Erik Brynjolfsson: The key to growth? Race with the machines

152,427 views ・ 2013-04-23

TED


請雙擊下方英文字幕播放視頻。

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
譯者: Yi-Ting Chung 審譯者: Marssi Draw
00:12
Growth is not dead.
1
12605
2272
成長還沒停止
00:14
(Applause)
2
14877
1386
(掌聲)
00:16
Let's start the story 120 years ago,
3
16263
3963
故事從 120 年前說起
00:20
when American factories began to electrify their operations,
4
20226
3632
美國工廠開始電器化運作
00:23
igniting the Second Industrial Revolution.
5
23858
3344
帶動了第二次工業革命
00:27
The amazing thing is
6
27202
1111
但驚人的是
00:28
that productivity did not increase in those factories
7
28313
2777
三十年中,那些工廠的生產力並沒有提升
00:31
for 30 years. Thirty years.
8
31090
3256
整整三十年
00:34
That's long enough for a generation of managers to retire.
9
34346
3474
這段時間足以讓一代的經理退休了
00:37
You see, the first wave of managers
10
37820
2222
我們可以看到,第一批經理
00:40
simply replaced their steam engines with electric motors,
11
40042
3417
只不過是把蒸汽機換成電動機而已
00:43
but they didn't redesign the factories to take advantage
12
43459
3010
他們並沒有重新設計工廠
00:46
of electricity's flexibility.
13
46469
2341
讓它利用電的多變性
00:48
It fell to the next generation to invent new work processes,
14
48810
3984
下個世代開始發明新的工作程序
00:52
and then productivity soared,
15
52794
2727
生產力因此大增
00:55
often doubling or even tripling in those factories.
16
55521
3665
常常是原來工廠的兩倍,甚至是三倍
00:59
Electricity is an example of a general purpose technology,
17
59186
4723
電力是一種通用目的技術的例子
01:03
like the steam engine before it.
18
63909
2230
出現較早的蒸汽機也是一樣
01:06
General purpose technologies drive most economic growth,
19
66139
3416
通用目的技術是帶動經濟發展的主力
01:09
because they unleash cascades of complementary innovations,
20
69555
3454
因為它能帶動一連串有互補性的創新
01:13
like lightbulbs and, yes, factory redesign.
21
73009
3632
像是燈泡,沒錯,工廠因而改頭換面
01:16
Is there a general purpose technology of our era?
22
76641
3610
那現代有通用目的技術存在嗎?
01:20
Sure. It's the computer.
23
80251
2508
當然有,就是電腦
01:22
But technology alone is not enough.
24
82759
2659
但只靠科技還不夠
01:25
Technology is not destiny.
25
85418
2766
科技不能主導命運
01:28
We shape our destiny,
26
88184
1580
是我們掌握自己的命運
01:29
and just as the earlier generations of managers
27
89764
2516
就像早期的經理
01:32
needed to redesign their factories,
28
92280
2298
需要重新打造他們的工廠一樣
01:34
we're going to need to reinvent our organizations
29
94578
2229
我們也需要重建一個組織
01:36
and even our whole economic system.
30
96807
2555
甚至是重塑整個經濟體制
01:39
We're not doing as well at that job as we should be.
31
99362
3602
我們並沒有達到應有的水準
01:42
As we'll see in a moment,
32
102964
1230
我們馬上就會了解
01:44
productivity is actually doing all right,
33
104194
2722
生產力是完全沒有問題的
01:46
but it has become decoupled from jobs,
34
106916
3862
但生產力與工作背道而馳
01:50
and the income of the typical worker is stagnating.
35
110778
4419
而且,一般工人的收入也減少了
01:55
These troubles are sometimes misdiagnosed
36
115197
2519
有時候我們在創新的盡頭
01:57
as the end of innovation,
37
117716
3712
會對這些問題有錯誤的判斷
02:01
but they are actually the growing pains
38
121428
2129
但事實上這是一種成長必要的代價
02:03
of what Andrew McAfee and I call the new machine age.
