How we're using AI to discover new antibiotics | Jim Collins

41,124 views ใƒป 2020-05-26

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Yoo Jin Jeong ๊ฒ€ํ† : Jihyeon J. Kim
00:12
So how are we going to beat this novel coronavirus?
0
12917
2908
์–ด๋–ป๊ฒŒ ์‹ ์ข… ์ฝ”๋กœ๋‚˜๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ์ด๊ฒจ๋‚ผ ์ˆ˜ ์žˆ์„๊นŒ์š”?
00:16
By using our best tools:
1
16317
2631
์šฐ๋ฆฌ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์ตœ๊ณ ์˜ ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค
00:18
our science and our technology.
2
18972
2039
๋ฐ”๋กœ ๊ณผํ•™๊ณผ ๊ธฐ์ˆ ์ด์ฃ .
00:21
In my lab, we're using the tools of artificial intelligence
3
21594
3132
์ œ ์—ฐ๊ตฌ์†Œ์—์„œ๋Š” ์ธ๊ณต์ง€๋Šฅ๊ณผ
00:24
and synthetic biology
4
24750
1579
ํ•ฉ์„ฑ์ƒ๋ฌผํ•™์„ ์‚ฌ์šฉํ•ด
00:26
to speed up the fight against this pandemic.
5
26353
3060
์ด ํŒ๋ฐ๋ฏน์„ ๋” ๋นจ๋ฆฌ ์ด๊ฒจ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:30
Our work was originally designed
6
30078
1863
์›๋ž˜ ์ด ํ”„๋กœ์ ํŠธ์˜ ๋ชฉํ‘œ๋Š”
00:31
to tackle the antibiotic resistance crisis.
7
31965
2853
ํ•ญ์„ฑ๋ฌผ์งˆ ๋‚ด์„ฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
00:34
Our project seeks to harness the power of machine learning
8
34842
4689
์ด ํ”„๋กœ์ ํŠธ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ์ด์šฉํ•ด
00:39
to replenish our antibiotic arsenal
9
39555
1846
ํ•ญ์ƒ๋ฌผ์งˆ์„ ๋‹ค์‹œ ํ™•๋ณดํ•˜๊ณ 
00:41
and avoid a globally devastating postantibiotic era.
10
41425
3838
์ „์„ธ๊ณ„๋ฅผ ์ดˆํ† ํ™”์‹œํ‚ฌ ํฌ์ŠคํŠธ ํ•ญ์ƒ์ œ ์‹œ๋Œ€๋ฅผ ๋ง‰๋Š” ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
00:45
Importantly, the same technology can be used
11
45685
2820
์ค‘์š”ํ•œ ๊ฒƒ์€ ์ด ๋˜‘๊ฐ™์€ ๊ธฐ์ˆ ์ด
00:48
to search for antiviral compounds
12
48529
2072
ํ˜„์žฌ ํŒ๋ฐ๋ฏน์„ ์ข…์‹์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”
00:50
that could help us fight the current pandemic.
13
50625
2678
ํ•ญ์ƒ๋ฌผ์งˆ์„ ์ฐพ๋Š”๋ฐ ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
00:54
Machine learning is turning the traditional model of drug discovery
14
54080
3902
๋จธ์‹  ๋Ÿฌ๋‹์€ ์˜์•ฝ ๊ฐœ๋ฐœ์˜ ์ „ํ†ต์ ์ธ ๋ชจ๋ธ์„
00:58
on its head.
