Erik Brynjolfsson: The key to growth? Race with the machines

152,773 views ใƒป 2013-04-23

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
ืžืชืจื’ื: Guy Sella ืžื‘ืงืจ: Ido Dekkers
00:12
Growth is not dead.
1
12605
2272
ื”ืฆืžื™ื—ื” ืœื ืžืชื”.
00:14
(Applause)
2
14877
1386
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
00:16
Let's start the story 120 years ago,
3
16263
3963
ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ืกื™ืคื•ืจ ืœืคื ื™ 120 ืฉื ื”
00:20
when American factories began to electrify their operations,
4
20226
3632
ื›ืฉืžืคืขืœื™ื ืืžืจื™ืงื ื™ื™ื ื”ื—ืœื• ืœื”ืฉืชืžืฉ ื‘ื—ืฉืžืœ,
00:23
igniting the Second Industrial Revolution.
5
23858
3344
ื•ื”ืชื—ื™ืœื• ืืช ื”ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืฉื ื™ื™ื”.
00:27
The amazing thing is
6
27202
1111
ื”ื“ื‘ืจ ื”ืžื“ื”ื™ื ื”ื•ื
00:28
that productivity did not increase in those factories
7
28313
2777
ืฉื”ืชืคื•ืงื” ืœื ื”ืฉืชืคืจื” ื‘ืžืคืขืœื™ื ื”ืœืœื•
00:31
for 30 years. Thirty years.
8
31090
3256
ื‘ืžืฉืš ืฉืœื•ืฉื™ื ืฉื ื”. ืฉืœื•ืฉื™ื ืฉื ื”.
00:34
That's long enough for a generation of managers to retire.
9
34346
3474
ื–ื” ื–ืžืŸ ืืจื•ืš ืžืกืคื™ืง ืœื“ื•ืจ ืฉืœื ืฉืœ ืžื ื”ืœื™ื ืœืคืจื•ืฉ.
00:37
You see, the first wave of managers
10
37820
2222
ืืชื ืจื•ืื™ื, ื”ื’ืœ ื”ืจืืฉื•ืŸ ืฉืœ ืžื ื”ืœื™ื
00:40
simply replaced their steam engines with electric motors,
11
40042
3417
ืคืฉื•ื˜ ื”ื—ืœื™ืฃ ืืช ืžื ื•ืขื™ ื”ืงื™ื˜ื•ืจ ื‘ืžื ื•ืขื™ื ื—ืฉืžืœื™ื™ื,
00:43
but they didn't redesign the factories to take advantage
12
43459
3010
ืืš ื”ื ืœื ืขื™ืฆื‘ื• ืžื—ื“ืฉ ืืช ื”ืžืคืขืœื™ื ืœื ืฆืœ ื‘ื—ื•ื›ืžื”
00:46
of electricity's flexibility.
13
46469
2341
ืืช ื”ื’ืžื™ืฉื•ืช ืฉืœ ื”ื—ืฉืžืœ.
00:48
It fell to the next generation to invent new work processes,
14
48810
3984
ื–ื” ื ืคืœ ืขืœ ื”ื“ื•ืจ ื”ื‘ื, ืœื”ืžืฆื™ื ืชื”ืœื™ื›ื™ ืขื‘ื•ื“ื” ื—ื“ืฉื™ื,
00:52
and then productivity soared,
15
52794
2727
ื•ืื– ื”ืชืคื•ืงื” ื ืกืงื”,
00:55
often doubling or even tripling in those factories.
16
55521
3665
ืœืขืชื™ื ื”ื•ื›ืคืœื” ืื• ืืคื™ืœื• ืฉื•ืœืฉื” ื‘ืžืคืขืœื™ื ื”ืœืœื•.
00:59
Electricity is an example of a general purpose technology,
17
59186
4723
ื—ืฉืžืœ ื”ื•ื ื“ื•ื’ืžื ืœื˜ื›ื ื•ืœื•ื’ื™ื” ื”ืžื™ื•ืขื“ืช ืœื›ืœ ืžื˜ืจื”,
01:03
like the steam engine before it.
18
63909
2230
ื›ืžื• ืžื ื•ืข ื”ืงื™ื˜ื•ืจ ืœืคื ื™ื•.
01:06
General purpose technologies drive most economic growth,
19
66139
3416
ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืœื›ืœ ืžื˜ืจื” ืžื ื™ืขื•ืช ืืช ืจื•ื‘ ื”ืฆืžื™ื—ื” ื”ื›ืœื›ืœื™ืช
01:09
because they unleash cascades of complementary innovations,
20
69555
3454
ืžืคื ื™ ืฉื”ืŸ ืžืฉื—ืจืจื•ืช ื”ืžื•ื ื™ ื”ืžืฆืื•ืช ืžืฉืœื™ืžื•ืช,
01:13
like lightbulbs and, yes, factory redesign.
21
73009
3632
ื›ื’ื•ืŸ ื ื•ืจื•ืช ื•ื›ืŸ, ืขื™ืฆื•ื‘ ืžื—ื“ืฉ ืฉืœ ืžืคืขืœื™ื.
01:16
Is there a general purpose technology of our era?
22
76641
3610
ื”ืื ื™ืฉื ื” ื˜ื›ื ื•ืœื•ื’ื™ื” ืœื›ืœ ืžื˜ืจื” ื‘ืชืงื•ืคืชื ื•?
01:20
Sure. It's the computer.
23
80251
2508
ื‘ื•ื•ื“ืื™. ื–ื” ื”ืžื—ืฉื‘.
01:22
But technology alone is not enough.
24
82759
2659
ืื‘ืœ ื˜ื›ื ื•ืœื•ื’ื™ื” ืœื‘ื“ื” ืื™ื ื” ืžืกืคื™ืงื”.
01:25
Technology is not destiny.
25
85418
2766
ื˜ื›ื ื•ืœื•ื’ื™ื” ืื™ื ื” ื™ืขื•ื“.
01:28
We shape our destiny,
26
88184
1580
ืื ื—ื ื• ืžืขืฆื‘ื™ื ืืช ื”ื™ืขื•ื“ ืฉืœื ื•,
01:29
and just as the earlier generations of managers
27
89764
2516
ื•ืžืžืฉ ื›ืžื• ื”ื“ื•ืจื•ืช ื”ืงื•ื“ืžื™ื ืฉืœ ืžื ื”ืœื™ื
01:32
needed to redesign their factories,
28
92280
2298
ื”ื™ื• ื–ืงื•ืงื™ื ืœืขื™ืฆื•ื‘ ืžื—ื“ืฉ ืฉืœ ืžืคืขืœื™ื”ื,
01:34
we're going to need to reinvent our organizations
29
94578
2229
ืื ื—ื ื• ืขื•ืžื“ื™ื ืœื”ื™ื“ืจืฉ ืœื”ืžืฆื™ื ืžื—ื“ืฉ ืืช ื”ืืจื’ื•ื ื™ื ืฉืœื ื•
01:36
and even our whole economic system.