39
123557
5590
我和安德魯.邁克菲 (Andrew McAfee) 將其稱為「新機器時代」
02:09
Let's look at some data.
40
129147
1882
我們來看看一些資料
02:11
So here's GDP per person in America.
41
131029
2902
這是美國每人的國內生產毛額
02:13
There's some bumps along the way, but the big story
42
133931
2766
線上有些高低起伏,但重點是
02:16
is you could practically fit a ruler to it.
43
136697
2715
你會發現它的路徑與直線符合
02:19
This is a log scale, so what looks like steady growth
44
139412
3276
這是對數比例尺,所以看起來是穩定成長
02:22
is actually an acceleration in real terms.
45
142688
3043
但事實上,它是加速進行著
02:25
And here's productivity.
46
145731
2160
而這是生產力
02:27
You can see a little bit of a slowdown there in the mid-'70s,
47
147891
2671
大家可以看到在 70 年代中期,成長漸緩
02:30
but it matches up pretty well with the Second Industrial Revolution,
48
150562
3738
但這和第二次工業革命的時間吻合
02:34
when factories were learning how to electrify their operations.
49
154300
2691
當時工廠正在學著如何電器化運作
02:36
After a lag, productivity accelerated again.
50
156991
4129
漸緩一段時間後,生產力再度急遽上升
02:41
So maybe "history doesn't repeat itself,
51
161120
2571
所以或許「歷史不會自己重演
02:43
but sometimes it rhymes."
52
163691
2568
但有時不可否認會有幾分相似。」
02:46
Today, productivity is at an all-time high,
53
166259
3136
現在,生產力是前所未有的高
02:49
and despite the Great Recession,
54
169395
1977
儘管是在經濟大蕭條的期間
02:51
it grew faster in the 2000s than it did in the 1990s,
55
171372
4252
2000 年以來還是比 90 年代成長得更快
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
56
175624
4136
喧囂動盪的 90 年代還是比 70 或 80 年代增加更快
02:59
It's growing faster than it did during the Second Industrial Revolution.
57
179760
3674
比第二次工業革命時成長更快
03:03
And that's just the United States.
58
183434
1743
而這只是美國而已
03:05
The global news is even better.
59
185177
3248
全球的表現更是優秀
03:08
Worldwide incomes have grown at a faster rate
60
188425
2360
全球所得在過去十年
03:10
in the past decade than ever in history.
61
190785
2496
以前所未有的驚人速度成長
03:13
If anything, all these numbers actually understate our progress,
62
193281
5051
不過,這些數據事實上低估了我們進步的程度
03:18
because the new machine age
63
198332
1912
因為新機器時代
03:20
is more about knowledge creation
64
200244
1664
強調的是知識的創造
03:21
than just physical production.
65
201908
2331
而非只是實際的產量
03:24
It's mind not matter, brain not brawn,
66
204239
2938
怎麼想比怎麼做來得重要 要動腦而不是靠蠻力
03:27
ideas not things.
67
207177
2062
想法大於產物本身
03:29
That creates a problem for standard metrics,
68
209239
2570
而這產生了測量標準的問題
03:31
because we're getting more and more stuff for free,
69
211809
3502
因為免費的東西越來越多
03:35
like Wikipedia, Google, Skype,
70
215311
2641
像是維基百科、谷歌、網路電話(Skype)
03:37
and if they post it on the web, even this TED Talk.
71
217952
3063
他們把東西放到網路上 甚至是現在這篇 TED 演講
03:41
Now getting stuff for free is a good thing, right?
72
221015
3303
有免費的東西是好事,對吧?
03:44
Sure, of course it is.
73
224318
1765
當然是好事
03:46
But that's not how economists measure GDP.
74
226083
3868
但經濟學家可不是這樣衡量國內生產毛額的
03:49
Zero price means zero weight in the GDP statistics.