15
58006
1404
์™„์ „ํžˆ ๋ฐ”๊พธ์–ด๋†“๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
00:59
With this approach,
16
59434
1225
์ด ์ ‘๊ทผ๋ฐฉ์‹์€
01:00
instead of painstakingly testing thousands of existing molecules
17
60683
4078
์ด๋ฏธ ์กด์žฌํ•˜๋Š” ์ˆ˜ ์ฒœ ๊ฐœ์˜ ๋ฌผ์งˆ์ด
01:04
one by one in a lab
18
64785
1436
ํšจ๊ณผ๊ฐ€ ์žˆ๋Š”์ง€
01:06
for their effectiveness,
19
66245
1587
์—ฐ๊ตฌ์‹ค์—์„œ ํ•˜๋‚˜ ํ•˜๋‚˜ ์‹คํ—˜ํ•˜๋Š” ๋Œ€์‹ 
01:07
we can train a computer to explore the exponentially larger space
20
67856
4657
๊ทธ์— ๋น„ํ•ด ํ›จ์”ฌ ๋งŽ์€ ์–‘์ธ ํ•ฉ์„ฑ ๊ฐ€๋Šฅํ•œ ๋ชจ๋“  ๋ฌผ์งˆ์„
01:12
of essentially all possible molecules that could be synthesized,
21
72537
3584
์ปดํ“จํ„ฐ๊ฐ€ ํ•œ๊บผ๋ฒˆ์— ํ™•์ธํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:16
and thus, instead of looking for a needle in a haystack,
22
76145
5614
๋”ฐ๋ผ์„œ ๋ชจ๋ž˜์‚ฌ์žฅ์—์„œ ๋ฐ”๋Š˜์„ ์ฐพ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ
01:21
we can use the giant magnet of computing power
23
81783
3760
๋Œ€ํ˜• ์ž์„์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋Š” ์ปดํ“จํ„ฐ์˜ ํž˜์„ ์ด์šฉํ•ด
01:25
to find many needles in multiple haystacks simultaneously.
24
85567
3915
์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ฐ”๋Š˜์„ ์—ฌ๋Ÿฌ ๋ชจ๋ž˜์‚ฌ์žฅ์—์„œ ๋™์‹œ์— ์ฐพ์„ ์ˆ˜ ์žˆ๊ฒŒ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:30
We've already had some early success.
25
90423
1992
์ด๋ฏธ ์กฐ๊ธฐ ์„ฑ๊ณตํ•œ ์‚ฌ๋ก€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
01:33
Recently, we used machine learning to discover new antibiotics
26
93010
5465
์ตœ๊ทผ์—๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ์ด์šฉํ•ด ์ƒˆ๋กœ์šด ํ•ญ์ƒ ๋ฌผ์งˆ์„ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค.
01:38
that can help us fight off the bacterial infections
27
98499
2560
์ด๋Š” SARS-CoV-2 ๊ฐ์—ผ๊ณผ ๋™์‹œ์— ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ๋Š”
01:41
that can occur alongside SARS-CoV-2 infections.
28
101083
3611
๋ฐ•ํ…Œ๋ฆฌ์•„ ๊ฐ์—ผ์„ ๋ง‰์•„์ค๋‹ˆ๋‹ค..
01:45
Two months ago, TED's Audacious Project approved funding for us
29
105181
4169
๋‘ ๋‹ฌ ์ „ TED์˜ Audacious Project๊ฐ€ ์ €ํฌ์—๊ฒŒ ์žฌ์ • ์ง€์› ํ—ˆ๊ฐ€๋ฅผ ๋‚ด๋ ค ์ฃผ์…จ๋Š”๋ฐ
01:49
to massively scale up our work
30
109374
2188
์ด๋ฅผ ํ†ตํ•ด ์ผ์˜ ์Šค์ผ€์ผ์„ ํ›จ์”ฌ ์ฆ๋Œ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
01:51
with the goal of discovering seven new classes of antibiotics
31
111586
4628
์šฐ๋ฆฌ์˜ ๋ชฉํ‘œ๋Š” ์ „์„ธ๊ณ„ ๊ฐ€์žฅ ์น˜์‚ฌ์œจ์ด ๋†’์€ 7๊ฐœ์˜ ๋ณ‘๊ท ์ฒด๋ฅผ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ๋Š”
01:56
against seven of the world's deadly bacterial pathogens
32
116238
3483
7 ๊ฐœ์˜ ์ƒˆ๋กœ์šด ํ•ญ์ƒ์ œ๋ฅผ
01:59
over the next seven years.
