Erik Brynjolfsson: The key to growth? Race with the machines

152,189 views ・ 2013-04-23

TED


μ•„λž˜ μ˜λ¬Έμžλ§‰μ„ λ”λΈ”ν΄λ¦­ν•˜μ‹œλ©΄ μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€.

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
λ²ˆμ—­: K Bang κ²€ν† : Seung Hyun Kim
00:12
Growth is not dead.
1
12605
2272
μ„±μž₯은 죽지 μ•Šμ•˜μŠ΅λ‹ˆλ‹€
00:14
(Applause)
2
14877
1386
(λ°•μˆ˜)
00:16
Let's start the story 120 years ago,
3
16263
3963
120λ…„ μ „μœΌλ‘œ 거슬러 μ˜¬λΌκ°€ 보죠.
00:20
when American factories began to electrify their operations,
4
20226
3632
미ꡭ의 곡μž₯듀이 μ „κΈ° 가동 방식을 μ‚¬μš©ν•˜κΈ° μ‹œμž‘ν–ˆκ³ 
00:23
igniting the Second Industrial Revolution.
5
23858
3344
제 2μ°¨ μ‚°μ—… 혁λͺ…μ˜ 뢈이 λΆ™μ—ˆμŠ΅λ‹ˆλ‹€.
00:27
The amazing thing is
6
27202
1111
λ†€λΌμš΄ 일은,
00:28
that productivity did not increase in those factories
7
28313
2777
이 곡μž₯λ“€μ˜ 생산성이 30λ…„ λ™μ•ˆ μ¦κ°€ν•˜μ§€ μ•Šμ•˜λ‹€λŠ” κ²λ‹ˆλ‹€.
00:31
for 30 years. Thirty years.
8
31090
3256
무렀 30λ…„ λ™μ•ˆμ΄μš”.
00:34
That's long enough for a generation of managers to retire.
9
34346
3474
ν•œ μ„ΈλŒ€μ˜ κ²½μ˜μžλ“€μ΄ μ€ν‡΄ν•˜κΈ°μ— μΆ©λΆ„ν•œ μ‹œκ°„μž…λ‹ˆλ‹€.
00:37
You see, the first wave of managers
10
37820
2222
초기 μ„ΈλŒ€μ˜ κ²½μ˜μžλ“€μ€
00:40
simply replaced their steam engines with electric motors,
11
40042
3417
λ‹¨μˆœνžˆ 증기 기관을 μ „κΈ° λͺ¨ν„°λ‘œ κ΅μ²΄ν–ˆμ„ 뿐,
00:43
but they didn't redesign the factories to take advantage
12
43459
3010
곡μž₯이 μ „κΈ°κ°€ 가진 μœ μ—°μ„±μ˜ 이점을 μ·¨ν•˜λ„λ‘
00:46
of electricity's flexibility.
13
46469
2341
μž¬κ΅¬μ„±ν•˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.
00:48
It fell to the next generation to invent new work processes,
14
48810
3984
λ”°λΌμ„œ λ‹€μŒ μ„ΈλŒ€κ°€ μƒˆλ‘œμš΄ 곡정을 κ°œλ°œν•˜μ˜€κ³ 
00:52
and then productivity soared,
15
52794
2727
그러자 생산성이 μΉ˜μ†Ÿμ•˜μŠ΅λ‹ˆλ‹€.
00:55
often doubling or even tripling in those factories.
16
55521
3665
두 배둜, 심지어 μ„Έ λ°°κΉŒμ§€ 말이죠.
00:59
Electricity is an example of a general purpose technology,
17
59186
4723
μ „κΈ°λŠ” λ²”μš© 기술의 ν•œ μ˜ˆμž…λ‹ˆλ‹€.
01:03
like the steam engine before it.
18
63909
2230
마치 μ΄μ „μ˜ 증기 κΈ°κ΄€μ²˜λŸΌ 말이죠.
01:06
General purpose technologies drive most economic growth,
19
66139
3416
λ²”μš© κΈ°μˆ μ€ μ΅œμƒμ˜ 경제 μ„±μž₯을 μΌμœΌν‚΅λ‹ˆλ‹€.
01:09
because they unleash cascades of complementary innovations,
20
69555
3454
λ°±μ—΄ μ „κ΅¬λ‚˜ 곡μž₯ μž¬μ„€κ³„μ™€ 같은
01:13
like lightbulbs and, yes, factory redesign.