75
229951
5592
免費,在國內生產毛額統計上代表權重為零
03:55
According to the numbers, the music industry
76
235543
2112
根據調查顯示,音樂產業的規模
03:57
is half the size that it was 10 years ago,
77
237655
3000
只有十年前的二分之一
04:00
but I'm listening to more and better music than ever.
78
240655
3656
但我現在聽到的音樂,比起以前進步很多
04:04
You know, I bet you are too.
79
244311
2192
我想你們也有這種感覺
04:06
In total, my research estimates
80
246503
2723
整體來說,我的研究估計
04:09
that the GDP numbers miss over 300 billion dollars per year
81
249226
4754
國內生產毛額每年少算超過三千億美元
04:13
in free goods and services on the Internet.
82
253980
3346
忽略了網路上提供的免費產品及服務
04:17
Now let's look to the future.
83
257326
1789
現在我們放眼未來
04:19
There are some super smart people
84
259115
2263
有些非常聰明的人
04:21
who are arguing that we've reached the end of growth,
85
261378
5019
認為我們已經發展到了窮途末路
04:26
but to understand the future of growth,
86
266397
3558
但要了解未來的發展
04:29
we need to make predictions
87
269955
2683
我們必須對成長潛在的驅動力
04:32
about the underlying drivers of growth.
88
272638
3290
做些預測
04:35
I'm optimistic, because the new machine age
89
275928
3806
我抱持樂觀的態度,因為新機器時代
04:39
is digital, exponential and combinatorial.
90
279734
5030
是數位化、指數化及組合化的時代
04:44
When goods are digital, they can be replicated
91
284764
2264
當產品數位化,就能夠複製
04:47
with perfect quality at nearly zero cost,
92
287028
4509
幾乎不用花半毛錢,就能有很好的品質
04:51
and they can be delivered almost instantaneously.
93
291537
4018
而且可以立即傳送
04:55
Welcome to the economics of abundance.
94
295555
2800
歡迎來到經濟蓬勃的時代
04:58
But there's a subtler benefit to the digitization of the world.
95
298355
3690
世界數位化有個比較其次的好處
05:02
Measurement is the lifeblood of science and progress.
96
302045
4600
測量是科學及進步的重要指標
05:06
In the age of big data,
97
306645
2148
在充斥大量資料的時代
05:08
we can measure the world in ways we never could before.
98
308793
4286
我們可以用過去辦不到的方法 來衡量現在的世界
05:13
Secondly, the new machine age is exponential.
99
313079
4095
第二,新機器時代是指數化的時代
05:17
Computers get better faster than anything else ever.
100
317174
5935
電腦比任何東西跑得更快
05:23
A child's Playstation today is more powerful
101
323109
3568
現在小朋友的遊戲機(Playstation)
05:26
than a military supercomputer from 1996.
102
326677
4056
比 1996 年軍隊的超級電腦更進步
05:30
But our brains are wired for a linear world.
103
330733
3207
但我們的大腦是習慣線性世界的
05:33
As a result, exponential trends take us by surprise.
104
333940
3888
因此,指數化的趨勢讓我們大吃 一驚
05:37
I used to teach my students that there are some things,
105
337828
2602
過去我都教學生說,有些事
05:40
you know, computers just aren't good at,
106
340430
1934
你知道嗎?電腦根本做不來
05:42
like driving a car through traffic.
107
342364
2385
像開車通過擁擠的車潮
05:44
(Laughter)
108
344749
2013
(笑聲)
05:46
That's right, here's Andy and me grinning like madmen
109
346762
3491
沒錯,這張照片是我和安迪,像瘋子一樣在大笑
05:50
because we just rode down Route 101
110
350253
2384
因為我們剛下國道 101
05:52
in, yes, a driverless car.
111
352637
3669
沒錯,就在一台無人駕駛的車子裡
05:56
Thirdly, the new machine age is combinatorial.