33
119745
2055
7๋…„ ๋‚ด์— ์ฐพ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:02
For context:
34
122206
1733
๋ฐฐ๊ฒฝ ์ง€์‹์„ ์ข€ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
02:03
the number of new class of antibiotics
35
123963
1928
์ง€๋‚œ 30๋…„ ๋™์•ˆ ๋ฐœ๊ฒฌ๋œ
02:05
that have been discovered over the last three decades is zero.
36
125915
3235
์ƒˆ๋กœ์šด ํ•ญ์ƒ๋ฌผ์งˆ์˜ ์ˆ˜๋Š” 0๊ฐœ์ž…๋‹ˆ๋‹ค.
02:10
While the quest for new antibiotics is for our medium-term future,
37
130030
3571
์ƒˆ๋กœ์šด ํ•ญ์ƒ๋ฌผ์งˆ์„ ์ฐพ๋Š” ๊ฒƒ์ด ์ค‘๊ธฐ ๋ชฉํ‘œ์ด๊ธด ํ•˜์ง€๋งŒ
02:13
the novel coronavirus poses an immediate deadly threat,
38
133625
4652
์‹ ์ข… ์ฝ”๋กœ๋‚˜ ๋ฐ”์ด๋Ÿฌ์Šค๋Š” ์ง€๊ธˆ ๋งˆ์ฃผํ•˜๊ณ  ์žˆ๋Š” ์—„์ฒญ๋‚œ ์œ„ํ—˜์ž…๋‹ˆ๋‹ค.
02:18
and I'm excited to share that we think we can use the same technology
39
138301
3793
์˜ค๋Š˜ ์ œ๊ฐ€ ํ•˜๊ณ ์ž ํ•˜๋Š” ๋ง์€ ์ด ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•ด์„œ
02:22
to search for therapeutics to fight this virus.
40
142118
2809
์ด ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ์ด๊ธธ ์ˆ˜ ์žˆ๋Š” ์น˜๋ฃŒ๋ฒ•์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:25
So how are we going to do it?
41
145486
1719
๊ทธ๋Ÿผ ์–ด๋–ป๊ฒŒ ํ•  ์ˆ˜ ์žˆ์„๊นŒ์š”?
02:27
Well, we're creating a compound training library
42
147229
2948
์ผ๋‹จ ์šฐ๋ฆฌ๋Š” ํ›ˆ๋ จ์šฉ ํ™”ํ•™๋ฌผ์งˆ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ๋งŒ๋“ค์–ด
02:30
and with collaborators applying these molecules to SARS-CoV-2-infected cells
43
150201
5542
๊ณต๋™ ์—ฐ๊ตฌ์ž๋“ค๊ณผ ํ•จ๊ป˜ ์ด ๋ถ„์ž๋“ค์„ SARS-CoV-2์— ๊ฐ์—ผ๋œ ์„ธํฌ์— ๋…ธ์ถœ์‹œ์ผœ
02:35
to see which of them exhibit effective activity.
44
155767
3894
์ด ์ค‘ ํšจ๊ณผ์ ์ธ ํ™œ๋™์„ ๋ณด์ด๋Š” ๋ฌผ์งˆ์ด ์žˆ๋Š”์ง€ ์—ฐ๊ตฌํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
02:40
These data will be use to train a machine learning model
45
160175
3192
์ด ๋ฐ์ดํ„ฐ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ค๋Š” ๋ฐ ์‚ฌ์šฉ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:43
that will be applied to an in silico library of over a billion molecules
46
163391
4070
์ด ๋ชจ๋ธ์€ ์ˆ˜์‹ญ์–ต ๊ฐœ์˜ ๋ฌผ์งˆ์„ ๋‹ด์€ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ์ ์šฉ๋˜์–ด
02:47
to search for potential novel antiviral compounds.
