Erik Brynjolfsson: The key to growth? Race with the machines

152,427 views ・ 2013-04-23

TED


Please double-click on the English subtitles below to play the video.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
Prevodilac: Mile Živković Lektor: Dejan Vicai
00:12
Growth is not dead.
1
12605
2272
Rast nije mrtav.
00:14
(Applause)
2
14877
1386
(Aplauz)
00:16
Let's start the story 120 years ago,
3
16263
3963
Hajde da krenemo s pričom pre 120 godina
00:20
when American factories began to electrify their operations,
4
20226
3632
kada su američke fabrike u svoje operacije počele uvode struju
00:23
igniting the Second Industrial Revolution.
5
23858
3344
i pokreću Drugu industrijsku revoluciju.
00:27
The amazing thing is
6
27202
1111
Neverovatno je da
00:28
that productivity did not increase in those factories
7
28313
2777
produktivnost u tim fabrikama nije porasla
00:31
for 30 years. Thirty years.
8
31090
3256
30 godina. Trideset godina.
00:34
That's long enough for a generation of managers to retire.
9
34346
3474
To je dovoljno dugo da se penzioniše generacija upravnika.
00:37
You see, the first wave of managers
10
37820
2222
Prvi talas upravnika
00:40
simply replaced their steam engines with electric motors,
11
40042
3417
jednostavno je zamenio parne mašine električnim motorima,
00:43
but they didn't redesign the factories to take advantage
12
43459
3010
ali nisu rekonstruisali fabrike kako bi iskoristili prednosti
00:46
of electricity's flexibility.
13
46469
2341
fleksibilnosti struje.
00:48
It fell to the next generation to invent new work processes,
14
48810
3984
Na sledeću generaciju je palo da smisli nove procese rada,
00:52
and then productivity soared,
15
52794
2727
i produktivnost je onda eksplodirala,
00:55
often doubling or even tripling in those factories.
16
55521
3665
u tim fabrikama, često dva ili tri puta više.
00:59
Electricity is an example of a general purpose technology,
17
59186
4723
Struja je primer tehnologije za opštu upotrebu,
01:03
like the steam engine before it.
18
63909
2230
poput parne mašine pre nje.
01:06
General purpose technologies drive most economic growth,
19
66139
3416
Tehnologije za opštu upotrebu pokreću najviše ekonomskog rasta
01:09
because they unleash cascades of complementary innovations,
20
69555
3454
jer oslobađaju slapove dodatnih inovacija
01:13
like lightbulbs and, yes, factory redesign.
21
73009
3632
poput sijalica, i da, rekonstrukcije fabrika.
01:16
Is there a general purpose technology of our era?
22
76641
3610
Postoji li tenologija za opštu upotrebu našeg doba?
01:20
Sure. It's the computer.
23
80251
2508
Naravno, to je kompjuter.
01:22
But technology alone is not enough.
24
82759
2659
Ali sama tehnologija nije dovoljna.
01:25
Technology is not destiny.
25
85418
2766
Tehnologija nije sudbina.
01:28
We shape our destiny,
26
88184
1580
Mi oblikujemo svoju sudbinu,
01:29
and just as the earlier generations of managers
27
89764
2516
i baš kao što su ranije generacije upravnika
01:32
needed to redesign their factories,
28
92280
2298
morale da rekonstruišu svoje fabrike,
01:34
we're going to need to reinvent our organizations
29
94578
2229
mi ćemo morati da ponovo izmislimo svoje organizacije
01:36
and even our whole economic system.
30
96807
2555
i čak i naš ceo sistem ekonomije.
01:39
We're not doing as well at that job as we should be.
31
99362
3602
U tome nismo uspešni kao što bi trebali da budemo.
01:42
As we'll see in a moment,
32
102964
1230
Kao što ćemo uskoro videti,
01:44
productivity is actually doing all right,
33
104194
2722
produktivnost je u stvari sasvim u redu,
01:46
but it has become decoupled from jobs,
34
106916
3862
ali je postala odvojena od poslova
01:50
and the income of the typical worker is stagnating.
35
110778
4419
i prihodi tipičnog radnika tapkaju u mestu.