30
96807
2555
ื•ืืคื™ืœื• ืืช ื›ืœ ื”ืžืขืจื›ืช ื”ื›ืœื›ืœื™ืช.
01:39
We're not doing as well at that job as we should be.
31
99362
3602
ืื ื—ื ื• ืœื ืžื‘ืฆืขื™ื ืืช ื”ืขื‘ื•ื“ื” ื”ื–ื• ื˜ื•ื‘ ื›ืžื• ืฉืื ื—ื ื• ืืžื•ืจื™ื.
01:42
As we'll see in a moment,
32
102964
1230
ื›ืคื™ ืฉื ืจืื” ื‘ืขื•ื“ ืจื’ืข,
01:44
productivity is actually doing all right,
33
104194
2722
ื”ืชืคื•ืงื” ืœืžืขืฉื” ื˜ื•ื‘ื”,
01:46
but it has become decoupled from jobs,
34
106916
3862
ืื‘ืœ ื”ื™ื ื”ืคื›ื” ืœืžื ื•ืชืงืช ืžื”ืžืฉืจื•ืช,
01:50
and the income of the typical worker is stagnating.
35
110778
4419
ื•ื”ื”ื›ื ืกื” ืฉืœ ื”ืขื•ื‘ื“ ื”ื˜ื™ืคื•ืกื™ ื“ื•ืจื›ืช ื‘ืžืงื•ื.
01:55
These troubles are sometimes misdiagnosed
36
115197
2519
ื”ืฆืจื•ืช ื”ืœืœื• ืœืขืชื™ื ืžืื•ื‘ื—ื ื•ืช ืœื ื ื›ื•ืŸ
01:57
as the end of innovation,
37
117716
3712
ื›ืกื•ืคื” ืฉืœ ื”ื—ื“ืฉื ื•ืช,
02:01
but they are actually the growing pains
38
121428
2129
ืื‘ืœ ื”ืŸ ืœืžืขืฉื” ื”ื›ืื‘ื™ื ื”ื’ื“ืœื™ื
02:03
of what Andrew McAfee and I call the new machine age.
39
123557
5590
ืฉืœ ืžื” ืฉืื ื“ืจื• ืžืง'ืืคื™ ื•ืื ื™ ืžื›ื ื™ื "ืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉ".
02:09
Let's look at some data.
40
129147
1882
ื”ื‘ื” ื ืกืชื›ืœ ืขืœ ืงืฆืช ื ืชื•ื ื™ื.
02:11
So here's GDP per person in America.
41
131029
2902
ืื– ื”ื ื” ื”ืชื•ืฆืจ ื”ืœืื•ืžื™ ื”ื’ื•ืœืžื™ ืœื ืคืฉ ื‘ืืžืจื™ืงื”.
02:13
There's some bumps along the way, but the big story
42
133931
2766
ื™ืฉ ื›ืžื” ืžื”ืžื•ืจื•ืช ืœืื•ืจืš ื”ื“ืจืš, ืื‘ืœ ื”ืกื™ืคื•ืจ ื”ื’ื“ื•ืœ
02:16
is you could practically fit a ruler to it.
43
136697
2715
ื”ื•ื ืฉืžืขืฉื™ืช ืืชื” ื™ื›ื•ืœ ืœื”ืฆืžื™ื“ ืœื• ืกืจื’ืœ.
02:19
This is a log scale, so what looks like steady growth
44
139412
3276
ื–ื”ื• ืงื ื” ืžื™ื“ื” ืœื•ื’ืจื™ืชืžื™, ืื– ืžื” ืฉื ืจืื” ื›ื’ื“ื™ืœื” ื™ืฆื™ื‘ื”
02:22
is actually an acceleration in real terms.
45
142688
3043
ื”ื™ื ื‘ืขืฆื ื”ืืฆื” ื‘ืžื•ื ื—ื™ื ืจื™ืืœื™ื™ื.
02:25
And here's productivity.
46
145731
2160
ื•ื”ื ื” ื”ืชืคื•ืงื”.
02:27
You can see a little bit of a slowdown there in the mid-'70s,
47
147891
2671
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืงืฆืช ื”ืื˜ื” ื‘ืืžืฆืข ืฉื ื•ืช ื”-70',
02:30
but it matches up pretty well with the Second Industrial Revolution,
48
150562
3738
ืืš ื”ื™ื ืžืชื™ื™ืฉื‘ืช ื“ื™ ื˜ื•ื‘ ืขื ื”ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืฉื ื™ื™ื”,
02:34
when factories were learning how to electrify their operations.
49
154300
2691
ื›ืฉืžืคืขืœื™ื ืœืžื“ื• ืื™ืš ืœื”ืชืื™ื ืืช ื”ื‘ื™ืฆื•ืขื™ื ืฉืœื”ื ืœื—ืฉืžืœ.
02:36
After a lag, productivity accelerated again.
50
156991
4129
ืœืื—ืจ ืคื™ื’ื•ืจ ืงืœ, ื”ืชืคื•ืงื” ื”ืื™ืฆื” ืฉื•ื‘.
02:41
So maybe "history doesn't repeat itself,
51
161120
2571
ืื– ืื•ืœื™ "ื”ื™ืกื˜ื•ืจื™ื” ืœื ื—ื•ื–ืจืช ืขืœ ืขืฆืžื”,
02:43
but sometimes it rhymes."
52
163691
2568
"ืืš ืœืคืขืžื™ื ื”ื™ื ืžืชื—ืจื–ืช ืขื ืขืฆืžื”".
02:46
Today, productivity is at an all-time high,
53
166259
3136
ื”ื™ื•ื, ื”ืชืคื•ืงื” ื”ื™ื ื‘ืฉื™ื ื›ืœ ื”ื–ืžื ื™ื,
02:49
and despite the Great Recession,
54
169395
1977
ื•ืœืžืจื•ืช ื”ืฉืคืœ ื”ื’ื“ื•ืœ,
02:51
it grew faster in the 2000s than it did in the 1990s,
55
171372
4252
ื”ื™ื ื’ื“ืœื” ืžื”ืจ ื™ื•ืชืจ ื‘ืฉื ื•ืช ื”ืืœืคื™ื™ื ืžืืฉืจ ื”ื™ื ื’ื“ืœื” ื‘ืฉื ื•ืช ื”-90' ืฉืœ ื”ืžืื” ื”ืขืฉืจื™ื,
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
56
175624
4136
ืฉื ื•ืช ื”ืชืฉืขื™ื ื”ืจื•ืขืžื•ืช, ื•ื”ื™ื ื”ื™ื™ืชื” ืžื”ื™ืจื” ื™ื•ืชืจ ืžืืฉืจ ื‘ืฉื ื•ืช ื”-70' ืื• ื”-80'.