47
167485
4204
์ด ์ค‘ ์ž ์žฌ์ ์ธ ์‹ ํ•ญ์ƒ๋ฌผ์งˆ์„ ์ฐพ์•„๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:52
We will synthesize and test the top predictions
48
172324
2658
์ƒ์œ„ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ  ์‹คํ—˜ํ•ด์„œ
02:55
and advance the most promising candidates into the clinic.
49
175006
2889
๊ฐ€์žฅ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ํ›„๋ณด๋“ค์€ ์ž„์ƒ ์‹คํ—˜์œผ๋กœ ๋ณด๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
02:58
Sound too good to be true?
50
178356
1778
๋ถˆ๊ฐ€๋Šฅํ•  ๊ฒƒ ๊ฐ™์€๊ฐ€์š”?
03:00
Well, it shouldn't.
51
180158
1432
๊ทธ๋ ‡์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
03:01
The Antibiotics AI Project is founded on our proof of concept research
52
181614
3325
ํ•ญ์ƒ์ œ AI ํ”„๋กœ์ ํŠธ๋Š” ์šฐ๋ฆฌ์˜ ๊ฐœ๋… ์ฆ๋ช… ์—ฐ๊ตฌ์—์„œ ๋น„๋กฏ๋˜์–ด
03:04
that led to the discovery of a novel broad-spectrum antibiotic
53
184963
3401
ํ• ๋กœ์‹ ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ด‘์—ญํ•ญ์ƒ๋ฌผ์งˆ์„ ์ฐพ์•„๋‚ด๋Š”๋ฐ
03:08
called halicin.
54
188388
1185
ํฐ ๊ธฐ์—ฌ๋ฅผ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:10
Halicin has potent antibacterial activity
55
190443
2813
ํ• ๋กœ์‹ ์€ ์น˜๋ฃŒ๋ถˆ๊ฐ€ํ•œ ์ „๋‚ด์„ฑ ๊ฐ์—ผ์„ ํฌํ•จํ•œ
03:13
against almost all antibiotic-resistant bacterial pathogens,
56
193280
4102
๊ฑฐ์˜ ๋ชจ๋“  ํ•ญ์„ฑ๋ฌผ์งˆ ๋‚ด์„ฑ ๋ณ‘์›๊ท ์—
03:17
including untreatable panresistant infections.
57
197406
3641
๊ฐ•๋ ฅํ•œ ํ•ญ๊ท ๋ ฅ์„ ๋ณด์ž…๋‹ˆ๋‹ค.
03:21
Importantly, in contrast to current antibiotics,
58
201862
2270
๋˜ํ•œ ์ค‘์š”ํ•œ ๊ฒƒ์€ ํ˜„์žฌ ์กด์žฌํ•˜๋Š” ํ•ญ์ƒ์ œ์™€๋Š” ๋‹ฌ๋ฆฌ
03:24
the frequency at which bacteria develop resistance against halicin
59
204156
3694
๋ฐ•ํ…Œ๋ฆฌ์•„๊ฐ€ ํ• ๋กœ์‹ ์— ๋‚ด์„ฑ์„ ๊ฐ€์ง€๊ฒŒ ๋˜๋Š” ๊ฒฝ์šฐ๋Š”
03:27
is remarkably low.
60
207874
1484
๊ต‰์žฅํžˆ ์ ์Šต๋‹ˆ๋‹ค.
03:30
We tested the ability of bacteria to evolve resistance against halicin
61
210303
4710
์šฐ๋ฆฌ๋Š” ๋ฐ•ํ…Œ๋ฆฌ์•„๊ฐ€ ํ• ๋กœ์‹ ์— ๋Œ€ํ•œ ๋‚ด์„ฑ์„ ๊ฐ€์ง€๊ฒŒ ๋˜๋Š” ๊ฒƒ์„
03:35
as well as Cipro in the lab.
62
215037
1788
์‹œํ”„๋กœ์™€ ๋น„๊ตํ•ด์„œ ์—ฐ๊ตฌํ–ˆ์Šต๋‹ˆ๋‹ค.