01:55
These troubles are sometimes misdiagnosed
36
115197
2519
Ovi problemi se ponekad pogrešno tumače
01:57
as the end of innovation,
37
117716
3712
kao kraj inovacije,
02:01
but they are actually the growing pains
38
121428
2129
ali su zapravo problemi odrastanja
02:03
of what Andrew McAfee and I call the new machine age.
39
123557
5590
u onom što Endru Mekefi i ja zovemo novim dobom mašina.
02:09
Let's look at some data.
40
129147
1882
Pogledajmo neke podatke.
02:11
So here's GDP per person in America.
41
131029
2902
Ovde je BDP po osobi u Americi.
02:13
There's some bumps along the way, but the big story
42
133931
2766
Postoje male nepravilnosti, ali veliku sliku
02:16
is you could practically fit a ruler to it.
43
136697
2715
možete praktično ravnati lenjirom.
02:19
This is a log scale, so what looks like steady growth
44
139412
3276
Ovo je logaritmična skala, tako da je ono što izgleda kao trajni rast
02:22
is actually an acceleration in real terms.
45
142688
3043
zapravo pravo ubrzanje.
02:25
And here's productivity.
46
145731
2160
Ovde je produktivnost.
02:27
You can see a little bit of a slowdown there in the mid-'70s,
47
147891
2671
Možete videti malo usporenje sredinom '70-ih,
02:30
but it matches up pretty well with the Second Industrial Revolution,
48
150562
3738
ali prilično dobro se poklapa sa Drugom industrijskom revolucijom
02:34
when factories were learning how to electrify their operations.
49
154300
2691
kada su fabrike učile kako da uvedu struju u svoje operacije.
02:36
After a lag, productivity accelerated again.
50
156991
4129
Nakon zadržavanja, produktivnost se opet ubrzala.
02:41
So maybe "history doesn't repeat itself,
51
161120
2571
Možda se "istorija ne ponavlja,
02:43
but sometimes it rhymes."
52
163691
2568
ali ponekad se rimuje."
02:46
Today, productivity is at an all-time high,
53
166259
3136
Produktivnost je danas na svom vrhuncu
02:49
and despite the Great Recession,
54
169395
1977
i uprkos Velikoj recesiji
02:51
it grew faster in the 2000s than it did in the 1990s,
55
171372
4252
2000-tih je rasla brže nego '90-ih,
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
56
175624
4136
bučnih '90-ih, i to je bilo brže od '70-ih i '80-ih.
02:59
It's growing faster than it did during the Second Industrial Revolution.
57
179760
3674
Raste brže nego u Drugoj industrijskoj revoluciji.
03:03
And that's just the United States.
58
183434
1743
A to je samo u SAD-u.
03:05
The global news is even better.
59
185177
3248
Globalne vesti su još bolje.
03:08
Worldwide incomes have grown at a faster rate
60
188425
2360
Svetski prihodi su rasli brže
03:10
in the past decade than ever in history.
61
190785
2496
u prošloj deceniji nego ikada u istoriji.
03:13
If anything, all these numbers actually understate our progress,
62
193281
5051
Ako ništa drugo, ove brojke potcenjuju naš napredak
03:18
because the new machine age
63
198332
1912
jer se u novom dobu mašina
03:20
is more about knowledge creation
64
200244
1664
radi više o stvaranju znanja
03:21
than just physical production.
65
201908
2331
nego samo o fizičkoj proizvodnji.
03:24
It's mind not matter, brain not brawn,
66
204239
2938
To je mozak, ne materija, pamet, a ne snaga
03:27
ideas not things.
67
207177
2062
ideje, a ne stvari.
03:29
That creates a problem for standard metrics,
68
209239
2570
To stvara probleme za standardnu metriku,
03:31
because we're getting more and more stuff for free,
69
211809
3502
jer sve više stvari dobijamo besplatno,
03:35
like Wikipedia, Google, Skype,
70
215311
2641
poput Vikipedije, Gugla, Skajpa,
03:37
and if they post it on the web, even this TED Talk.
71
217952
3063
i ako se stavi na internet, čak i ovaj TED govor.
03:41
Now getting stuff for free is a good thing, right?
72
221015
3303
Besplatne stvari su dobra stvar, zar ne?
03:44
Sure, of course it is.
73
224318
1765
Naravno da jesu.
03:46
But that's not how economists measure GDP.
74
226083
3868
Ali ekonomisti ne mere BDP na taj način.
03:49
Zero price means zero weight in the GDP statistics.
