Erik Brynjolfsson: The key to growth? Race with the machines

152,505 views ・ 2013-04-23

TED


请双击下面的英文字幕来播放视频。

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
翻译人员: xuan wang 校对人员: Jia Zeng
00:12
Growth is not dead.
1
12605
2272
经济增长并未死去。
00:14
(Applause)
2
14877
1386
(掌声)
00:16
Let's start the story 120 years ago,
3
16263
3963
让我们回到120年前,
00:20
when American factories began to electrify their operations,
4
20226
3632
那时,美国工厂开始将生产电气化,
00:23
igniting the Second Industrial Revolution.
5
23858
3344
点燃了第二次工业革命。
00:27
The amazing thing is
6
27202
1111
令人惊讶的是,
00:28
that productivity did not increase in those factories
7
28313
2777
三十年内,生产力并没有提升。
00:31
for 30 years. Thirty years.
8
31090
3256
三十年啊!
00:34
That's long enough for a generation of managers to retire.
9
34346
3474
这段时间都足够让一代经理人退休了。
00:37
You see, the first wave of managers
10
37820
2222
第一代的经理人
00:40
simply replaced their steam engines with electric motors,
11
40042
3417
仅仅是用电动机取代了蒸汽机,
00:43
but they didn't redesign the factories to take advantage
12
43459
3010
但他们并没有重新设计工厂使之充分利用
00:46
of electricity's flexibility.
13
46469
2341
电力所带来的灵活性。
00:48
It fell to the next generation to invent new work processes,
14
48810
3984
到第二代经理人改进运作过程后,
00:52
and then productivity soared,
15
52794
2727
生产力才开始飙升,
00:55
often doubling or even tripling in those factories.
16
55521
3665
达到之前的两倍甚至三倍。
00:59
Electricity is an example of a general purpose technology,
17
59186
4723
电力是通用技术的代表之一,
01:03
like the steam engine before it.
18
63909
2230
就像之前的蒸汽机一样。
01:06
General purpose technologies drive most economic growth,
19
66139
3416
通用技术推动了多方面的经济增长,
01:09
because they unleash cascades of complementary innovations,
20
69555
3454
因为它们释放了其它各级创新的潜能,
01:13
like lightbulbs and, yes, factory redesign.
21
73009
3632
例如电灯泡,还有工厂的重新设计。
01:16
Is there a general purpose technology of our era?
22
76641
3610
我们这个年代有没有通用技术?
01:20
Sure. It's the computer.
23
80251
2508
当然有,那就是电脑。
01:22
But technology alone is not enough.
24
82759
2659
但是仅有技术是不够的。
01:25
Technology is not destiny.
25
85418
2766
技术并不是终极目标。
01:28
We shape our destiny,
26
88184
1580
我们自己塑造我们的目标,
01:29
and just as the earlier generations of managers
27
89764
2516
正如早期的经理人
01:32
needed to redesign their factories,
28
92280
2298
需要重新设计工厂,
01:34
we're going to need to reinvent our organizations
29
94578
2229
我们也需要重新改造我们的体制,
01:36
and even our whole economic system.
30
96807
2555
甚至整个经济系统。
01:39
We're not doing as well at that job as we should be.
31
99362
3602
在这方面,我们的表现有些差强人意。
01:42
As we'll see in a moment,
32
102964
1230
我会在接下来给大家展现,
01:44
productivity is actually doing all right,
33
104194
2722
生产效率目前发展良好,
01:46
but it has become decoupled from jobs,
34
106916
3862
但是这已经和工作岗位脱节,
01:50
and the income of the typical worker is stagnating.
35
110778
4419
而且普通工人的收入也正在停止增长。
01:55
These troubles are sometimes misdiagnosed
36
115197
2519
这些问题有的时候被误认为是
01:57
as the end of innovation,
37
117716
3712
创新的终结,
02:01
but they are actually the growing pains
38
121428
2129
但实际上,它们是我和安德鲁·麦克菲
02:03
of what Andrew McAfee and I call the new machine age.