03:37
In the case of Cipro,
63
217299
1542
์‹œํ”„๋กœ์˜ ๊ฒฝ์šฐ
03:38
after just one day, we saw resistance.
64
218865
2825
ํ•˜๋ฃจ๋งŒ์— ๋‚ด์„ฑ์ด ์ƒ๊ธด ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค.
03:42
In the case of halicin,
65
222213
1478
ํ• ๋กœ์‹ ์˜ ๊ฒฝ์šฐ
03:43
after one day, we didn't see any resistance.
66
223715
2115
ํ•˜๋ฃจ๊ฐ€ ๊ฒฝ๊ณผํ–ˆ์„ ๋•Œ ๋‚ด์„ฑ์ด ์ƒ๊ธฐ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
03:46
Amazingly, after even 30 days,
67
226479
3302
๋†€๋ž๊ฒŒ๋„ 30์ผ ํ›„์—๋„
03:49
we didn't see any resistance against halicin.
68
229805
2601
๋‚ด์„ฑ์ด ์ƒ๊ธฐ์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.
03:53
In this pilot project, we first tested roughly 2,500 compounds against E. coli.
69
233098
5526
์ด ์‹œ๋ฒ” ์—ฐ๊ตฌ์—์„œ ์šฐ๋ฆฌ๋Š” ๋จผ์ € ๋Œ€์žฅ๊ท ์— 2,500๊ฐœ์˜ ๋ฌผ์งˆ์„ ์‹คํ—˜ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:59
This training set included known antibiotics,
70
239259
2780
์ด ํ›ˆ๋ จ์—๋Š” ์‹œํ”„๋กœ์™€ ํŽ˜๋‹ˆ์‹ค๋ฆฐ ๋“ฑ
04:02
such as Cipro and penicillin,
71
242063
1746
์ด๋ฏธ ์•Œ๋ ค์ง„ ํ•ญ์ƒ์ œ์™€
04:03
as well as many drugs that are not antibiotics.
72
243833
2272
ํ•ญ์ƒ์ œ๊ฐ€ ์•„๋‹Œ ์˜์•ฝํ’ˆ๋„ ํฌํ•จ๋˜์–ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
04:06
These data we used to train a model
73
246984
2587
์šฐ๋ฆฌ๋Š” ์ด ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ๋ชจ๋ธ์ด
04:09
to learn molecular features associated with antibacterial activity.
74
249595
3978
ํ•ญ๊ท ๋ ฅ์„ ๊ฐ€์ง„ ๋ฌผ์งˆ์˜ ํŠน์„ฑ์„ ๋ฐฐ์šฐ๋„๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:14
We then applied this model to a drug-repurposing library
75
254269
2701
์šฐ๋ฆฌ๋Š” ์ด ๋ชจ๋ธ์„ ๋ช‡ ์ฒœ๊ฐœ์˜ ๋ฌผ์งˆ๋“ค์ด ๋“ค์–ด์žˆ๋Š”
04:16
consisting of several thousand molecules
76
256994
2478
์‹ ์•ฝ์žฌ์ฐฝ์ถœ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์— ์ ์šฉ์‹œ์ผฐ์Šต๋‹ˆ๋‹ค.
04:19
and asked the model to identify molecules
77
259496
2618
์šฐ๋ฆฌ๋Š” ์ด ๋ชจ๋ธ์ด ๊ธฐ์กด ํ•ญ์ƒ์ œ์™€๋Š” ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฒผ์ง€๋งŒ
04:22
that are predicted to have antibacterial properties
78
262138
2784
ํ•ญ๊ท ๋ ฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฆฌ๋ผ๊ณ  ์˜ˆ์ธก๋˜๋Š”
04:24
but don't look like existing antibiotics.
79
264946
2473
๋ฌผ์งˆ์„ ์ฐพ์•„๋‚ด๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:28
Interestingly, only one molecule in that library fit these criteria,
80
268427
4797
ํฅ๋ฏธ๋กญ๊ฒŒ๋„ ๊ทธ ์š”๊ฑด์„ ์ถฉ์กฑํ•˜๋Š” ๋ฌผ์งˆ์€ ํ•˜๋‚˜๋ฐ–์— ์—†์—ˆ์Šต๋‹ˆ๋‹ค.