21
73009
3632
μƒν˜Έ 보완적인 ν˜μ‹ μ„ μ΄‰λ°œμ‹œν‚€κΈ° λ•Œλ¬Έμ΄μ£ .
01:16
Is there a general purpose technology of our era?
22
76641
3610
우리 μ‹œλŒ€μ—λ„ λ²”μš© 기술이 μžˆλ‚˜μš”?
01:20
Sure. It's the computer.
23
80251
2508
λ¬Όλ‘ μž…λ‹ˆλ‹€. 컴퓨터가 μžˆμ§€μš”.
01:22
But technology alone is not enough.
24
82759
2659
κ·ΈλŸ¬λ‚˜ κΈ°μˆ λ§ŒμœΌλ‘œλŠ” μΆ©λΆ„ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
01:25
Technology is not destiny.
25
85418
2766
κΈ°μˆ μ€ 운λͺ…이 μ•„λ‹™λ‹ˆλ‹€.
01:28
We shape our destiny,
26
88184
1580
운λͺ…은 μš°λ¦¬κ°€ λ§Œλ“€μ§€μš”.
01:29
and just as the earlier generations of managers
27
89764
2516
그리고 이전 μ„ΈλŒ€μ˜ κ²½μ˜μžλ“€μ΄
01:32
needed to redesign their factories,
28
92280
2298
곡μž₯을 μƒˆλ‘œ 섀계해야 ν–ˆλ˜ κ²ƒμ²˜λŸΌ
01:34
we're going to need to reinvent our organizations
29
94578
2229
μš°λ¦¬λŠ” 쑰직을 μž¬μ°½μ‘°ν•΄μ•Ό ν•©λ‹ˆλ‹€.
01:36
and even our whole economic system.
30
96807
2555
전체 경제 κ΅¬μ‘°κΉŒμ§€λ„μš”.
01:39
We're not doing as well at that job as we should be.
31
99362
3602
μš°λ¦¬κ°€ 이런 일을 κ·Έλ ‡κ²Œ μž˜ν•˜κ³  μžˆμ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€.
01:42
As we'll see in a moment,
32
102964
1230
곧 보게 λ˜μ‹œκ² μ§€λ§Œ
01:44
productivity is actually doing all right,
33
104194
2722
μƒμ‚°μ„±μ—λŠ” 사싀 λ¬Έμ œκ°€ μ—†μ–΄μš”.
01:46
but it has become decoupled from jobs,
34
106916
3862
κ·ΈλŸ¬λ‚˜ 일자리 창좜과의 연관성을 μƒμ‹€ν–ˆμœΌλ©°
01:50
and the income of the typical worker is stagnating.
35
110778
4419
일반적인 직μž₯인의 μˆ˜μž…μ€ μ •μ²΄λ˜μ–΄ μžˆμŠ΅λ‹ˆλ‹€.
01:55
These troubles are sometimes misdiagnosed
36
115197
2519
μ΄λŸ¬ν•œ λ¬Έμ œλ“€μ€ λ•Œλ‘œ ν˜μ‹ μ˜ ν•œκ³„λΌκ³ 
01:57
as the end of innovation,
37
117716
3712
잘λͺ» νŒλ‹¨λ˜κΈ°λ„ ν•©λ‹ˆλ‹€.
02:01
but they are actually the growing pains
38
121428
2129
κ·ΈλŸ¬λ‚˜ 저와 μ•€λ“œλ₯˜ λ§₯μ•„ν”ΌλŠ”
02:03
of what Andrew McAfee and I call the new machine age.
39
123557
5590
이런 λ¬Έμ œκ°€ 'μƒˆλ‘œμš΄ 기계 μ‹œλŒ€'의 μ„±μž₯톡이라고 μƒκ°ν•©λ‹ˆλ‹€.
02:09
Let's look at some data.
40
129147
1882
λͺ‡ 가지 자료λ₯Ό λ³΄μ‹œμ£ .
02:11
So here's GDP per person in America.
41
131029
2902
μ—¬κΈ° 미ꡭ의 1인당 GDPκ°€ μžˆμŠ΅λ‹ˆλ‹€.
02:13
There's some bumps along the way, but the big story
42
133931
2766
선에 λͺ‡λͺ‡ νŠ€μ–΄λ‚˜μ˜¨ 뢀뢄이 μžˆμ§€λ§Œ
02:16
is you could practically fit a ruler to it.