112
356306
2583
第三,新機器時代是組合化的時代
05:58
The stagnationist view is that ideas get used up,
113
358889
4048
想法停滯就是想法用完了
06:02
like low-hanging fruit,
114
362937
1856
輕而易舉
06:04
but the reality is that each innovation
115
364793
3163
但事實上,每一種創新
06:07
creates building blocks for even more innovations.
116
367956
3256
都是激盪出更多創新的墊腳石
06:11
Here's an example. In just a matter of a few weeks,
117
371212
3345
舉例來說,大約幾個禮拜前
06:14
an undergraduate student of mine
118
374557
2072
我的一位大學生
06:16
built an app that ultimately reached 1.3 million users.
119
376629
4111
開發了一個應用程式,最後使用者高達 130 萬
06:20
He was able to do that so easily
120
380740
1699
他輕而易舉就能辦到
06:22
because he built it on top of Facebook,
121
382439
1827
因為他是在臉書上建立的
06:24
and Facebook was built on top of the web,
122
384266
1933
而臉書是個網站
06:26
and that was built on top of the Internet,
123
386199
1698
網站又建立在網路之上
06:27
and so on and so forth.
124
387897
2418
等等的關聯
06:30
Now individually, digital, exponential and combinatorial
125
390315
4765
現在個人數位化、指數化及組合化
06:35
would each be game-changers.
126
395080
2350
分別都能改變這場遊戲
06:37
Put them together, and we're seeing a wave
127
397430
2190
把這些通通集結起來,我們會看到
06:39
of astonishing breakthroughs,
128
399620
1393
一連串驚人的突破
06:41
like robots that do factory work or run as fast as a cheetah
129
401013
3060
像是機器人,能在工廠工作 跑得跟印度豹一樣快
06:44
or leap tall buildings in a single bound.
130
404073
2796
或是一躍就能上高樓
06:46
You know, robots are even revolutionizing
131
406869
2232
其實,機器人甚至改變了
06:49
cat transportation.
132
409101
1829
貓的運輸方式
06:50
(Laughter)
133
410930
2270
(笑聲)
06:53
But perhaps the most important invention,
134
413200
2732
但或許最重要的發明
06:55
the most important invention is machine learning.
135
415932
5065
最重要的發明是讓機器學習
07:00
Consider one project: IBM's Watson.
136
420997
3376
想想這個計畫:IBM 的沃森(Watson)
07:04
These little dots here,
137
424373
1589
這些點顯示的是
07:05
those are all the champions on the quiz show "Jeopardy."
138
425962
4860
智力節目《危險邊緣》裡所有的冠軍選手
07:10
At first, Watson wasn't very good,
139
430822
2544
一開始,沃森表現不佳
07:13
but it improved at a rate faster than any human could,
140
433366
5622
但它進步的速度超乎常人
07:18
and shortly after Dave Ferrucci showed this chart
141
438988
2687
就在戴維.費魯奇 (Dave Ferrucci) 給我在麻省理工學院的學生
07:21
to my class at MIT,
142
441675
1652
看這張圖的不久後
07:23
Watson beat the world "Jeopardy" champion.
143
443327
3542
沃森打敗了《危險邊緣》的世界冠軍
07:26
At age seven, Watson is still kind of in its childhood.
144
446869
3989
七歲,沃森差不多還在童年時期
07:30
Recently, its teachers let it surf the Internet unsupervised.
145
450858
5318
最近,沃森的老師讓它在 無人指導的情況下上網
07:36
The next day, it started answering questions with profanities.
146
456176
5946
隔天,它開始以髒話回答問題
07:42
Damn. (Laughter)
147
462122
2274
該死!(笑聲)
07:44
But you know, Watson is growing up fast.
148
464396
2280
但你們知道嗎?沃森長得很快
07:46
It's being tested for jobs in call centers, and it's getting them.
149
466676
4212
它參加客服中心工作的考試,全數通過
07:50
It's applying for legal, banking and medical jobs,
150
470888
3724
它申請法律、銀行及醫療方面的工作
07:54
and getting some of them.