04:33
and that molecule turned out to be halicin.
81
273248
2336
๋ฐ”๋กœ ํ• ๋กœ์‹ ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
04:36
Given that halicin does not look like any existing antibiotic,
82
276444
3088
ํ• ๋กœ์‹ ์€ ๊ธฐ์กด์˜ ๊ทธ ์–ด๋–ค ํ•ญ์ƒ์ œ์™€๋„ ๋‹ค๋ฅด๊ฒŒ ์ƒ๊ฒผ๊ธฐ ๋•Œ๋ฌธ์—
04:39
it would have been impossible for a human, including an antibiotic expert,
83
279556
4154
ํ•ญ์ƒ์ œ ์ „๋ฌธ๊ฐ€๋ฅผ ํฌํ•จํ•œ ์ธ๊ฐ„์€
04:43
to identify halicin in this manner.
84
283734
2184
์ ˆ๋Œ€๋กœ ํ• ๋กœ์‹ ์„ ์ฐพ์•„๋‚ด์ง€ ๋ชปํ–ˆ์„ ๊ฒ๋‹ˆ๋‹ค.
04:46
Imagine now what we could do with this technology
85
286574
2630
์šฐ๋ฆฌ๊ฐ€ ์ด ๊ธฐ์ˆ ์„ SARS-CoV-2์— ์ ์šฉ์‹œํ‚จ๋‹ค๋ฉด
04:49
against SARS-CoV-2.
86
289228
1741
์ˆ˜๋งŽ์€ ๊ฒƒ๋“ค์„ ํ•ด๋‚ผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
04:51
And that's not all.
87
291783
1365
๊ทธ๋ฟ๋งŒ์ด ์•„๋‹™๋‹ˆ๋‹ค.
04:53
We're also using the tools of synthetic biology,
88
293172
2820
์šฐ๋ฆฌ๋Š” ํ•ฉ์„ฑ์ƒ๋ฌผํ•™๋„ ์‚ฌ์šฉํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:56
tinkering with DNA and other cellular machinery,
89
296016
2611
์œ ์ „์ž์™€ ๋‹ค๋ฅธ ์„ธํฌ์งˆ ์กฐ์ง์„ ๋ณ€ํ˜•์‹œ์ผœ
04:58
to serve human purposes like combating COVID-19,
90
298651
3910
์ฝ”๋กœ๋‚˜19๋ฅผ ์ด๊ฒจ๋‚ด๋Š” ๋“ฑ ์‚ฌ๋žŒ๋“ค์„ ์œ„ํ•œ ์ผ์„ ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
05:02
and of note, we are working to develop a protective mask
91
302585
3647
์ง€๊ธˆ ์šฐ๋ฆฌ๋Š” ๋น ๋ฅธ ์ง„๋‹จ ๊ฒ€์‚ฌ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋Š”
05:06
that can also serve as a rapid diagnostic test.
92
306256
3432
๋งˆ์Šคํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค.
05:10
So how does that work?
93
310192
1472
์–ด๋–ป๊ฒŒ ๊ทธ๋Ÿด ์ˆ˜ ์žˆ์„๊นŒ์š”?
05:11
Well, we recently showed
94
311688
1205
์šฐ๋ฆฌ๋Š” ์ตœ๊ทผ ์‚ด์•„์žˆ๋Š” ์„ธํฌ์—์„œ
05:12
that you can take the cellular machinery out of a living cell
95
312917
2943
์„ธํฌ ์กฐ์ง์„ ๊บผ๋‚ด RNA์„ผ์„œ์™€ ํ•จ๊ป˜ ์ข…์ด์— ๊ฑด์กฐ๋™๊ฒฐ์‹œ์ผœ
05:15
and freeze-dry it along with RNA sensors onto paper
96
315884
4092
์—๋ณผ๋ผ๋‚˜ ์ง€์นด ๋ฐ”์ด๋Ÿฌ์Šค ๋“ฑ์„ ์œ„ํ•œ
05:20
in order to create low-cost diagnostics for Ebola and Zika.