75
229951
5592
Nepostojeća cena predstavlja nepostojeću težinu u statistici BDP-a.
03:55
According to the numbers, the music industry
76
235543
2112
Ako je suditi po brojkama, muzička industrija
03:57
is half the size that it was 10 years ago,
77
237655
3000
je sada za polovinu manja nego pre 10 godina,
04:00
but I'm listening to more and better music than ever.
78
240655
3656
ali slušam više muzike i bolju muziku nego ikad.
04:04
You know, I bet you are too.
79
244311
2192
Mislim da je tako i kod vas.
04:06
In total, my research estimates
80
246503
2723
U mom istraživanju se ukupno procenjuje
04:09
that the GDP numbers miss over 300 billion dollars per year
81
249226
4754
da BDP cifre godišnje propuste preko 300 milijardi dolara
04:13
in free goods and services on the Internet.
82
253980
3346
u besplatnoj robi i uslugama na internetu.
04:17
Now let's look to the future.
83
257326
1789
Hajde da pogledamo u budućnost.
04:19
There are some super smart people
84
259115
2263
Postoje neki veoma pametni ljudi
04:21
who are arguing that we've reached the end of growth,
85
261378
5019
koji kažu da smo došli do kraja rasta,
04:26
but to understand the future of growth,
86
266397
3558
ali da bismo razumeli budućnost rasta
04:29
we need to make predictions
87
269955
2683
moramo napraviti predviđanja
04:32
about the underlying drivers of growth.
88
272638
3290
o osnovnim pokretačima rasta.
04:35
I'm optimistic, because the new machine age
89
275928
3806
Optimističan sam, zato što je novo doba mašina
04:39
is digital, exponential and combinatorial.
90
279734
5030
digitalno, eksponencijalno i kombinatorično.
04:44
When goods are digital, they can be replicated
91
284764
2264
Kada je roba digitalna, može se kopirati
04:47
with perfect quality at nearly zero cost,
92
287028
4509
u savršenom kvalitetu bez skoro ikakvih troškova
04:51
and they can be delivered almost instantaneously.
93
291537
4018
i može se isporučiti skoro trenutno.
04:55
Welcome to the economics of abundance.
94
295555
2800
Dobrodošli u ekonomiju viška.
04:58
But there's a subtler benefit to the digitization of the world.
95
298355
3690
Ali postoji suptilnija prednost digitalizacije sveta.
05:02
Measurement is the lifeblood of science and progress.
96
302045
4600
Mera je žila kucavica nauke i napretka.
05:06
In the age of big data,
97
306645
2148
U dobu velikih podataka
05:08
we can measure the world in ways we never could before.
98
308793
4286
možemo premeriti svet na načine na koje nikada pre nismo mogli.
05:13
Secondly, the new machine age is exponential.
99
313079
4095
Drugo, novo doba mašina je eksponencijalno.
05:17
Computers get better faster than anything else ever.
100
317174
5935
Kompjuteri se poboljšavaju brže od ičeg drugog, ikada.
05:23
A child's Playstation today is more powerful
101
323109
3568
Plejstejšn nekog deteta danas
05:26
than a military supercomputer from 1996.
102
326677
4056
je moćniji od vojnog superkompjutera iz 1996.
05:30
But our brains are wired for a linear world.
103
330733
3207
Ali naši mozgovi su podešeni za linearni svet.
05:33
As a result, exponential trends take us by surprise.
104
333940
3888
Posledica toga je da nas iznenađuju eksponencijalni trendovi.
05:37
I used to teach my students that there are some things,
105
337828
2602
Svoje učenike sam učio da postoje neke stvari
05:40
you know, computers just aren't good at,
106
340430
1934
u kojima, znate, kompjuteri nisu baš dobri,
05:42
like driving a car through traffic.
107
342364
2385
recimo vožnja automobila kroz saobraćaj.
05:44
(Laughter)
108
344749
2013
(Smeh)
05:46
That's right, here's Andy and me grinning like madmen
109
346762
3491
Tu smo Endi i ja kako se smejemo kao ludi
05:50
because we just rode down Route 101
110
350253
2384
jer smo upravo prošli putem 101
05:52
in, yes, a driverless car.
111
352637
3669
u kolima bez vozača.
05:56
Thirdly, the new machine age is combinatorial.
112
356306
2583
Treće, novo doba mašina je kombinatorično.