39
123557
5590
称作的新机器时代的“成长的烦恼”。
02:09
Let's look at some data.
40
129147
1882
让我们看一些数据。
02:11
So here's GDP per person in America.
41
131029
2902
这是美国人均GDP(国内生产总值)变化图。
02:13
There's some bumps along the way, but the big story
42
133931
2766
中间有些颠簸起伏回落,但从整体上看
02:16
is you could practically fit a ruler to it.
43
136697
2715
我们可以用一把尺子(直线)来比量发展趋势。
02:19
This is a log scale, so what looks like steady growth
44
139412
3276
从对数比例的角度来看,这表面上是在稳步增长
02:22
is actually an acceleration in real terms.
45
142688
3043
但实际上是加速度。
02:25
And here's productivity.
46
145731
2160
这里显示的是生产率。
02:27
You can see a little bit of a slowdown there in the mid-'70s,
47
147891
2671
大家可以看到在上世纪70年代中叶有一点停顿,
02:30
but it matches up pretty well with the Second Industrial Revolution,
48
150562
3738
但这趋势与第二次工业革命的发展很像,
02:34
when factories were learning how to electrify their operations.
49
154300
2691
那时工厂都在学习如何让操作电气化。
02:36
After a lag, productivity accelerated again.
50
156991
4129
在一个停顿之后,生产率又加速发展了。
02:41
So maybe "history doesn't repeat itself,
51
161120
2571
也许“历史虽然不会简单重复,
02:43
but sometimes it rhymes."
52
163691
2568
但有时却也有规律可循。”
02:46
Today, productivity is at an all-time high,
53
166259
3136
现在,生产率是有史以来最高的,
02:49
and despite the Great Recession,
54
169395
1977
尽管有大萧条,
02:51
it grew faster in the 2000s than it did in the 1990s,
55
171372
4252
2000年代的生产率还是要比上世纪90年代的发展得要快,
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
56
175624
4136
繁荣的90年代的生产率又比70或者80年代的发展快。
02:59
It's growing faster than it did during the Second Industrial Revolution.
57
179760
3674
它比第二次工业革命的生产率发展的要快。
03:03
And that's just the United States.
58
183434
1743
而这仅仅是美国的数据。
03:05
The global news is even better.
59
185177
3248
全球的情况更好。
03:08
Worldwide incomes have grown at a faster rate
60
188425
2360
全球收入增长比之前
03:10
in the past decade than ever in history.
61
190785
2496
任意一个时代的发展都要快。
03:13
If anything, all these numbers actually understate our progress,
62
193281
5051
这些数字实际上低估了我们所取得的进步,
03:18
because the new machine age
63
198332
1912
因为新机器时代
03:20
is more about knowledge creation
64
200244
1664
更多的是知识创造
03:21
than just physical production.
65
201908
2331
而不是具体的物质生产。
03:24
It's mind not matter, brain not brawn,
66
204239
2938
它是思想不是事实,是头脑不是体力,
03:27
ideas not things.
67
207177
2062
是想法而不是具体事物。
03:29
That creates a problem for standard metrics,
68
209239
2570
这为那些标准化的测量指标提出了挑战,
03:31
because we're getting more and more stuff for free,
69
211809
3502
因为我们正在免费的获得越来越多的信息,
03:35
like Wikipedia, Google, Skype,
70
215311
2641
比如维基大百科、谷歌、Skype,
03:37
and if they post it on the web, even this TED Talk.
71
217952
3063
以及发布在网上的内容,比如这个TED演讲。
03:41
Now getting stuff for free is a good thing, right?
72
221015
3303
免费获得东西是好事,对吧?
03:44
Sure, of course it is.
73
224318
1765
当然,那还用说。
03:46
But that's not how economists measure GDP.
74
226083
3868
但那不是经济学家如何测算GDP的。
03:49
Zero price means zero weight in the GDP statistics.