151
474612
1950
有一些通過了
07:56
Isn't it ironic that at the very moment
152
476562
1889
這種情況下
07:58
we are building intelligent machines,
153
478451
2234
我們發明了智慧型機器
08:00
perhaps the most important invention in human history,
154
480685
3449
或許還是人類史上最重要的發明
08:04
some people are arguing that innovation is stagnating?
155
484134
3975
卻有人說創新停滯了,這不是很諷刺嗎?
08:08
Like the first two industrial revolutions,
156
488109
2419
像第一及第二次工業革命
08:10
the full implications of the new machine age
157
490528
3134
新機器時代涵蓋的所有層面
08:13
are going to take at least a century to fully play out,
158
493662
2682
至少要一個世紀才會完全落幕
08:16
but they are staggering.
159
496344
3032
但這樣的革命是很驚人的
08:19
So does that mean we have nothing to worry about?
160
499376
3336
所以這代表我們沒有後顧之憂了嗎?
08:22
No. Technology is not destiny.
161
502712
3680
不,科技不能主導命運
08:26
Productivity is at an all time high,
162
506392
2569
生產力是前所未有的高
08:28
but fewer people now have jobs.
163
508961
2983
但有工作的人變少了
08:31
We have created more wealth in the past decade than ever,
164
511944
3120
過去十年來,我們創造了史無前例的財富
08:35
but for a majority of Americans, their income has fallen.
165
515064
3904
但多數的美國人,所得卻下降了
08:38
This is the great decoupling
166
518968
2312
這是很嚴重的排擠效應
08:41
of productivity from employment,
167
521280
2976
生產力排擠就業率
08:44
of wealth from work.
168
524256
3104
財富排擠了工作
08:47
You know, it's not surprising that millions of people
169
527360
2346
其實,這種情況不意外,幾百萬人
08:49
have become disillusioned by the great decoupling,
170
529706
2846
對於這樣的排擠效應感到失望
08:52
but like too many others,
171
532552
1747
但就像大多數人一樣
08:54
they misunderstand its basic causes.
172
534299
3097
他們誤解了基本的原因
08:57
Technology is racing ahead,
173
537396
2610
科技發展神速
09:00
but it's leaving more and more people behind.
174
540006
3550
把越來越多人拋諸腦後
09:03
Today, we can take a routine job,
175
543556
3519
現在的例行公事,我們都可以
09:07
codify it in a set of machine-readable instructions,
176
547075
3091
將其改編成一組機器可讀的指令
09:10
and then replicate it a million times.
177
550166
2827
然後複製一百萬遍
09:12
You know, I recently overheard a conversation
178
552993
2279
最近我偶然聽到一則對話
09:15
that epitomizes these new economics.
179
555272
1952
可以象徵這些經濟狀況
09:17
This guy says, "Nah, I don't use H&R Block anymore.
180
557224
4197
有個男的說:「不,我不要再請稅務公司了
09:21
TurboTax does everything that my tax preparer did,
181
561421
2448
報稅軟體能完成所有報稅員該做的事
09:23
but it's faster, cheaper and more accurate."
182
563869
4558
而且更快、更便宜還更精確。」
09:28
How can a skilled worker
183
568427
1799
一個專業的工作人員
09:30
compete with a $39 piece of software?
184
570226
3009
要怎麼跟一個 39 塊美金的軟體競爭呢?
09:33
She can't.
185
573235
1967
她沒辦法比
09:35
Today, millions of Americans do have faster,
186
575202
2780
現在,的確有幾百萬美國人
09:37
cheaper, more accurate tax preparation,
187
577982
2387
能更快、更便宜又更精確的報稅
09:40
and the founders of Intuit
188
580369
1486
這報稅軟體的創辦人
09:41
have done very well for themselves.
189
581855
2493
他們自己也做得很好
09:44
But 17 percent of tax preparers no longer have jobs.