97
320000
4916
์ €๊ฐ€ ์ง„๋‹จ๋ฒ•์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ๋“œ๋ ธ์Šต๋‹ˆ๋‹ค.
05:25
The sensors are activated when they're rehydrated by a patient sample
98
325503
5227
์ด ์„ผ์„œ๋“ค์€ ์˜ˆ๋ฅผ ๋“ค๋ฉด ํ”ผ๋‚˜ ์นจ ๋“ฑ
05:30
that could consist of blood or saliva, for example.
99
330754
2822
ํ™˜์ž์˜ ์ƒ˜ํ”Œ๋กœ ์žฌ์ˆ˜ํ™”๋˜๋ฉด ํ™œ์„ฑํ™”๋ฉ๋‹ˆ๋‹ค.
05:33
It turns out, this technology is not limited to paper
100
333600
3261
์‚ฌ์‹ค ์ด ๊ธฐ์ˆ ์€ ์ข…์ด ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ
05:36
and can be applied to other materials, including cloth.
101
336885
2886
์ฒœ๊ณผ ๊ฐ™์€ ๋‹ค๋ฅธ ์†Œ์žฌ์—๋„ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
05:40
For the COVID-19 pandemic,
102
340671
1942
์ฝ”๋กœ๋‚˜19 ํŒ๋ฐ๋ฏน์„ ์œ„ํ•ด
05:42
we're designing RNA sensors to detect the virus
103
342637
4346
์šฐ๋ฆฌ๋Š” ๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋Š” RNA ์„ผ์„œ๋ฅผ ๋งŒ๋“ค์–ด
05:47
and freeze-drying these along with the needed cellular machinery
104
347007
3210
ํ•„์š”ํ•œ ์„ธํฌ ์กฐ์ง๊ณผ ํ•จ๊ป˜ ๋งˆ์Šคํฌ ์ฒœ ์†์—
05:50
into the fabric of a face mask,
105
350241
2707
๋™๊ฒฐ๊ฑด์กฐ์‹œํ‚ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:52
where the simple act of breathing,
106
352972
2229
์ˆจ๋งŒ ์‰ฌ์–ด๋„
05:55
along with the water vapor that comes with it,
107
355225
2277
๊ทธ์— ๋”ฐ๋ผ ๋‚˜์˜ค๋Š” ์ˆ˜์ฆ๊ธฐ ๋•Œ๋ฌธ์—
05:57
can activate the test.
108
357526
1760
์„ผ์„œ๊ฐ€ ํ™œ์„ฑํ™”๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:59
Thus, if a patient is infected with SARS-CoV-2,
109
359804
4260
SARS-CoV-2 ๊ฐ์—ผ์ž๋ผ๋ฉด
06:04
the mask will produce a fluorescent signal
110
364088
2073
๋งˆ์Šคํฌ๊ฐ€ ํ˜•๊ด‘ ์‹œ๊ทธ๋„์„ ๋ณด๋‚ผ ๊ฒƒ์ด๊ณ 
06:06
that could be detected by a simple, inexpensive handheld device.
111
366185
3830
์ด๋Š” ๊ฐ„๋‹จํ•˜๊ณ  ์ €๋ ดํ•œ ํœด๋Œ€ ๊ธฐ๊ณ„๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:10
In one or two hours, a patient could thus be diagnosed
112
370534
4484
๋”ฐ๋ผ์„œ ํ•œ ๋‘ ์‹œ๊ฐ„ ๋‚ด์— ํ™˜์ž๋ฅผ
06:15
safely, remotely and accurately.