05:58
The stagnationist view is that ideas get used up,
113
358889
4048
Iz perspektive stagnacionista, ideje se potroše,
06:02
like low-hanging fruit,
114
362937
1856
poput voća na niskim granama,
06:04
but the reality is that each innovation
115
364793
3163
ali u stvarnosti svaka inovacija
06:07
creates building blocks for even more innovations.
116
367956
3256
stvara gradivni materijal za još više inovacija.
06:11
Here's an example. In just a matter of a few weeks,
117
371212
3345
Evo primera. Za samo nekoliko nedelja
06:14
an undergraduate student of mine
118
374557
2072
jedan moj student osnovnih studija
06:16
built an app that ultimately reached 1.3 million users.
119
376629
4111
napravio je aplikaciju koju je preuzelo 1,3 miliona korisnika.
06:20
He was able to do that so easily
120
380740
1699
To je mogao da uradi s tom lakoćom
06:22
because he built it on top of Facebook,
121
382439
1827
jer je to uradio preko Fejsbuka,
06:24
and Facebook was built on top of the web,
122
384266
1933
a Fejsbuk je napravljen preko mreže,
06:26
and that was built on top of the Internet,
123
386199
1698
a to je napravljeno preko interneta,
06:27
and so on and so forth.
124
387897
2418
i tako dalje.
06:30
Now individually, digital, exponential and combinatorial
125
390315
4765
Pojedinačno, digitalno, eksponencijalno i kombinatorično
06:35
would each be game-changers.
126
395080
2350
bi svaki za sebe menjali igru.
06:37
Put them together, and we're seeing a wave
127
397430
2190
Ali stavite ih zajedno i vidimo talas
06:39
of astonishing breakthroughs,
128
399620
1393
neverovatnih otkrića
06:41
like robots that do factory work or run as fast as a cheetah
129
401013
3060
poput robota koji rade u fabrikama ili trče brzo kao gepardi
06:44
or leap tall buildings in a single bound.
130
404073
2796
i preskaču velike zgrade iz jednog skoka.
06:46
You know, robots are even revolutionizing
131
406869
2232
Roboti čak prave revoluciju
06:49
cat transportation.
132
409101
1829
i u transportu mačaka.
06:50
(Laughter)
133
410930
2270
(Smeh)
06:53
But perhaps the most important invention,
134
413200
2732
Ali možda najbitniji izum,
06:55
the most important invention is machine learning.
135
415932
5065
je mašinsko učenje.
07:00
Consider one project: IBM's Watson.
136
420997
3376
Pogledajmo jedan projekat: IBM-ov Votson.
07:04
These little dots here,
137
424373
1589
Ove tačkice ovde
07:05
those are all the champions on the quiz show "Jeopardy."
138
425962
4860
su pobednici televizijskog kviza "Opasnost".
07:10
At first, Watson wasn't very good,
139
430822
2544
Votson isprva nije bio veoma dobar,
07:13
but it improved at a rate faster than any human could,
140
433366
5622
ali se poboljšao brže nego što bi mogao ijedan čovek
07:18
and shortly after Dave Ferrucci showed this chart
141
438988
2687
i ubrzo nakon što je Dejv Feruči pokazao ovu tabelu
07:21
to my class at MIT,
142
441675
1652
mom odeljenju na MIT univerzitetu,
07:23
Watson beat the world "Jeopardy" champion.
143
443327
3542
Votson je pobedio svetskog šampiona u "Opasnosti".
07:26
At age seven, Watson is still kind of in its childhood.
144
446869
3989
U svojoj sedmoj godini, Votson je još uvek u detinjstvu.
07:30
Recently, its teachers let it surf the Internet unsupervised.
145
450858
5318
Njegovi učitelji su ga nedavno pustili da pretražuje internet bez nadzora.
07:36
The next day, it started answering questions with profanities.
146
456176
5946
Sledećeg dana počeo je da na pitanja odgovara vulgarnim izrazima.
07:42
Damn. (Laughter)
147
462122
2274
Prokletstvo. (Smeh)
07:44
But you know, Watson is growing up fast.
148
464396
2280
Znate, Votson brzo raste.
07:46
It's being tested for jobs in call centers, and it's getting them.
149
466676
4212
Testiraju ga za poslove u telefonskim centralama, i on dobija te poslove.