02:59
It's growing faster than it did during the Second Industrial Revolution.
57
179760
3674
ื”ื™ื ื’ื“ืœื” ืžื”ืจ ื™ื•ืชืจ ืžืฉื”ื™ื ื’ื“ืœื” ื‘ืžื”ืคื›ื” ื”ืชืขืฉื™ื™ืชื™ืช ื”ืฉื ื™ื™ื”.
03:03
And that's just the United States.
58
183434
1743
ื•ื–ื” ืจืง ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช.
03:05
The global news is even better.
59
185177
3248
ื”ื—ื“ืฉื•ืช ื”ื’ืœื•ื‘ืœื™ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ.
03:08
Worldwide incomes have grown at a faster rate
60
188425
2360
ื”ื”ื›ื ืกื” ื”ื’ืœื•ื‘ืœื™ืช ื’ื“ืœื” ื‘ืงืฆื‘ ืžื”ื™ืจ ื™ื•ืชืจ
03:10
in the past decade than ever in history.
61
190785
2496
ื‘ืขืฉื•ืจ ื”ืื—ืจื•ืŸ ืžืืฉืจ ื‘ื›ืœ ื–ืžืŸ ืื—ืจ ื‘ื”ื™ืกื˜ื•ืจื™ื”.
03:13
If anything, all these numbers actually understate our progress,
62
193281
5051
ื‘ื›ืœ ืžืงืจื”, ื”ืžืกืคืจื™ื ื”ืืœื” ืœืžืขืฉื” ืžืžืขื™ื˜ื™ื ื‘ืขืจื›ื” ืฉืœ ื”ื”ืชืงื“ืžื•ืช,
03:18
because the new machine age
63
198332
1912
ื‘ื’ืœืœ ืฉืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉื”
03:20
is more about knowledge creation
64
200244
1664
ื”ื•ื ื™ื•ืชืจ ื™ืฆื™ืจืช ื™ื“ืข
03:21
than just physical production.
65
201908
2331
ืžืืฉืจ ืจืง ื™ื™ืฆื•ืจ ืคื™ืกื™.
03:24
It's mind not matter, brain not brawn,
66
204239
2938
ื–ื• ื”ืชื•ื‘ื ื” - ืœื ื”ื—ื•ืžืจ, ื”ืžื•ื— - ืœื ื”ื’ืฉืžื™ื•ืช,
03:27
ideas not things.
67
207177
2062
ืจืขื™ื•ื ื•ืช - ืœื ื“ื‘ืจื™ื.
03:29
That creates a problem for standard metrics,
68
209239
2570
ื–ื” ื™ื•ืฆืจ ื‘ืขื™ื” ืœืžื“ื™ื“ื” ื”ืžืงื•ื‘ืœืช,
03:31
because we're getting more and more stuff for free,
69
211809
3502
ื‘ื’ืœืœ ืฉืื ื—ื ื• ืžืงื‘ืœื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ ื“ื‘ืจื™ื ื‘ื—ื™ื ื,
03:35
like Wikipedia, Google, Skype,
70
215311
2641
ื›ืžื• ื•ื™ืงื™ืคื“ื™ื”, ื’ื•ื’ืœ, ืกืงื™ื™ืค,
03:37
and if they post it on the web, even this TED Talk.
71
217952
3063
ื•ืืคื™ืœื• ืื ื”ื•ื ืžืคื•ืจืกื ื‘ืจืฉืช, ื›ืžื• ื”ืจืฆืืช TED ื”ื–ื•.
03:41
Now getting stuff for free is a good thing, right?
72
221015
3303
ืขื›ืฉื™ื• ืœืงื‘ืœ ื“ื‘ืจื™ื ื‘ื—ื™ื ื ื–ื” ื“ื‘ืจ ื˜ื•ื‘, ื ื›ื•ืŸ?
03:44
Sure, of course it is.
73
224318
1765
ื‘ื˜ื—, ื‘ื•ื•ื“ืื™ ืฉื›ืŸ.
03:46
But that's not how economists measure GDP.
74
226083
3868
ืืš ื–ื• ืœื ื”ื“ืจืš ืฉื‘ื” ื›ืœื›ืœื ื™ื ืžื•ื“ื“ื™ื ืชืœ"ื’.
03:49
Zero price means zero weight in the GDP statistics.
75
229951
5592
ืžื—ื™ืจ ืืคืกื™ ืคื™ืจื•ืฉื• ืžืฉืงืœ ืืคืกื™ ื‘ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ื”ืชืœ"ื’.
03:55
According to the numbers, the music industry
76
235543
2112
ืœืคื™ ื”ืžืกืคืจื™ื, ืชืขืฉื™ื™ืช ื”ืžื•ืกื™ืงื”
03:57
is half the size that it was 10 years ago,
77
237655
3000
ืžื”ื•ื•ื” ืžื—ืฆื™ืช ืžืžื” ืฉื”ื™ื ื”ื™ื™ืชื” ืœืคื ื™ ืขืฉืจ ืฉื ื™ื,
04:00
but I'm listening to more and better music than ever.
78
240655
3656
ืื‘ืœ ืื ื™ ืžืื–ื™ืŸ ืœื™ื•ืชืจ ืžื•ื–ื™ืงื”, ื™ื•ืชืจ ื˜ื•ื‘ื”, ื™ื•ืชืจ ืžืื™-ืคืขื.
04:04
You know, I bet you are too.
79
244311
2192
ืืชื ื™ื•ื“ืขื™ื, ืื ื™ ืžืชืขืจื‘ ืฉื’ื ืืชื.
04:06
In total, my research estimates
80
246503
2723
ื‘ืกืš ื”ื›ืœ, ื”ืžื—ืงืจ ืฉืœื™ ืžืขืจื™ืš
04:09
that the GDP numbers miss over 300 billion dollars per year
81
249226
4754
ืฉืžืกืคืจื™ ื”ืชืœ"ื’ ืžืคืกืคืกื™ื ืœืžืขืœื” ืž-300 ืžื™ืœื™ืืจื“ ื“ื•ืœืจ ื‘ืฉื ื”
04:13
in free goods and services on the Internet.
82
253980
3346
ื‘ืกื—ื•ืจื” ื—ื•ืคืฉื™ืช ื•ืฉื™ืจื•ืชื™ื ื‘ืื™ื ื˜ืจื ื˜.
04:17
Now let's look to the future.
83
257326
1789
ืขื›ืฉื™ื• ื‘ื•ืื• ื ืกืชื›ืœ ืขืœ ื”ืขืชื™ื“.