75
229951
5592
免费的东西意味着在GDP统计里没有任何权重。
03:55
According to the numbers, the music industry
76
235543
2112
根据这些数据来看,音乐工业
03:57
is half the size that it was 10 years ago,
77
237655
3000
只是过去十年的一半的规模,
04:00
but I'm listening to more and better music than ever.
78
240655
3656
但我正在听比过去更多和更好的音乐。
04:04
You know, I bet you are too.
79
244311
2192
我相信大家也有同感。
04:06
In total, my research estimates
80
246503
2723
我的研究预测
04:09
that the GDP numbers miss over 300 billion dollars per year
81
249226
4754
我们每年总共少计算三千亿美元的GDP,
04:13
in free goods and services on the Internet.
82
253980
3346
也就是免费在互联网上获得的商品和服务。
04:17
Now let's look to the future.
83
257326
1789
让我们展望未来。
04:19
There are some super smart people
84
259115
2263
有些非常聪明的人们
04:21
who are arguing that we've reached the end of growth,
85
261378
5019
认为我们的经济增长已经停滞,
04:26
but to understand the future of growth,
86
266397
3558
但是,为了理解未来发展的走势,
04:29
we need to make predictions
87
269955
2683
我们要预测经济发展的
04:32
about the underlying drivers of growth.
88
272638
3290
深层动力是什么。
04:35
I'm optimistic, because the new machine age
89
275928
3806
我是乐观的,因为新机器时代是
04:39
is digital, exponential and combinatorial.
90
279734
5030
数字化的、指数化(增长)的和组合性的。
04:44
When goods are digital, they can be replicated
91
284764
2264
当商品是数字化的时候,它们可以
04:47
with perfect quality at nearly zero cost,
92
287028
4509
被近乎无附加值的完美复制,
04:51
and they can be delivered almost instantaneously.
93
291537
4018
而且它们几乎可以在瞬间传送。
04:55
Welcome to the economics of abundance.
94
295555
2800
欢迎来到丰饶经济学。
04:58
But there's a subtler benefit to the digitization of the world.
95
298355
3690
但是还有一个全球电子化带来的微妙好处。
05:02
Measurement is the lifeblood of science and progress.
96
302045
4600
测量是科学与进步的生命线。
05:06
In the age of big data,
97
306645
2148
在大数据时代,
05:08
we can measure the world in ways we never could before.
98
308793
4286
我们可以用从未有过的方式来测量世界。
05:13
Secondly, the new machine age is exponential.
99
313079
4095
其次,新机器时代是指数化(发展)的。
05:17
Computers get better faster than anything else ever.
100
317174
5935
电脑正比任何事物都发展得更快更好。
05:23
A child's Playstation today is more powerful
101
323109
3568
今天一个孩子的Playstation比
05:26
than a military supercomputer from 1996.
102
326677
4056
1996年的军事超级计算机还要强大。
05:30
But our brains are wired for a linear world.
103
330733
3207
但是我们习惯了一个线性发展的世界。
05:33
As a result, exponential trends take us by surprise.
104
333940
3888
因此,我们都惊讶于指数形式的发展趋势。
05:37
I used to teach my students that there are some things,
105
337828
2602
我以前告诉我的学生,
05:40
you know, computers just aren't good at,
106
340430
1934
有些事情是电脑做不好的,
05:42
like driving a car through traffic.
107
342364
2385
比如说开车。
05:44
(Laughter)
108
344749
2013
(笑声)
05:46
That's right, here's Andy and me grinning like madmen
109
346762
3491
对,这是我和安迪笑得像个傻子,
05:50
because we just rode down Route 101
110
350253
2384
因为我们刚在一辆无人驾驶的汽车里
05:52
in, yes, a driverless car.
111
352637
3669
穿过了101大道。
05:56
Thirdly, the new machine age is combinatorial.