43
136697
2715
μ „μ²΄μ μœΌλ‘œλŠ” 자둜 잰 λ“―ν•œ μ§μ„ μž…λ‹ˆλ‹€.
02:19
This is a log scale, so what looks like steady growth
44
139412
3276
둜그 좕척이기 λ•Œλ¬Έμ— κΎΈμ€€ν•œ μ„±μž₯처럼 λ³΄μ΄λŠ” 이 μΆ”μ„ΈλŠ”
02:22
is actually an acceleration in real terms.
45
142688
3043
사싀 가속 μ„±μž₯μž…λ‹ˆλ‹€.
02:25
And here's productivity.
46
145731
2160
그리고 μ—¬κΈ° 생산성 μžλ£Œκ°€ μžˆμŠ΅λ‹ˆλ‹€.
02:27
You can see a little bit of a slowdown there in the mid-'70s,
47
147891
2671
λ³΄μ‹œλ‹€μ‹œν”Ό 70λ…„λŒ€ μ€‘λ°˜μ—λŠ” μ €μ‘°ν•œ μ„±μž₯을 λ³Ό 수 μžˆμŠ΅λ‹ˆλ‹€
02:30
but it matches up pretty well with the Second Industrial Revolution,
48
150562
3738
κ·ΈλŸ¬λ‚˜ μ΄λŠ” 곡μž₯μ—μ„œ 곡정을 μ „κΈ°ν™”ν•˜λŠ” 법을 ν„°λ“ν•˜λ˜
02:34
when factories were learning how to electrify their operations.
49
154300
2691
제 2μ°¨ μ‚°μ—…ν˜λͺ… μ‹œκΈ°μ™€ 잘 λ§žμ•„λ–¨μ–΄μ§‘λ‹ˆλ‹€.
02:36
After a lag, productivity accelerated again.
50
156991
4129
정체 뒀에 μƒμ‚°μ„±μ—λŠ” λ‹€μ‹œ 속도가 λΆ™μ—ˆμŠ΅λ‹ˆλ‹€.
02:41
So maybe "history doesn't repeat itself,
51
161120
2571
κ·ΈλŸ¬λ‹ˆ 역사가 λ°˜λ³΅λ˜μ§€ μ•Šμ„μ§€λŠ” λͺ°λΌλ„
02:43
but sometimes it rhymes."
52
163691
2568
λ•Œλ‘œ ν˜•νƒœλŠ” λΉ„μŠ·ν• μ§€λ„ λͺ¨λ₯΄κ² λ„€μš”.
02:46
Today, productivity is at an all-time high,
53
166259
3136
μ˜€λŠ˜λ‚ , 생산성은 μ—­λŒ€ μ΅œκ³ μ‘°μ— μžˆμŠ΅λ‹ˆλ‹€.
02:49
and despite the Great Recession,
54
169395
1977
경제 λŒ€κ³΅ν™©μ—λ„ λΆˆκ΅¬ν•˜κ³ 
02:51
it grew faster in the 2000s than it did in the 1990s,
55
171372
4252
1990λ…„λŒ€λ³΄λ‹€ 2000λ…„λŒ€μ— 더 λΉ λ₯΄κ²Œ μ„±μž₯ν–ˆμŠ΅λ‹ˆλ‹€.
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
56
175624
4136
70λ…„λŒ€λ‚˜ 80λ…„λŒ€λ³΄λ‹€ 더 빨랐던 'κ΄‘λž€μ˜ 1990λ…„λŒ€'λ₯Ό μ œλ‚€ κ±°μ§€μš”.
02:59
It's growing faster than it did during the Second Industrial Revolution.
57
179760
3674
2μ°¨ μ‚°μ—… 혁λͺ… λ‹Ήμ‹œλ³΄λ‹€ 더 λΉ λ₯΄κ²Œ μ„±μž₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
03:03
And that's just the United States.
58
183434
1743
κ²Œλ‹€κ°€ 이것은 λ―Έκ΅­ ν•˜λ‚˜λ₯Ό 예둜 λ“  경우고
03:05
The global news is even better.
59
185177
3248
μ „ 세계적인 μΆ”μ„ΈλŠ” λ”μš± μ’‹μŠ΅λ‹ˆλ‹€.