04:19
There are some super smart people
84
259115
2263
ื™ืฉ ื›ืžื” ืื ืฉื™ื ืžืื•ื“ ื—ื›ืžื™ื
04:21
who are arguing that we've reached the end of growth,
85
261378
5019
ืฉื˜ื•ืขื ื™ื ืฉื”ื’ืขื ื• ืœืงืฅ ื”ืฆืžื™ื—ื”,
04:26
but to understand the future of growth,
86
266397
3558
ืืš ื‘ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืขืชื™ื“ ืฉืœ ื”ืฆืžื™ื—ื”,
04:29
we need to make predictions
87
269955
2683
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœื‘ืฆืข ืชื—ื–ื™ื•ืช
04:32
about the underlying drivers of growth.
88
272638
3290
ืขืœ ื’ื•ืจืžื™ ื”ืฆืžื™ื—ื” ืฉืžืชื—ืช ืœืคื ื™ ื”ืฉื˜ื—.
04:35
I'm optimistic, because the new machine age
89
275928
3806
ืื ื™ ืื•ืคื˜ื™ืžื™, ืžืฉื•ื ืฉืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉ
04:39
is digital, exponential and combinatorial.
90
279734
5030
ื”ื•ื ื“ื™ื’ื™ื˜ืœื™, ืžืขืจื™ื›ื™ ื•ืงื•ืžื‘ื™ื ื˜ื•ืจื™.
04:44
When goods are digital, they can be replicated
91
284764
2264
ื›ืืฉืจ ืกื—ื•ืจื•ืช ื”ืŸ ื“ื™ื’ื™ื˜ืœื™ื•ืช, ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ืฉืชื›ืคืœ
04:47
with perfect quality at nearly zero cost,
92
287028
4509
ื‘ืื™ื›ื•ืช ืžื•ืฉืœืžืช ื•ื‘ืขืœื•ืช ื›ืžืขื˜ ืืคืกื™ืช,
04:51
and they can be delivered almost instantaneously.
93
291537
4018
ื•ื”ืŸ ื™ื›ื•ืœื•ืช ืœื”ื™ืฉืœื— ื›ืžืขื˜ ื‘ื‘ืช ืื—ืช.
04:55
Welcome to the economics of abundance.
94
295555
2800
ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœื›ืœื›ืœืช ื”ืฉืคืข.
04:58
But there's a subtler benefit to the digitization of the world.
95
298355
3690
ืื‘ืœ ื™ืฉ ื™ืชืจื•ืŸ ืงืœ ื™ื•ืชืจ ืœื“ื™ื’ื™ื˜ืฆื™ื” ืฉืœ ื”ืขื•ืœื.
05:02
Measurement is the lifeblood of science and progress.
96
302045
4600
ืžื“ื™ื“ื•ืช ื”ืŸ ืกื ื”ื—ื™ื™ื ืฉืœ ื”ืžื“ืข ื•ื”ืงื“ืžื”.
05:06
In the age of big data,
97
306645
2148
ื‘ืขื™ื“ืŸ ืฉืœ ื”ืžื•ืŸ ื ืชื•ื ื™ื,
05:08
we can measure the world in ways we never could before.
98
308793
4286
ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžื“ื•ื“ ืืช ื”ืขื•ืœื ื‘ื“ืจื›ื™ื ืฉืœื ื™ื›ื•ืœื ื• ื‘ืขื‘ืจ.
05:13
Secondly, the new machine age is exponential.
99
313079
4095
ืฉื ื™ืช, ืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉื” ื”ื•ื ืžืขืจื™ื›ื™.
05:17
Computers get better faster than anything else ever.
100
317174
5935
ืžื—ืฉื‘ื™ื ื”ื•ืคื›ื™ื ืœื˜ื•ื‘ื™ื ื™ื•ืชืจ ื•ืžื”ื™ืจื™ื ื™ื•ืชืจ ืžื›ืœ ื“ื‘ืจ ืื—ืจ.
05:23
A child's Playstation today is more powerful
101
323109
3568
ืคืœื™ื™ืกื˜ื™ื™ืฉืŸ ืฉืœ ื™ืœื“ ื›ื™ื•ื ื—ื–ืง ื™ื•ืชืจ
05:26
than a military supercomputer from 1996.
102
326677
4056
ืžืžื—ืฉื‘-ืขืœ ืฆื‘ืื™ ืž-1996.
05:30
But our brains are wired for a linear world.
103
330733
3207
ืืš ื”ืžื•ื— ืฉืœื ื• ืžื•ื›ื•ื•ืŸ ืœืขื•ืœื ืœื™ื ืืจื™.
05:33
As a result, exponential trends take us by surprise.
104
333940
3888
ื›ืชื•ืฆืื” ืžื›ืš, ืžื’ืžื•ืช ืžืขืจื™ื›ื™ื•ืช ืžืคืชื™ืขื•ืช ืื•ืชื ื•.
05:37
I used to teach my students that there are some things,
105
337828
2602
ื”ื™ื™ืชื™ ืžืœืžื“ ืืช ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™ ืฉื™ืฉ ื›ืžื” ื“ื‘ืจื™ื,
05:40
you know, computers just aren't good at,
106
340430
1934
ืืชื ื™ื•ื“ืขื™ื, ืฉืžื—ืฉื‘ื™ื ืœื ื˜ื•ื‘ื™ื ื‘ื”ื,
05:42
like driving a car through traffic.
107
342364
2385
ื›ืžื• ื ื”ื™ื’ื” ื‘ืžื›ื•ื ื™ืช ื‘ืขื•ืžืก ืชื ื•ืขื”.
05:44
(Laughter)
108
344749
2013
(ืฆื—ื•ืง)
05:46
That's right, here's Andy and me grinning like madmen
109
346762
3491
ื–ื” ื ื›ื•ืŸ, ื”ื ื” ืื ื“ื™ ื•ืื ื™ ืฆื•ื—ืงื™ื ื›ืžื• ืžืฉื•ื’ืขื™ื
05:50
because we just rode down Route 101
110
350253
2384
ื‘ื’ืœืœ ืฉื‘ื“ื™ื•ืง ืกื™ื™ืžื ื• ืœื ื”ื•ื’ ื‘ื›ื‘ื™ืฉ 101
05:52
in, yes, a driverless car.
111
352637
3669
ื‘ - ื›ืŸ - ืžื›ื•ื ื™ืช ืœืœื ื ื”ื’.
05:56
Thirdly, the new machine age is combinatorial.
112
356306
2583
ืฉืœื™ืฉื™ืช, ืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉ ื”ื•ื ืงื•ืžื‘ื™ื ื˜ื•ืจื™.