113
375042
2972
์•ˆ์ „ํ•˜๊ฒŒ ์›๊ฒฉ์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์ง„๋‹จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:18
We're also using synthetic biology
114
378735
2520
์šฐ๋ฆฌ๋Š” ๋˜ํ•œ ํ•ฉ์„ฑ์ƒ๋ฌผํ•™์„ ์ด์šฉํ•ด
06:21
to design a candidate vaccine for COVID-19.
115
381279
2720
์ฝ”๋กœ๋‚˜19์˜ ๋ฐฑ์‹  ํ›„๋ณด๋ฅผ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:25
We are repurposing the BCG vaccine,
116
385014
2653
์šฐ๋ฆฌ๋Š” ๋ฐฑ๋…„ ๊ฐ€๊นŒ์ด ๊ฒฐํ•ต ๋ฐฑ์‹ ์œผ๋กœ ์‚ฌ์šฉ๋œ
06:27
which had been used against TB for almost a century.
117
387691
2870
BCG ๋ฐฑ์‹ ์„ ์žฌ์ฐฝ์ถœํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:30
It's a live attenuated vaccine,
118
390585
1541
์ด ๋ฐฑ์‹ ์€ ์•ฝ๋…์ฃผ์ธ๋ฐ
06:32
and we're engineering it to express SARS-CoV-2 antigens,
119
392150
4657
SARS-CoV-2 ํ•ญ์›์„ ๋งŒ๋“ค์–ด๋‚ด๋„๋ก ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
06:36
which should trigger the production of protective antibodies
120
396831
2814
๊ทธ๋ ‡๊ฒŒ ๋˜๋ฉด ๋ฉด์—ญ ์ฒด๊ณ„๊ฐ€
06:39
by the immune system.
121
399669
1635
ํ•ญ์ฒด๋ฅผ ๋งŒ๋“ค์–ด๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
06:41
Importantly, BCG is massively scalable
122
401328
2734
์ค‘์š”ํ•œ ์ ์€ BCG๊ฐ€ ํ™•์žฅ, ์ถ•์†Œ๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ
06:44
and has a safety profile that's among the best of any reported vaccine.
123
404086
4573
์ง€๊ธˆ๊นŒ์ง€ ์•Œ๋ ค์ง„ ๊ฐ€์žฅ ์•ˆ์ „ํ•œ ๋ฐฑ์‹ ๋“ค ์ค‘ ํ•˜๋‚˜๋ผ๋Š” ์ ์ž…๋‹ˆ๋‹ค.
06:49
With the tools of synthetic biology and artificial intelligence,
124
409881
5105
์šฐ๋ฆฌ๋Š” ํ•ฉ์„ฑ์ƒ๋ฌผํ•™๊ณผ ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•ด
06:55
we can win the fight against this novel coronavirus.
125
415010
3348
์‹ ์ข…์ฝ”๋กœ๋‚˜๋ฐ”์ด๋Ÿฌ์Šค๋ฅผ ์ด๊ฒจ๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
06:58
This work is in its very early stages, but the promise is real.
126
418844
3319
์•„์ง์€ ์ดˆ๊ธฐ ๋‹จ๊ณ„์ง€๋งŒ ๊ฐ€๋Šฅ์„ฑ์€ ํ™•์‹คํ•ฉ๋‹ˆ๋‹ค.
07:02
Science and technology can give us an important advantage
127
422798
3445
์ธ๊ฐ„์˜ ์ง€ํ˜œ์™€ ์ˆ˜ํผ๋ฒ„๊ทธ ์œ ์ „์ž ์‚ฌ์ด์˜ ์ „์Ÿ์—์„œ
07:06
in the battle of human wits versus the genes of superbugs,
128
426267
3161
๊ณผํ•™๊ณผ ๊ธฐ์ˆ ์€ ์šฐ๋ฆฌ์—๊ฒŒ ์ค‘์š”ํ•œ ์ด์ ์„ ์•ˆ๊ฒจ์ค„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:09
a battle we can win.
129
429452
1747
์šฐ๋ฆฌ๋Š” ์ด๊ฒจ๋‚ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
07:11
Thank you.
130
431990
1233
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7