03:08
Worldwide incomes have grown at a faster rate
60
188425
2360
κ·Ό 10λ…„κ°„μ˜ μ„Έκ³„μ˜ μˆ˜μž…μ€ κ³Όκ±° μ–΄λŠ λ•Œλ³΄λ‹€
03:10
in the past decade than ever in history.
61
190785
2496
λΉ λ₯Έ μ†λ„λ‘œ μ„±μž₯ν–ˆμŠ΅λ‹ˆλ‹€.
03:13
If anything, all these numbers actually understate our progress,
62
193281
5051
사싀 이런 μˆ˜μΉ˜λŠ” μš°λ¦¬κ°€ 이룬 진보λ₯Ό μΆ•μ†Œμ‹œν‚€λŠ” κ²½ν–₯이 μžˆλŠ”λ°,
03:18
because the new machine age
63
198332
1912
그것은 μƒˆλ‘œμš΄ κΈ°κ³„μ˜ μ‹œλŒ€κ°€
03:20
is more about knowledge creation
64
200244
1664
λ‹¨μˆœν•œ 물질적 생산보닀
03:21
than just physical production.
65
201908
2331
지식 μ°½μ‘°λ₯Ό 더 μ€‘μš”μ‹œν•˜κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
03:24
It's mind not matter, brain not brawn,
66
204239
2938
물질이 μ•„λ‹ˆλΌ 정신이고, 체λ ₯이 μ•„λ‹ˆλΌ 지λ ₯이며
03:27
ideas not things.
67
207177
2062
사물이 μ•„λ‹ˆλΌ μ‚¬μƒμž…λ‹ˆλ‹€.
03:29
That creates a problem for standard metrics,
68
209239
2570
μ΄λŠ” κΈ°μ‘΄ 츑정법에 문제λ₯Ό μΌμœΌν‚€λŠ”λ°,
03:31
because we're getting more and more stuff for free,
69
211809
3502
μš°λ¦¬λŠ” 점점 λ§Žμ€ 것듀을 무료둜 μ–»κ³  있기 λ•Œλ¬Έμž…λ‹ˆλ‹€.
03:35
like Wikipedia, Google, Skype,
70
215311
2641
μœ„ν‚€ν”Όλ””μ•„, ꡬ글, μŠ€μΉ΄μ΄ν”„ 같은 것듀 말이죠.
03:37
and if they post it on the web, even this TED Talk.
71
217952
3063
이 TED 강연도 인터넷에 μ˜¬λΌκ°„λ‹€λ©΄ 곡짜둜 λ³Ό 수 μžˆκ² λ„€μš”.
03:41
Now getting stuff for free is a good thing, right?
72
221015
3303
곡짜둜 무언가λ₯Ό μ–»λŠ”λ‹€λŠ” 건 쒋은 μΌμž…λ‹ˆλ‹€, κ·Έλ ‡μ£ ?
03:44
Sure, of course it is.
73
224318
1765
λ§žμŠ΅λ‹ˆλ‹€. λ‹Ήμ—°νžˆ μ’‹μ§€μš”.
03:46
But that's not how economists measure GDP.
74
226083
3868
κ·ΈλŸ¬λ‚˜ κ²½μ œν•™μžλ“€μ΄ GDPλ₯Ό μΈ‘μ •ν•˜λŠ” 방법은 λ‹€λ¦…λ‹ˆλ‹€.
03:49
Zero price means zero weight in the GDP statistics.
75
229951
5592
κ³΅μ§œλΌλŠ” 것은 GDP 톡계에 μ „ν˜€ λ°˜μ˜λ˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
03:55
According to the numbers, the music industry
76
235543
2112
μˆ˜μΉ˜μ— λ”°λ₯΄λ©΄, μŒμ•… μ‚°μ—…μ˜ 규λͺ¨λŠ”
03:57
is half the size that it was 10 years ago,
77
237655
3000
10λ…„μ „μ˜ λ°˜λ°–μ— λ˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.
04:00
but I'm listening to more and better music than ever.
78
240655
3656
κ·ΈλŸ¬λ‚˜ μ €λŠ” κ·Έ μ–΄λŠ λ•Œλ³΄λ‹€ 더 λ§Žμ€, 그리고 더 쒋은 μŒμ•…μ„ λ“£κ³  μžˆμŠ΅λ‹ˆλ‹€.
04:04
You know, I bet you are too.