07:50
It's applying for legal, banking and medical jobs,
150
470888
3724
Prijavljuje se za poslove u pravu, bankarstvu i medicini,
07:54
and getting some of them.
151
474612
1950
i dobija neke od njih.
07:56
Isn't it ironic that at the very moment
152
476562
1889
Zar nije ironično što u istom trenutku
07:58
we are building intelligent machines,
153
478451
2234
kada pravimo inteligentne mašine,
08:00
perhaps the most important invention in human history,
154
480685
3449
možda najbitniji izum u istoriji ljudi,
08:04
some people are arguing that innovation is stagnating?
155
484134
3975
neki ljudi još uvek tvrde da inovacija tapka u mestu?
08:08
Like the first two industrial revolutions,
156
488109
2419
Poput prve dve industrijske revolucije,
08:10
the full implications of the new machine age
157
490528
3134
punim implikacijama novog doba mašina
08:13
are going to take at least a century to fully play out,
158
493662
2682
će trebati makar jedan vek da se potpuno otkriju
08:16
but they are staggering.
159
496344
3032
ali su zapanjujuće.
08:19
So does that mean we have nothing to worry about?
160
499376
3336
Da li to znači da ne moramo da brinemo ni o čemu?
08:22
No. Technology is not destiny.
161
502712
3680
Ne. Tehnologija nije sudbina.
08:26
Productivity is at an all time high,
162
506392
2569
Produktivnost je na svom vrhuncu
08:28
but fewer people now have jobs.
163
508961
2983
ali manje ljudi sada ima posao.
08:31
We have created more wealth in the past decade than ever,
164
511944
3120
U prošloj deceniji smo stvorili više bogatstva nego ikad,
08:35
but for a majority of Americans, their income has fallen.
165
515064
3904
ali za većinu Amerikanaca prihodi su opali.
08:38
This is the great decoupling
166
518968
2312
Ovo je veliko razdvajanje
08:41
of productivity from employment,
167
521280
2976
produktivnosti od zaposlenosti,
08:44
of wealth from work.
168
524256
3104
bogatstva od rada.
08:47
You know, it's not surprising that millions of people
169
527360
2346
Nije iznenađujuće to što su milioni ljudi
08:49
have become disillusioned by the great decoupling,
170
529706
2846
u iluziji zbog velikog razdvajanja,
08:52
but like too many others,
171
532552
1747
ali poput mnogih drugih,
08:54
they misunderstand its basic causes.
172
534299
3097
pogrešno su razumeli osnovne uzroke ovoga.
08:57
Technology is racing ahead,
173
537396
2610
Tehnologija grabi napred,
09:00
but it's leaving more and more people behind.
174
540006
3550
a sve više ljudi ostaje iza nje.
09:03
Today, we can take a routine job,
175
543556
3519
Danas možemo uzeti rutinski posao
09:07
codify it in a set of machine-readable instructions,
176
547075
3091
kodirati ga u komplet uputstava koje mašina može da čita
09:10
and then replicate it a million times.
177
550166
2827
i onda ga ponoviti milion puta.
09:12
You know, I recently overheard a conversation
178
552993
2279
Skoro sam načuo razgovor
09:15
that epitomizes these new economics.
179
555272
1952
koji je savršen primer ove nove ekonomije.
09:17
This guy says, "Nah, I don't use H&R Block anymore.
180
557224
4197
Neki tip kaže: "Ne, više ne koristim H&R Block.
09:21
TurboTax does everything that my tax preparer did,
181
561421
2448
TurboTax radi sve što je radila i moja osoba za porez,
09:23
but it's faster, cheaper and more accurate."
182
563869
4558
ali brže je, jeftinije i preciznije."
09:28
How can a skilled worker
183
568427
1799
Kako obučen radnik
09:30
compete with a $39 piece of software?
184
570226
3009
može da se takmiči sa softverom od 39 dolara?
09:33
She can't.
185
573235
1967
Ne može.
09:35
Today, millions of Americans do have faster,
186
575202
2780
Danas milioni Amerikanaca imaju bržu,
09:37
cheaper, more accurate tax preparation,
187
577982
2387
jeftiniju i precizniju pripremu poreza,
09:40
and the founders of Intuit
188
580369
1486
i osnivači Intuita
09:41
have done very well for themselves.