05:58
The stagnationist view is that ideas get used up,
113
358889
4048
ืจืื™ื™ื” ืžืงื•ื‘ืขืช ื”ื™ื ืฉืจืขื™ื•ื ื•ืช ื”ื•ืคื›ื™ื ืœื”ื™ื•ืช ืžืฉื•ืžืฉื™ื,
06:02
like low-hanging fruit,
114
362937
1856
ื›ืžื• ืคื™ืจื•ืช ื”ืชืœื•ื™ื™ื ื ืžื•ืš,
06:04
but the reality is that each innovation
115
364793
3163
ืืš ื”ืžืฆื™ืื•ืช ื”ื™ื ืฉื›ืœ ื—ื“ืฉื ื•ืช
06:07
creates building blocks for even more innovations.
116
367956
3256
ื™ื•ืฆืจืช ืื‘ื ื™ ื‘ื ื™ื™ืŸ ืืคื™ืœื• ืœืขื•ื“ ื—ื“ืฉื ื•ื™ื•ืช.
06:11
Here's an example. In just a matter of a few weeks,
117
371212
3345
ื”ื ื” ื“ื•ื’ืžื. ืจืง ื‘ืชื•ืš ื›ืžื” ืฉื‘ื•ืขื•ืช,
06:14
an undergraduate student of mine
118
374557
2072
ืกื˜ื•ื“ื ื˜ ืฉืœื™ ืœืชื•ืืจ ืจืืฉื•ืŸ
06:16
built an app that ultimately reached 1.3 million users.
119
376629
4111
ื‘ื ื” ืืคืœื™ืงืฆื™ื” ืฉื”ื’ื™ืขื” ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœ-1.3 ืžื™ืœื™ื•ืŸ ืžืฉืชืžืฉื™ื.
06:20
He was able to do that so easily
120
380740
1699
ื”ื•ื ื™ื›ืœ ืœื‘ืฆืข ื–ืืช ื‘ื›ื–ื• ืงืœื•ืช
06:22
because he built it on top of Facebook,
121
382439
1827
ื‘ื’ืœืœ ืฉื”ื•ื ื‘ื ื” ืื•ืชื” ื‘ืคื™ื™ืกื‘ื•ืง,
06:24
and Facebook was built on top of the web,
122
384266
1933
ื•ืคื™ื™ืกื‘ื•ืง ื‘ื ื•ื™ ืขืœ ื”ืจืฉืช,
06:26
and that was built on top of the Internet,
123
386199
1698
ืฉื ื‘ื ืชื” ืขืœ ื‘ืกื™ืก ื”ืื™ื ื˜ืจื ื˜,
06:27
and so on and so forth.
124
387897
2418
ื•ื›ืŸ ื”ืœืื” ื•ื›ืŸ ื”ืœืื”.
06:30
Now individually, digital, exponential and combinatorial
125
390315
4765
ืขื›ืฉื™ื• ืื™ื ื“ื™ื•ื•ื™ื“ื•ืืœื™ืช, ื“ื™ื’ื™ื˜ืœื™ืช, ืžืขืจื™ื›ื™ืช ื•ืงื•ืžื‘ื™ื ื˜ื•ืจื™ืช
06:35
would each be game-changers.
126
395080
2350
ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœืฉื ื•ืช ืืช ื›ืœืœื™ ื”ืžืฉื—ืง.
06:37
Put them together, and we're seeing a wave
127
397430
2190
ืฉื™ืžื• ืื•ืชื ื‘ื™ื—ื“, ื•ืื ื—ื ื• ืจื•ืื™ื ื’ืœ
06:39
of astonishing breakthroughs,
128
399620
1393
ืฉืœ ืคืจื™ืฆื•ืช ื“ืจืš ืื“ื™ืจื•ืช,
06:41
like robots that do factory work or run as fast as a cheetah
129
401013
3060
ื›ืžื• ืจื•ื‘ื•ื˜ื™ื ืฉืžื‘ืฆืขื™ื ืขื‘ื•ื“ื” ืฉืœ ืžืคืขืœ ืื• ืจืฆื™ื ื‘ืžื”ื™ืจื•ืช ืฉืœ ื‘ืจื“ืœืก
06:44
or leap tall buildings in a single bound.
130
404073
2796
ืื• ืžื–ื ืงื™ื ืขืœ ืžื’ื“ืœื™ื ื’ื‘ื•ื”ื™ื ื‘ืงืคื™ืฆื” ืื—ืช.
06:46
You know, robots are even revolutionizing
131
406869
2232
ืืชื ื™ื•ื“ืขื™ื, ืจื•ื‘ื•ื˜ื™ื ืืคื™ืœื• ืžื‘ืฆืขื™ื ืžื”ืคื›ื”
06:49
cat transportation.
132
409101
1829
ื‘ืชื—ื‘ื•ืจื” ืœื—ืชื•ืœื™ื.
06:50
(Laughter)
133
410930
2270
(ืฆื—ื•ืง).
06:53
But perhaps the most important invention,
134
413200
2732
ืืš ื›ื ืจืื” ืฉื”ื”ืžืฆืื” ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ,
06:55
the most important invention is machine learning.
135
415932
5065
ื”ื”ืžืฆืื” ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ ื”ื™ื ืœืžื™ื“ื” ืžืžื•ื›ื ืช.
07:00
Consider one project: IBM's Watson.
136
420997
3376
ืœื“ื•ื’ืžื ืคืจื•ื™ืงื˜ ืื—ื“: ื•ื•ื˜ืกื•ืŸ ืฉืœ IBM.
07:04
These little dots here,
137
424373
1589
ื”ื ืงื•ื“ื•ืช ื”ืงื˜ื ื•ืช ื”ืืœื” ื›ืืŸ,
07:05
those are all the champions on the quiz show "Jeopardy."
138
425962
4860
ื›ื•ืœืŸ ื”ืŸ ืืœื•ืคื™ื ื‘ืฉืขืฉื•ืขื•ืŸ "ื’'ืื•ืคืจื“ื™" ("ืกื™ื›ื•ืŸ").
07:10
At first, Watson wasn't very good,
139
430822
2544
ื‘ื”ืชื—ืœื”, "ื•ื•ื˜ืกื•ืŸ" ืœื ื”ื™ื” ื˜ื•ื‘ ื›ืœ ื›ืš,
07:13
but it improved at a rate faster than any human could,
140
433366
5622
ืืš ื”ื•ื ื”ืฉืชืคืจ ื‘ืฉื™ืขื•ืจ ืžื”ื™ืจ ื™ื•ืชืจ ืžืืฉืจ ื›ืœ ื‘ืŸ-ืื ื•ืฉ ื™ื›ื•ืœ ื”ื™ื”,
07:18
and shortly after Dave Ferrucci showed this chart
141
438988
2687
ื•ื–ืžืŸ ืงืฆืจ ืื—ืจื™ ืฉื“ื™ื™ื‘ ืคืจื•ืฆ'ื™ ื”ืจืื” ืืช ื”ืชืจืฉื™ื ืฉืœื•
07:21
to my class at MIT,
142
441675
1652
ืœื›ื™ืชื” ืฉืœื™ ื‘-MIT
07:23
Watson beat the world "Jeopardy" champion.