79
244311
2192
μ—¬λŸ¬λΆ„λ“€λ„ λ§ˆμ°¬κ°€μ§€λΌ μƒκ°ν•©λ‹ˆλ‹€.
04:06
In total, my research estimates
80
246503
2723
제 μ—°κ΅¬μ—μ„œ μΆ”μ •ν•œ λ°”λ‘œλŠ”
04:09
that the GDP numbers miss over 300 billion dollars per year
81
249226
4754
맀년 GDP ν†΅κ³„μ—μ„œ λˆ„λ½λ˜λŠ” 인터넷 μƒμ˜ 무료 μƒν’ˆ 및
04:13
in free goods and services on the Internet.
82
253980
3346
μ„œλΉ„μŠ€μ— λŒ€ν•œ κ°€μΉ˜κ°€ 총 3,000μ–΅ λ‹¬λŸ¬κ°€ λ„˜μŠ΅λ‹ˆλ‹€.
04:17
Now let's look to the future.
83
257326
1789
이제 미래λ₯Ό 생각해 보죠.
04:19
There are some super smart people
84
259115
2263
μ•„μ£Ό λ˜‘λ˜‘ν•œ μ‚¬λžŒ λͺ‡λͺ‡μ€
04:21
who are arguing that we've reached the end of growth,
85
261378
5019
μš°λ¦¬κ°€ μ„±μž₯의 끝에 λ‹€λ‹€λžλ‹€κ³  μ£Όμž₯ν•©λ‹ˆλ‹€.
04:26
but to understand the future of growth,
86
266397
3558
κ·ΈλŸ¬λ‚˜ μ„±μž₯의 미래λ₯Ό μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ”
04:29
we need to make predictions
87
269955
2683
μ„±μž₯의 근본적인 동λ ₯에 λŒ€ν•œ
04:32
about the underlying drivers of growth.
88
272638
3290
μ˜ˆμΈ‘μ„ ν•΄μ•Ό ν•©λ‹ˆλ‹€.
04:35
I'm optimistic, because the new machine age
89
275928
3806
μ €λŠ” λ‚™κ΄€μ μž…λ‹ˆλ‹€. μ™œλƒν•˜λ©΄ μƒˆλ‘œμš΄ κΈ°κ³„μ˜ μ‹œλŒ€λŠ”
04:39
is digital, exponential and combinatorial.
90
279734
5030
디지털이고, κΈ°ν•˜κΈ‰μˆ˜μ μ΄κ³  쑰합적이기 λ•Œλ¬Έμ΄μ£ .
04:44
When goods are digital, they can be replicated
91
284764
2264
디지털 μƒν’ˆμ€ λ¬΄λ£Œμ— κ°€κΉŒμš΄ λΉ„μš©μ—
04:47
with perfect quality at nearly zero cost,
92
287028
4509
μ™„λ²½ν•œ ν’ˆμ§ˆλ‘œ λ³΅μ œν•  수 μžˆμŠ΅λ‹ˆλ‹€.
04:51
and they can be delivered almost instantaneously.
93
291537
4018
거의 μ¦‰κ°μ μœΌλ‘œ 배달될 μˆ˜λ„ μžˆμ§€μš”.
04:55
Welcome to the economics of abundance.
94
295555
2800
ν’μš”μ˜ κ²½μ œμ— μ˜€μ‹  것을 ν™˜μ˜ν•©λ‹ˆλ‹€.
04:58
But there's a subtler benefit to the digitization of the world.
95
298355
3690
그런데 세계가 λ””μ§€ν„Έν™”λ˜λ©΄ λˆˆμ— 잘 띄지 μ•ŠλŠ” 이득이 λ”°λ¦…λ‹ˆλ‹€.
05:02
Measurement is the lifeblood of science and progress.
96
302045
4600
μΈ‘μ •μ΄λž€ κ³Όν•™κ³Ό μ§„λ³΄μ˜ 생λͺ…μ„ μž…λ‹ˆλ‹€.
05:06
In the age of big data,
97
306645
2148
μ˜€λŠ˜λ‚ κ°™μ€, λΉ… λ°μ΄ν„°μ˜ μ‹œλŒ€μ—λŠ”
05:08
we can measure the world in ways we never could before.
98
308793
4286
κ³Όκ±°μ—λŠ” λΆˆκ°€λŠ₯ν–ˆλ˜ λ°©λ²•λ“€λ‘œ 세계λ₯Ό μΈ‘μ •ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
05:13
Secondly, the new machine age is exponential.