112
356306
2583
第三,新机器时代是组合性的。
05:58
The stagnationist view is that ideas get used up,
113
358889
4048
停滞的观点认为所有的创新都用完了,
06:02
like low-hanging fruit,
114
362937
1856
比如那些显而易见的,
06:04
but the reality is that each innovation
115
364793
3163
但事实是每个创新
06:07
creates building blocks for even more innovations.
116
367956
3256
都为更多的创新奠定了基石。
06:11
Here's an example. In just a matter of a few weeks,
117
371212
3345
举个例子。在几周内,
06:14
an undergraduate student of mine
118
374557
2072
我的一个学生
06:16
built an app that ultimately reached 1.3 million users.
119
376629
4111
开发了一个吸引了大概一百三十万用户的应用。
06:20
He was able to do that so easily
120
380740
1699
他可以这么轻松的完成
06:22
because he built it on top of Facebook,
121
382439
1827
是因为这个应用是在脸书上搭建起来的,
06:24
and Facebook was built on top of the web,
122
384266
1933
而脸书又依托于网络,
06:26
and that was built on top of the Internet,
123
386199
1698
而网络又是在互联网上建造起来的,
06:27
and so on and so forth.
124
387897
2418
等等等等。
06:30
Now individually, digital, exponential and combinatorial
125
390315
4765
电子化、指数化(发展)和组合化,
06:35
would each be game-changers.
126
395080
2350
任何一个都会带来翻天覆地的变化。
06:37
Put them together, and we're seeing a wave
127
397430
2190
把它们结合起来,我们就会看到
06:39
of astonishing breakthroughs,
128
399620
1393
新一轮的惊人突破,
06:41
like robots that do factory work or run as fast as a cheetah
129
401013
3060
比如机器人来做工厂的工作或者跑得像猎豹一样快
06:44
or leap tall buildings in a single bound.
130
404073
2796
或者一个飞跃就跃过高楼大厦。
06:46
You know, robots are even revolutionizing
131
406869
2232
机器人甚至正在变革
06:49
cat transportation.
132
409101
1829
对猫的运输方式。
06:50
(Laughter)
133
410930
2270
(笑声)
06:53
But perhaps the most important invention,
134
413200
2732
但也许最重要的发明,
06:55
the most important invention is machine learning.
135
415932
5065
就是机器学习。
07:00
Consider one project: IBM's Watson.
136
420997
3376
看看IBM的沃森项目。
07:04
These little dots here,
137
424373
1589
这些小圆点们,
07:05
those are all the champions on the quiz show "Jeopardy."
138
425962
4860
这些是益智游戏“杰帕迪”的冠军们。
07:10
At first, Watson wasn't very good,
139
430822
2544
最初,沃森变现得并不出色,
07:13
but it improved at a rate faster than any human could,
140
433366
5622
但是它比任何人类改进得都快,
07:18
and shortly after Dave Ferrucci showed this chart
141
438988
2687
很快,在大卫·费鲁奇(沃森项目负责人)给我在MIT
07:21
to my class at MIT,
142
441675
1652
的学生看这张图之后不久,
07:23
Watson beat the world "Jeopardy" champion.
143
443327
3542
沃森就击败了“杰帕迪”的世界冠军。
07:26
At age seven, Watson is still kind of in its childhood.
144
446869
3989
那时沃森只有7岁,还是个孩子。
07:30
Recently, its teachers let it surf the Internet unsupervised.
145
450858
5318
最近,它的老师们让它自行上网。
07:36
The next day, it started answering questions with profanities.
146
456176
5946
第二天,它就开始用脏话来回答问题了。
07:42
Damn. (Laughter)
147
462122
2274
糟糕。(笑声)
07:44
But you know, Watson is growing up fast.
148
464396
2280
但是,沃森正在快速的成长。
07:46
It's being tested for jobs in call centers, and it's getting them.
149
466676
4212
它应聘了客服类的工作,而且它很胜任。
07:50
It's applying for legal, banking and medical jobs,
150
470888
3724
它正在应聘法律、银行和医药类的工作,
07:54
and getting some of them.
