated with antibacterial activity.
74
249595
3978
让它学习与抗菌活性 有关的分子特征。
然后我们把这个模型 应用到由数千个分子组成的
04:14
We then applied this model to a drug-repurposing library
75
254269
2701
04:16
consisting of several thousand molecules
76
256994
2478
药物再定位数据库上,
04:19
and asked the model to identify molecules
77
259496
2618
并要求模型识别
被预测具有抗菌性能
04:22
that are predicted to have antibacterial properties
78
262138
2784
04:24
but don't look like existing antibiotics.
79
264946
2473
但长得不像现有抗生素的分子。
04:28
Interestingly, only one molecule in that library fit these criteria,
80
268427
4797
有趣的是,数据库里 只有一个分子符合这些条件,
04:33
and that molecule turned out to be halicin.
81
273248
2336
那个分子就是 Halocin。
04:36
Given that halicin does not look like any existing antibiotic,
82
276444
3088
由于 Halocin 看起来 不像任何现有的抗生素,
04:39
it would have been impossible for a human, including an antibiotic expert,
83
279556
4154
人类,包括抗生素专家,
04:43
to identify halicin in this manner.
84
283734
2184
都不可能以这种方式 发现 Halocin 的。
04:46
Imagine now what we could do with this technology
85
286574
2630
想象一下,我们能如何使用这项技术
04:49
against SARS-CoV-2.
86
289228
1741
对抗 SARS-CoV-2。
04:51
And that's not all.
87
291783
1365
还不止这些。
04:53
We're also using the tools of synthetic biology,
88
293172
2820
我们也在使用合成生物学的工具
修补 DNA 和其他细胞成分,
04:56
tinkering with DNA and other cellular machinery,
89
296016
2611
04:58
to serve human purposes like combating COVID-19,
90
298651
3910
为人类服务,比如对抗 COVID-19。
05:02
and of note, we are working to develop a protective mask
91
302585
3647
值得一提的是,我们正在努力开发
05:06
that can also serve as a rapid diagnostic test.
92
306256
3432
可作为快速诊断测试的防护口罩。
05:10
So how does that work?
93
310192
1472
它的原理是什么?
05:11
Well, we recently showed
94
311688
1205
我们最近发现
05:12
that you can take the cellular machinery out of a living cell
95
312917
2943
你可以从活细胞中 提取出细胞成分,
05:15
and freeze-dry it along with RNA sensors onto paper
96
315884
4092
然后把它连同 RNA 检测器 在试纸上进行冷冻干燥,
05:20
in order to create low-cost diagnostics for Ebola and Zika.
97
320000
4916
从而制作出廉价的 埃博拉和寨卡病毒诊断测试工具。
05:25
The sensors are activated when they're rehydrated by a patient sample
98
325503
5227
在通过添加患者的样本, 如血液或唾液进行重新溶解后,
05:30
that could consist of blood or saliva, for example.
99
330754
2822
RNA 检测器就能被激活。
05:33
It turns out, this technology is not limited to paper
100
333600
3261
事实证明,除了纸制品,
05:36
and can be applied to other materials, including cloth.
101
336885
2886
这项技术还可以应用于 其他材料,包括布料。
05:40
For the COVID-19 pandemic,
102
340671
1942
对于 COVID-19 疫情,
05:42
we're designing RNA sensors to detect the virus
103
342637
4346
我们正在设计 针对病毒的 RNA 检测器,
然后把它们和所需的细胞成分一起
05:47
and freeze-drying these along with the needed cellular machinery
104
347007
3210
05:50
into the fabric of a face mask,
105
350241
2707
在口罩的面料上进行冷冻干燥,
05:52
where the simple act of breathing,
106
352972
2229
简单的呼吸行为
05:55
along with the water vapor that comes with it,
107
355225
2277
连同呼出的水蒸气,
05:57
can activate the test.
108
357526
1760
就可以激活测试。
05:59
Thus, if a patient is infected with SARS-CoV-2,
109
359804
4260
如果患者感染了 SARS-CoV-2,
口罩就会产生荧光信号,
06:04
the mask will produce a fluorescent signal
110
364088
2073
06:06
that could be detected by a simple, inexpensive handheld device.
111
366185
3830
可以通过简单廉价的 手持设备检测出来。
06:10
In one or two hours, a patient could thus be diagnosed
112
370534
4484
一两个小时内,病人就能得到
安全、准确、无接触的诊断。
06:15
safely, remotely and accurately.
113
375042
2972
06:18
We're also using synthetic biology
114
378735
2520
我们也在使用合成生物学
06:21
to design a candidate vaccine for COVID-19.
115
381279
2720
设计 COVID-19 的备选疫苗。
06:25
We are repurposing the BCG vaccine,
116
385014
2653
我们正在重新利用卡介苗,
06:27
which had been used against TB for almost a century.
117
387691
2870
这种疫苗在近一个世纪前 就被用来预防结核病。
06:30
It's a live attenuated vaccine,
118
390585
1541
这是一种减毒活疫苗,
06:32
and we're engineering it to express SARS-CoV-2 antigens,
119
392150
4657
我们通过生物工程 让它表达 SARS-CoV-2 抗原,
06:36
which should trigger the production of protective antibodies
120
396831
2814
以此来触发免疫系统
06:39
by the immune system.
121
399669
1635
产生保护性抗体。
06:41
Importantly, BCG is massively scalable
122
401328
2734
重要的是,卡介苗可大规模生产,
并且它的安全性在所有 有记录的疫苗中是最好的。
06:44
and has a safety profile that's among the best of any reported vaccine.
123
404086
4573
06:49
With the tools of synthetic biology and artificial intelligence,
124
409881
5105
借助合成生物学与人工智能的工具,
06:55
we can win the fight against this novel coronavirus.
125
415010
3348
我们可以打赢 和新型冠状病毒的战争。
06:58
This work is in its very early stages, but the promise is real.
126
418844
3319
这项工作尚处于初期阶段, 但它的前景是真实的。
07:02
Science and technology can give us an important advantage
127
422798
3445
在人类智慧与超级细菌基因的战斗中,
07:06
in the battle of human wits versus the genes of superbugs,
128
426267
3161
科学和技术能给予我们重要的优势,
07:09
a battle we can win.
129
429452
1747
帮助我们取得胜利。
07:11
Thank you.
130
431990
1233
谢谢。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7