143
443327
3542
"ื•ื•ื˜ืกื•ืŸ" ื”ื‘ื™ืก ืืช ืืœื•ืฃ ื”ืขื•ืœื ื‘"ื’'ืื•ืคืจื“ื™".
07:26
At age seven, Watson is still kind of in its childhood.
144
446869
3989
ื‘ื’ื™ืœ ืฉื‘ืข, "ื•ื•ื˜ืกื•ืŸ" ืขื“ื™ื™ืŸ ื ืžืฆื ื‘ืกื•ื’ ืฉืœ ื™ืœื“ื•ืช.
07:30
Recently, its teachers let it surf the Internet unsupervised.
145
450858
5318
ืœืื—ืจื•ื ื”, ื”ืžื•ืจื™ื ืฉืœื• ืื™ืคืฉืจื• ืœื• ืœื’ืœื•ืฉ ื‘ืื™ื ื˜ืจื ื˜ ืœืœื ื”ืฉื’ื—ื”.
07:36
The next day, it started answering questions with profanities.
146
456176
5946
ื‘ื™ื•ื ืœืžื—ืจืช, ื”ื•ื ื”ื—ืœ ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ืขื ื ื™ื‘ื•ืœื™ ืคื”.
07:42
Damn. (Laughter)
147
462122
2274
ืœืขื–ืื–ืœ! (ืฆื—ื•ืง).
07:44
But you know, Watson is growing up fast.
148
464396
2280
ืื‘ืœ ืืชื ื™ื•ื“ืขื™ื, "ื•ื•ื˜ืกื•ืŸ" ื’ื“ืœ ืžื”ืจ.
07:46
It's being tested for jobs in call centers, and it's getting them.
149
466676
4212
ื”ื•ื ื ื‘ื—ืŸ ืœืžืฉืจื•ืช ื‘ืžื•ืงื“ื™ื ื˜ืœืคื•ื ื™ื, ื•ื”ื•ื ืžืชืงื‘ืœ ืืœื™ื”ืŸ.
07:50
It's applying for legal, banking and medical jobs,
150
470888
3724
ื”ื•ื ืžื’ื™ืฉ ืžื•ืขืžื“ื•ื™ื•ืช ืœืžืฉืจื•ืช ื‘ืชื—ื•ื ื”ืžืฉืคื˜ื™ื, ื”ื‘ื ืงืื•ืช ื•ื”ื‘ืจื™ืื•ืช,
07:54
and getting some of them.
151
474612
1950
ื•ื”ื•ื ืžืชืงื‘ืœ ืœื—ืœืง ืžื”ืŸ.
07:56
Isn't it ironic that at the very moment
152
476562
1889
ื”ืื™ืŸ ื–ื” ืื™ืจื•ื ื™ ืฉื‘ื“ื™ื•ืง ื‘ืจื’ืข
07:58
we are building intelligent machines,
153
478451
2234
ืฉืื ื—ื ื• ื‘ื•ื ื™ื ืžื›ื•ื ื•ืช ืชื‘ื•ื ื™ื•ืช,
08:00
perhaps the most important invention in human history,
154
480685
3449
ืื•ืœื™ ื”ื”ืžืฆืื” ื”ื—ืฉื•ื‘ื” ื‘ื™ื•ืชืจ ื‘ื”ื™ืกื˜ื•ืจื™ื” ื”ืื ื•ืฉื™ืช,
08:04
some people are arguing that innovation is stagnating?
155
484134
3975
ื›ืžื” ืื ืฉื™ื ื˜ื•ืขื ื™ื ืฉื”ื—ื“ืฉื ื•ืช ื“ื•ืจื›ืช ื‘ืžืงื•ื?
08:08
Like the first two industrial revolutions,
156
488109
2419
ื›ืžื• ื‘ืฉืชื™ ื”ืžื”ืคื›ื•ืช ื”ืชืขืฉื™ื™ืชื™ื•ืช ื”ืจืืฉื•ื ื•ืช,
08:10
the full implications of the new machine age
157
490528
3134
ื”ื”ืฉืœื›ื•ืช ื”ืžืœืื•ืช ืฉืœ ืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉ
08:13
are going to take at least a century to fully play out,
158
493662
2682
ืฆืคื•ื™ื•ืช ืœืงื—ืช ืœืคื—ื•ืช ืžืื” ืฉื ื” ืœืžืฆื•ืช ืืช ืขืฆืžืŸ,
08:16
but they are staggering.
159
496344
3032
ืื‘ืœ ื”ืŸ ืžื“ื”ื™ืžื•ืช.
08:19
So does that mean we have nothing to worry about?
160
499376
3336
ืื– ื”ืื ื–ื” ืื•ืžืจ ืฉืื™ืŸ ืœื ื• ืžืžื” ืœื“ืื•ื’?
08:22
No. Technology is not destiny.
161
502712
3680
ืœื, ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ืœื ื”ื™ืขื•ื“ ืฉืœื ื•.
08:26
Productivity is at an all time high,
162
506392
2569
ื”ืชืคื•ืงื” ื”ื™ื ื‘ืฉื™ื ื›ืœ ื”ื–ืžื ื™ื,
08:28
but fewer people now have jobs.
163
508961
2983
ืื‘ืœ ืœืคื—ื•ืช ืื ืฉื™ื ื”ื™ื•ื ื™ืฉ ืขื‘ื•ื“ื”.
08:31
We have created more wealth in the past decade than ever,
164
511944
3120
ื™ืฆืจื ื• ื™ื•ืชืจ ืขื•ืฉืจ ื‘ืขืฉื•ืจ ื”ืงื•ื“ื ืžืื– ื•ืžืขื•ืœื,
08:35
but for a majority of Americans, their income has fallen.
165
515064
3904
ืืš ืœืจื•ื‘ ื”ืืžืจื™ืงื ื™ื, ื”ื”ื›ื ืกื” ืฉืœื”ื ืฆื ื—ื”.
08:38
This is the great decoupling
166
518968
2312
ื–ื”ื• ื”ื ื™ืชื•ืง ื”ื’ื“ื•ืœ
08:41
of productivity from employment,
167
521280
2976
ืฉืœ ื”ืชืคื•ืงื” ืžื”ืขื‘ื•ื“ื”,
08:44
of wealth from work.