151
474612
1950
而且也拿到了一些工作。
07:56
Isn't it ironic that at the very moment
152
476562
1889
是不是很讽刺,我们在这个非常时期
07:58
we are building intelligent machines,
153
478451
2234
正在建造可能是
08:00
perhaps the most important invention in human history,
154
480685
3449
人类历史上最重要的发明--智能机器,
08:04
some people are arguing that innovation is stagnating?
155
484134
3975
而一些人还在说创新停滞不前了?
08:08
Like the first two industrial revolutions,
156
488109
2419
就像之前的两次工业革命,
08:10
the full implications of the new machine age
157
490528
3134
新机器时代的全面影响
08:13
are going to take at least a century to fully play out,
158
493662
2682
至少会用一个世纪才能完全发挥出来,
08:16
but they are staggering.
159
496344
3032
但这将会是惊人的。
08:19
So does that mean we have nothing to worry about?
160
499376
3336
这是不是说我们没有什么可担心的了?
08:22
No. Technology is not destiny.
161
502712
3680
不!技术不是目的。
08:26
Productivity is at an all time high,
162
506392
2569
生产率是史上最高的,
08:28
but fewer people now have jobs.
163
508961
2983
但是更少的人现在还有工作。
08:31
We have created more wealth in the past decade than ever,
164
511944
3120
我们在过去十年创造了比过去更多的财富,
08:35
but for a majority of Americans, their income has fallen.
165
515064
3904
但是大部分的美国家庭,他们的收入却降低了。
08:38
This is the great decoupling
166
518968
2312
这是生产率和就业率,
08:41
of productivity from employment,
167
521280
2976
财富和工作的
08:44
of wealth from work.
168
524256
3104
严重脱节,
08:47
You know, it's not surprising that millions of people
169
527360
2346
要知道,有数百万人受到
08:49
have become disillusioned by the great decoupling,
170
529706
2846
被这种严重脱节的现象所迷惑,这并不让人惊讶,
08:52
but like too many others,
171
532552
1747
但是像很多其他的人一样,
08:54
they misunderstand its basic causes.
172
534299
3097
人们误解了这种现象的根本原因。
08:57
Technology is racing ahead,
173
537396
2610
科技正在领跑,
09:00
but it's leaving more and more people behind.
174
540006
3550
但它把越来越多的人甩在了后面。
09:03
Today, we can take a routine job,
175
543556
3519
今天,我们可以把一个日常工作
09:07
codify it in a set of machine-readable instructions,
176
547075
3091
编译成一组机器可读的指令,
09:10
and then replicate it a million times.
177
550166
2827
然后就可以把它复制百万次。
09:12
You know, I recently overheard a conversation
178
552993
2279
我最近就听到了一段
09:15
that epitomizes these new economics.
179
555272
1952
反映这些新经济现象的对话。
09:17
This guy says, "Nah, I don't use H&R Block anymore.
180
557224
4197
有个人说,“我不再用布洛克税务公司的专人服务了。
09:21
TurboTax does everything that my tax preparer did,
181
561421
2448
波税务软件可以我的报税员做的任何工作,
09:23
but it's faster, cheaper and more accurate."
182
563869
4558
但它更快、更便宜也更准确。“
09:28
How can a skilled worker
183
568427
1799
一个专业人士
09:30
compete with a $39 piece of software?
184
570226
3009
怎么能和一个售价只有39美元的软件相比?
09:33
She can't.
185
573235
1967
不可能的。
09:35
Today, millions of Americans do have faster,
186
575202
2780
今天,数百万的美国人有了更快、
09:37
cheaper, more accurate tax preparation,
187
577982
2387
更便宜和更准确的税款准备,
09:40
and the founders of Intuit
188
580369
1486
而且Intuit公司(创造TurboTax软件的公司)创始人
09:41
have done very well for themselves.
189
581855
2493
也为自己收获颇丰。
09:44
But 17 percent of tax preparers no longer have jobs.