190
584348
4214
但是 17% 的報稅員丟了工作
09:48
That is a microcosm of what's happening,
191
588562
2078
這只是一部分的縮影
09:50
not just in software and services, but in media and music,
192
590640
4677
不只是軟體和服務方面 還包括媒體及音樂
09:55
in finance and manufacturing, in retailing and trade --
193
595317
3686
財務及製造業,零售及貿易
09:59
in short, in every industry.
194
599003
3895
簡單來說,是所有產業
10:02
People are racing against the machine,
195
602898
3095
人類在跟機器比速度
10:05
and many of them are losing that race.
196
605993
3090
大部分都輸了
10:09
What can we do to create shared prosperity?
197
609083
3886
該怎麼做才能共同創造繁榮的社會?
10:12
The answer is not to try to slow down technology.
198
612969
3017
答案不會是放慢科技發展的速度
10:15
Instead of racing against the machine,
199
615986
2557
我們不要去對抗機器
10:18
we need to learn to race with the machine.
200
618543
3677
而是應該學會去跟機器一起競爭
10:22
That is our grand challenge.
201
622220
3129
這是很大的挑戰
10:25
The new machine age
202
625349
2324
新機器時代
10:27
can be dated to a day 15 years ago
203
627673
3113
可以回朔到 15 年前的某一天
10:30
when Garry Kasparov, the world chess champion,
204
630786
2878
國際西洋棋世界冠軍 加里.卡斯帕羅夫(Gary Kasparov)
10:33
played Deep Blue, a supercomputer.
205
633664
3706
跟一台超級電腦:深藍(Deep Blue),一起比賽
10:37
The machine won that day,
206
637370
2012
那天電腦贏了
10:39
and today, a chess program running on a cell phone
207
639382
2968
而現在,一支手機裡的西洋棋遊戲
10:42
can beat a human grandmaster.
208
642350
2296
都可以打敗一位西洋棋大師
10:44
It got so bad that, when he was asked
209
644646
3365
這種情況真慘,當被問到
10:48
what strategy he would use against a computer,
210
648011
2563
他會用什麼方法來對抗電腦
10:50
Jan Donner, the Dutch grandmaster, replied,
211
650574
4016
荷蘭西洋棋大師 約翰.唐納(Jan Donner)回答:
10:54
"I'd bring a hammer."
212
654590
1771
「我會帶鐵鎚去。」
10:56
(Laughter)
213
656361
3680
(笑聲)
11:00
But today a computer is no longer the world chess champion.
214
660041
4544
但現在電腦已經不是西洋棋世界冠軍了
11:04
Neither is a human,
215
664585
2654
冠軍也不是人
11:07
because Kasparov organized a freestyle tournament
216
667239
3579
因為卡斯帕羅夫舉辦了一種自由式比賽
11:10
where teams of humans and computers
217
670818
1916
這種比賽讓人類和電腦
11:12
could work together,
218
672734
2099
可以一起合作
11:14
and the winning team had no grandmaster,
219
674833
3157
贏家不是大師
11:17
and it had no supercomputer.
220
677990
2465
也不是超級電腦
11:20
What they had was better teamwork,
221
680455
4175
冠軍有的是團隊合作
11:24
and they showed that a team of humans and computers,
222
684630
5016
他們展現了人類和電腦
11:29
working together, could beat any computer
223
689646
3048
是如何並肩作戰,打敗任何一台電腦
11:32
or any human working alone.
224
692694
3520
或是任何一個人孤軍奮戰
11:36
Racing with the machine
225
696214
1664
和電腦一起競爭
11:37
beats racing against the machine.
226
697878
2343
比對抗電腦來得有效
11:40
Technology is not destiny.
227
700221
2564
科技不能主導我們的命運
11:42
We shape our destiny.
228
702785
1742
是我們主導自己的命運
11:44
Thank you.
229
704527
1447
謝謝大家
11:45
(Applause)
230
705974
5016
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7