168
524256
3104
ืื• ืฉืœ ืขื•ืฉืจ ืžืขื‘ื•ื“ื”.
08:47
You know, it's not surprising that millions of people
169
527360
2346
ืืชื ื™ื•ื“ืขื™ื, ื–ื” ืœื ืžืคืชื™ืข ืฉืžื™ืœื™ื•ื ื™ ืื ืฉื™ื
08:49
have become disillusioned by the great decoupling,
170
529706
2846
ื”ื•ืœื›ื• ืฉื•ืœืœ ื›ืชื•ืฆืื” ืžื”ื ื™ืชื•ืง ื”ื’ื“ื•ืœ ื”ื–ื”
08:52
but like too many others,
171
532552
1747
ืืš ื‘ื“ื•ืžื” ืœื™ื•ืชืจ ืžื“ื™ ืื—ืจื™ื,
08:54
they misunderstand its basic causes.
172
534299
3097
ื”ื ืœื ืžื‘ื™ื ื™ื ืืช ื”ืกื™ื‘ื•ืช ื”ื‘ืกื™ืกื™ื•ืช ืœื›ืš.
08:57
Technology is racing ahead,
173
537396
2610
ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื˜ืกื” ืงื“ื™ืžื”,
09:00
but it's leaving more and more people behind.
174
540006
3550
ืืš ื”ื™ื ืžื•ืชื™ืจื” ื™ื•ืชืจ ื•ื™ื•ืชืจ ืื ืฉื™ื ืžืื—ื•ืจ.
09:03
Today, we can take a routine job,
175
543556
3519
ื”ื™ื•ื, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืงื—ืช ืขื‘ื•ื“ื” ืฉื’ืจืชื™ืช,
09:07
codify it in a set of machine-readable instructions,
176
547075
3091
ืœืงื•ื“ื“ ืื•ืชื” ื‘ืกื“ืจื” ืฉืœ ื”ื•ืจืื•ืช ื”ื ื™ืชื ื•ืช ืœืงืจื™ืื” ืขืœ-ื™ื“ื™ ืžื—ืฉื‘,
09:10
and then replicate it a million times.
177
550166
2827
ื•ืื– ืœืฉื›ืคืœ ืื•ืชื” ืžื™ืœื™ื•ืŸ ืคืขืžื™ื.
09:12
You know, I recently overheard a conversation
178
552993
2279
ืืชื ื™ื•ื“ืขื™ื, ืœืื—ืจื•ื ื” ืฉืžืขืชื™ ืฉื™ื—ื”
09:15
that epitomizes these new economics.
179
555272
1952
ืฉืžื’ืœืžืช ื‘ืชื•ื›ื” ืืช ื”ื›ืœื›ืœื” ื”ื—ื“ืฉื” ื”ื–ื•.
09:17
This guy says, "Nah, I don't use H&R Block anymore.
180
557224
4197
ื”ื‘ื—ื•ืจ ื”ื”ื•ื ืืžืจ "ื”ื, ืื ื™ ืœื ืžืฉืชืžืฉ ื‘-H&R ื‘ืœื•ืง ื™ื•ืชืจ (ื—ื‘ืจื” ืœื”ื›ื ืช ื˜ืคืกื™ ืžืก ื‘ืืจื”"ื‘),
09:21
TurboTax does everything that my tax preparer did,
181
561421
2448
TurboTax ืขื•ืฉื” ื›ืœ ืžื” ืฉืžื›ื™ืŸ ื”ืžืก ืฉืœื™ ืขืฉื”,
09:23
but it's faster, cheaper and more accurate."
182
563869
4558
ืื‘ืœ ื–ื” ืžื”ื™ืจ ื™ื•ืชืจ, ื–ื•ืœ ื™ื•ืชืจ, ื•ืžื“ื•ื™ืง ื™ื•ืชืจ".
09:28
How can a skilled worker
183
568427
1799
ืื™ืš ืขื•ื‘ื“ืช ืžื™ื•ืžื ืช
09:30
compete with a $39 piece of software?
184
570226
3009
ืžืชื—ืจื” ืขื ืชื•ื›ื ื” ืฉืขื•ืœื” 39$?
09:33
She can't.
185
573235
1967
ื”ื™ื ืœื ื™ื›ื•ืœื”.
09:35
Today, millions of Americans do have faster,
186
575202
2780
ื”ื™ื•ื, ืžื™ืœื™ื•ื ื™ ืืžืจื™ืงื ื™ื ืžื›ื™ื ื™ื ื˜ืคืกื™ ืžืก
09:37
cheaper, more accurate tax preparation,
187
577982
2387
ืžื”ืจ ื™ื•ืชืจ, ื–ื•ืœ ื™ื•ืชืจ ื•ืžื“ื•ื™ืง ื™ื•ืชืจ,
09:40
and the founders of Intuit
188
580369
1486
ื•ื”ืžื™ื™ืกื“ื™ื ืฉืœ ืื™ื ื˜ื•ืื™ื˜
09:41
have done very well for themselves.
189
581855
2493
ืขืฉื• ื˜ื•ื‘ ืžืื•ื“ ืœื‘ื™ืชื.
09:44
But 17 percent of tax preparers no longer have jobs.
190
584348
4214
ืื‘ืœ ืœ-17% ืžืžื›ื™ื ื™ ื”ืžืก ืื™ืŸ ื™ื•ืชืจ ืขื‘ื•ื“ื”.
09:48
That is a microcosm of what's happening,
191
588562
2078
ื–ื”ื• ืžื™ืงืจื•ืงื•ืกืžื•ืก ืฉืœ ืžื” ืฉืงื•ืจื”,
09:50
not just in software and services, but in media and music,
192
590640
4677
ืœื ืจืง ื‘ืชื•ื›ื ื” ื•ืฉื™ืจื•ืชื™ื, ืื‘ืœ ื’ื ื‘ืžื“ื™ื” ื•ื‘ืžื•ืกื™ืงื”,
09:55
in finance and manufacturing, in retailing and trade --
193
595317
3686
ื‘ืคื™ื ื ืกื™ื ื•ื‘ืชืขืฉื™ื™ื”, ื‘ืงืžืขื•ื ืื•ืช ื•ืžืกื—ืจ -
09:59
in short, in every industry.
194
599003
3895
ื‘ืงืฆืจื”, ื‘ื›ืœ ืชืขืฉื™ื™ื”.
10:02
People are racing against the machine,
195
602898
3095
ืื ืฉื™ื ืžืชื—ืจื™ื ื ื’ื“ ื”ืžื›ื•ื ื•ืช,
10:05
and many of them are losing that race.
196
605993
3090
ื•ืจื‘ื™ื ืžื”ื ืžืคืกื™ื“ื™ื ื‘ืžื™ืจื•ืฅ.