190
584348
4214
但17%的报税员却失去了工作。
09:48
That is a microcosm of what's happening,
191
588562
2078
这只是正在发生着的改变的一个缩影。
09:50
not just in software and services, but in media and music,
192
590640
4677
不仅是在软件和服务领域,也在媒体和音乐界,
09:55
in finance and manufacturing, in retailing and trade --
193
595317
3686
在金融、制造业、零售和外贸 -
09:59
in short, in every industry.
194
599003
3895
总而言之,在每个行业中都在发生着。
10:02
People are racing against the machine,
195
602898
3095
人类在和机器较量,
10:05
and many of them are losing that race.
196
605993
3090
很多人都在失去这场较量。
10:09
What can we do to create shared prosperity?
197
609083
3886
我们怎样才能达到共同繁荣?
10:12
The answer is not to try to slow down technology.
198
612969
3017
答案绝对不是试图减缓科技发展。
10:15
Instead of racing against the machine,
199
615986
2557
与其和机器赛跑,
10:18
we need to learn to race with the machine.
200
618543
3677
我们应该学着如何与机器一同进步。
10:22
That is our grand challenge.
201
622220
3129
这是我们最大的挑战。
10:25
The new machine age
202
625349
2324
新机器时代
10:27
can be dated to a day 15 years ago
203
627673
3113
可以从15年前的一天开始算起,
10:30
when Garry Kasparov, the world chess champion,
204
630786
2878
当世界国际象棋冠军加里·卡斯帕罗夫
10:33
played Deep Blue, a supercomputer.
205
633664
3706
和一台叫做深蓝的超级计算机下棋的时候。
10:37
The machine won that day,
206
637370
2012
当时机器赢了,
10:39
and today, a chess program running on a cell phone
207
639382
2968
而现在,一个在手机上的国际象棋程序
10:42
can beat a human grandmaster.
208
642350
2296
也可以打败一个人类大师。
10:44
It got so bad that, when he was asked
209
644646
3365
事情糟糕到,当被问到如果和一台电脑
10:48
what strategy he would use against a computer,
210
648011
2563
下棋他会使用什么样的战术时,
10:50
Jan Donner, the Dutch grandmaster, replied,
211
650574
4016
约翰·唐纳,荷兰象棋大师,回应道,
10:54
"I'd bring a hammer."
212
654590
1771
“我会带个锤子。”
10:56
(Laughter)
213
656361
3680
(笑声)
11:00
But today a computer is no longer the world chess champion.
214
660041
4544
但今天电脑不再是世界国际象棋大赛冠军。
11:04
Neither is a human,
215
664585
2654
也不是一个人,
11:07
because Kasparov organized a freestyle tournament
216
667239
3579
因为卡斯帕罗夫组织了一个自由式比赛
11:10
where teams of humans and computers
217
670818
1916
人类和电脑可以组团
11:12
could work together,
218
672734
2099
一起合作,
11:14
and the winning team had no grandmaster,
219
674833
3157
最终的获胜者团队里既没有大师,
11:17
and it had no supercomputer.
220
677990
2465
也没有超级电脑。
11:20
What they had was better teamwork,
221
680455
4175
他们有的是更好的团队合作,
11:24
and they showed that a team of humans and computers,
222
684630
5016
这证明了一个由人和电脑共同协作的团队,
11:29
working together, could beat any computer
223
689646
3048
可以打败任何一个单一作战的电脑
11:32
or any human working alone.
224
692694
3520
或者个人。
11:36
Racing with the machine
225
696214
1664
和机器一同前进
11:37
beats racing against the machine.
226
697878
2343
要远远好过和机器竞赛。
11:40
Technology is not destiny.
227
700221
2564
技术不是终极目标。
11:42
We shape our destiny.
228
702785
1742
我们塑造自己的目标。
11:44
Thank you.
229
704527
1447
谢谢大家。
11:45
(Applause)
230
705974
5016
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7