189
581855
2493
su se veoma dobro obezbedili.
09:44
But 17 percent of tax preparers no longer have jobs.
190
584348
4214
Ali 17% poreskih radnika više nema posao.
09:48
That is a microcosm of what's happening,
191
588562
2078
To je mikrokosmos onoga što se dešava,
09:50
not just in software and services, but in media and music,
192
590640
4677
ne samo sa softverom i uslugama, nego i u medijima i muzici,
09:55
in finance and manufacturing, in retailing and trade --
193
595317
3686
u finansijama i proizvodnji, u maloprodaji i trgovini -
09:59
in short, in every industry.
194
599003
3895
ukratko, u svakoj grani privrede.
10:02
People are racing against the machine,
195
602898
3095
Ljudi se trkaju protiv mašina,
10:05
and many of them are losing that race.
196
605993
3090
i puno njih će tu trku izgubiti.
10:09
What can we do to create shared prosperity?
197
609083
3886
Šta možemo uraditi da stvorimo zajednički prosperitet?
10:12
The answer is not to try to slow down technology.
198
612969
3017
Odgovor je da ne smemo pokušavati da usporimo tehnologiju.
10:15
Instead of racing against the machine,
199
615986
2557
Umesto trke protiv mašine,
10:18
we need to learn to race with the machine.
200
618543
3677
treba da naučimo da trčimo zajedno s mašinom.
10:22
That is our grand challenge.
201
622220
3129
To je naš veliki izazov.
10:25
The new machine age
202
625349
2324
Novo doba mašina
10:27
can be dated to a day 15 years ago
203
627673
3113
se može obeležiti jednog dana pre 15 godina,
10:30
when Garry Kasparov, the world chess champion,
204
630786
2878
kada je Gari Kasparov, svetski šampion u šahu
10:33
played Deep Blue, a supercomputer.
205
633664
3706
igrao protiv superkompjutera Deep Blue.
10:37
The machine won that day,
206
637370
2012
Mašina je pobedila tog dana,
10:39
and today, a chess program running on a cell phone
207
639382
2968
a danas program za šah na našem telefonu
10:42
can beat a human grandmaster.
208
642350
2296
može da pobedi ljudskog velemajstora.
10:44
It got so bad that, when he was asked
209
644646
3365
Došlo je do toga da kada su pitali
10:48
what strategy he would use against a computer,
210
648011
2563
Jana Donera, holandskog velemajstora
10:50
Jan Donner, the Dutch grandmaster, replied,
211
650574
4016
koju strategiju bi koristio protiv kompjutera, odgovorio je:
10:54
"I'd bring a hammer."
212
654590
1771
"Poneo bih čekić."
10:56
(Laughter)
213
656361
3680
(Smeh)
11:00
But today a computer is no longer the world chess champion.
214
660041
4544
Ali kompjuter danas više nije svetski velemajstor u šahu.
11:04
Neither is a human,
215
664585
2654
Nije ni čovek,
11:07
because Kasparov organized a freestyle tournament
216
667239
3579
jer je Kasparov organizovao turnir u slobodnom stilu
11:10
where teams of humans and computers
217
670818
1916
gde su ekipe ljudi i kompjutera
11:12
could work together,
218
672734
2099
radile zajedno
11:14
and the winning team had no grandmaster,
219
674833
3157
i pobednički tim nije imao velemajstora,
11:17
and it had no supercomputer.
220
677990
2465
nije imao superkompjuter.
11:20
What they had was better teamwork,
221
680455
4175
Imali su bolji timski rad
11:24
and they showed that a team of humans and computers,
222
684630
5016
i pokazali su da ekipa ljudi i kompjutera
11:29
working together, could beat any computer
223
689646
3048
koji rade zajedno može da pobedi bilo koji kompjuter
11:32
or any human working alone.
224
692694
3520
ili bilo kog čoveka koji rade sami.
11:36
Racing with the machine
225
696214
1664
Trka zajedno s mašinom nadjačava
11:37
beats racing against the machine.
226
697878
2343
trku protiv mašine.
11:40
Technology is not destiny.
227
700221
2564
Tehnologija nije naša sudbina.
11:42
We shape our destiny.
228
702785
1742
Mi oblikujemo svoju sudbinu.
11:44
Thank you.
229
704527
1447
Hvala vam.
11:45
(Applause)
230
705974
5016
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7