10:09
What can we do to create shared prosperity?
197
609083
3886
ืžื” ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ื›ื“ื™ ืœื™ืฆื•ืจ ืฉื’ืฉื•ื’ ืžืฉื•ืชืฃ?
10:12
The answer is not to try to slow down technology.
198
612969
3017
ื”ืชืฉื•ื‘ื” ื”ื™ื ืœื ืœื ืกื•ืช ืœื”ืื˜ ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
10:15
Instead of racing against the machine,
199
615986
2557
ื‘ืžืงื•ื ืœื”ืชื—ืจื•ืช ื ื’ื“ ื”ืžื›ื•ื ื•ืช,
10:18
we need to learn to race with the machine.
200
618543
3677
ืขืœื™ื ื• ืœืœืžื•ื“ ืœื”ืชื—ืจื•ืช ื‘ื™ื—ื“ ืขื ื”ืžื›ื•ื ื•ืช.
10:22
That is our grand challenge.
201
622220
3129
ื–ื”ื• ื”ืืชื’ืจ ื”ื’ื“ื•ืœ ืฉืœื ื•.
10:25
The new machine age
202
625349
2324
ืขื™ื“ืŸ ื”ืžื›ื•ื ื” ื”ื—ื“ืฉ
10:27
can be dated to a day 15 years ago
203
627673
3113
ื”ื—ืœ ืœืคื ื™ ื›-15 ืฉื ื”
10:30
when Garry Kasparov, the world chess champion,
204
630786
2878
ื›ืืฉืจ ื’ืืจื™ ืงืกืคืืจื•ื‘, ืืœื•ืฃ ื”ืขื•ืœื ื‘ืฉื—ืžื˜,
10:33
played Deep Blue, a supercomputer.
205
633664
3706
ืฉื™ื—ืง ืžื•ืœ "ื›ื—ื•ืœ ืขืžื•ืง", ืžื—ืฉื‘-ืขืœ.
10:37
The machine won that day,
206
637370
2012
ื”ืžื—ืฉื‘ ื ื™ืฆื— ื‘ืื•ืชื• ื”ื™ื•ื,
10:39
and today, a chess program running on a cell phone
207
639382
2968
ื•ื›ื™ื•ื, ืชื•ื›ื ืช ืžื—ืฉื‘ ืฉืžืจื™ืฅ ื˜ืœืคื•ืŸ ืกืœื•ืœืจื™
10:42
can beat a human grandmaster.
208
642350
2296
ื™ื›ื•ืœ ืœื”ื‘ื™ืก ืจื‘-ืืžืŸ ืื ื•ืฉื™.
10:44
It got so bad that, when he was asked
209
644646
3365
ื–ื” ื›ืœ ื›ืš ืจืข, ืฉื›ืฉื”ื•ื ื ืฉืืœ
10:48
what strategy he would use against a computer,
210
648011
2563
ื‘ืื™ื–ื• ืืกื˜ืจื˜ื’ื™ื” ื”ื•ื ืฆืจื™ืš ืœื”ืฉืชืžืฉ ื ื’ื“ ื”ืžื—ืฉื‘,
10:50
Jan Donner, the Dutch grandmaster, replied,
211
650574
4016
ื™ืืŸ ื“ื•ื ืจ, ื”ืจื‘-ืืžืŸ ื”ื”ื•ืœื ื“ื™, ืขื ื” -
10:54
"I'd bring a hammer."
212
654590
1771
"ื”ื™ื™ืชื™ ืžื‘ื™ื ืคื˜ื™ืฉ".
10:56
(Laughter)
213
656361
3680
(ืฆื—ื•ืง).
11:00
But today a computer is no longer the world chess champion.
214
660041
4544
ืื‘ืœ ื”ื™ื•ื ืžื—ืฉื‘ ื”ื•ื ืœื ืืœื•ืฃ ื”ืขื•ืœื ื‘ืฉื—-ืžื˜ ื™ื•ืชืจ.
11:04
Neither is a human,
215
664585
2654
ื’ื ืœื ื‘ืŸ-ืื ื•ืฉ,
11:07
because Kasparov organized a freestyle tournament
216
667239
3579
ื‘ื’ืœืœ ืฉืงืกืคืืจื•ื‘ ืืจื’ืŸ ื˜ื•ืจื ื™ืจ ื‘ืกื’ื ื•ืŸ ื—ื•ืคืฉื™
11:10
where teams of humans and computers
217
670818
1916
ืฉื‘ื• ืงื‘ื•ืฆื” ืฉืœ ืื ืฉื™ื ื•ืžื—ืฉื‘ื™ื
11:12
could work together,
218
672734
2099
ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ื‘ื™ื—ื“,
11:14
and the winning team had no grandmaster,
219
674833
3157
ื•ืœืงื‘ื•ืฆื” ื”ืžื ืฆื—ืช ืื™ืŸ ืจื‘-ืืžืŸ,
11:17
and it had no supercomputer.
220
677990
2465
ื•ืœื ืžื—ืฉื‘-ืขืœ.
11:20
What they had was better teamwork,
221
680455
4175
ืžื” ืฉื”ื™ื” ืœื”ื ื–ื• ืขื‘ื•ื“ืช ืฆื•ื•ืช ื˜ื•ื‘ื” ื™ื•ืชืจ,
11:24
and they showed that a team of humans and computers,
222
684630
5016
ื•ื”ื ื”ืจืื• ืฉืงื‘ื•ืฆื” ืฉืœ ืื ืฉื™ื ื•ืžื—ืฉื‘ื™ื,
11:29
working together, could beat any computer
223
689646
3048
ืฉืขื•ื‘ื“ื™ื ื™ื—ื“, ื™ื›ื•ืœื™ื ืœื”ื‘ื™ืก ื›ืœ ืžื—ืฉื‘
11:32
or any human working alone.
224
692694
3520
ืื• ื›ืœ ืื“ื ืฉืขื•ื‘ื“ ืœื‘ื“.
11:36
Racing with the machine
225
696214
1664
ื”ืชื—ืจื•ืช ืขื ื”ืžื›ื•ื ื”
11:37
beats racing against the machine.
226
697878
2343
ืžื ืฆื—ืช ืชื—ืจื•ืช ื ื’ื“ ื”ืžื›ื•ื ื”.
11:40
Technology is not destiny.
227
700221
2564
ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื ืœื ื™ืขื•ื“.
11:42
We shape our destiny.
228
702785
1742
ืื ื—ื ื• ืžืขืฆื‘ื™ื ืืช ื”ื™ืขื•ื“ ืฉืœื ื•.
11:44
Thank you.
229
704527
1447
ืชื•ื“ื”.
11:45
(Applause)
230
705974
5016
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื).
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7