99
313079
4095
λ‘λ²ˆμ§Έλ‘œ, μƒˆλ‘œμš΄ 기계 μ‹œλŒ€λŠ” κΈ°ν•˜κΈ‰μˆ˜μ μž…λ‹ˆλ‹€.
05:17
Computers get better faster than anything else ever.
100
317174
5935
μ»΄ν“¨ν„°λŠ” λ‹€λ₯Έ 무엇보닀 빨리 λ°œμ „ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
05:23
A child's Playstation today is more powerful
101
323109
3568
μš”μ¦˜ μ•„μ΄λ“€μ˜ ν”Œλ ˆμ΄μŠ€ν…Œμ΄μ…˜μ€
05:26
than a military supercomputer from 1996.
102
326677
4056
1996λ…„μ˜ κ΅°μ‚¬μš© 슈퍼 컴퓨터보닀 λ›°μ–΄λ‚©λ‹ˆλ‹€.
05:30
But our brains are wired for a linear world.
103
330733
3207
κ·ΈλŸ¬λ‚˜ 우리의 λ‡ŒλŠ” μ§μ„ μ˜ 세계에 λ¬Άμ—¬ 있기 λ•Œλ¬Έμ—
05:33
As a result, exponential trends take us by surprise.
104
333940
3888
μ˜ˆμƒμΉ˜ λͺ»ν•œ κΈ°ν•˜κΈ‰μˆ˜μ  좔세에 깜짝 놀라곀 ν•©λ‹ˆλ‹€.
05:37
I used to teach my students that there are some things,
105
337828
2602
μ €λŠ” μ˜ˆμ „μ— ν•™μƒλ“€μ—κ²Œ μ»΄ν“¨ν„°λŠ”
05:40
you know, computers just aren't good at,
106
340430
1934
λ„μ €νžˆ 잘 ν•  수 μ—†λŠ” 일듀이 μžˆλ‹€κ³  κ°€λ₯΄μ³€μŠ΅λ‹ˆλ‹€..
05:42
like driving a car through traffic.
107
342364
2385
λ§‰νž λ•Œ μš΄μ „ν•˜λŠ” κ²ƒμ²˜λŸΌμš”.
05:44
(Laughter)
108
344749
2013
(μ›ƒμŒ)
05:46
That's right, here's Andy and me grinning like madmen
109
346762
3491
μ—¬κΈ° 앀디와 μ œκ°€ μ •μ‹ λ‚˜κ°„ μ‚¬λžŒμ²˜λŸΌ μ›ƒλŠ” 사진이 μžˆμŠ΅λ‹ˆλ‹€.
05:50
because we just rode down Route 101
110
350253
2384
방금 101번 κ³ μ†λ„λ‘œλ₯Ό 탔기 λ•Œλ¬Έμ΄μ£ .
05:52
in, yes, a driverless car.
111
352637
3669
λ§žμŠ΅λ‹ˆλ‹€, 무인 μžλ™μ°¨λ‘œμš”.
05:56
Thirdly, the new machine age is combinatorial.
112
356306
2583
μ„Έλ²ˆμ§Έλ‘œ, μƒˆλ‘œμš΄ 기계 μ‹œλŒ€λŠ” μ‘°ν•©μ μž…λ‹ˆλ‹€.
05:58
The stagnationist view is that ideas get used up,
113
358889
4048
침체λ₯Ό μ£Όμž₯ν•˜λŠ” 이듀은 μƒˆλ‘œμš΄ 아이디어가 고갈되기 마련이라고 ν•˜μ£ .
06:02
like low-hanging fruit,
114
362937
1856
마치 μ•„μ£Ό μ‰¬μš΄ λͺ©ν‘œλ“€μ²˜λŸΌμš”.
06:04
but the reality is that each innovation
115
364793
3163
κ·ΈλŸ¬λ‚˜ ν˜„μ‹€μ€ 각각의 ν˜μ‹ μœΌλ‘œ 인해
06:07
creates building blocks for even more innovations.
116
367956
3256
더 λ§Žμ€ ν˜μ‹ μ„ μ΄λŒμ–΄ λ‚Ό 바탕이 λ§Œλ“€μ–΄μ§€λŠ” κ²λ‹ˆλ‹€.
06:11
Here's an example. In just a matter of a few weeks,
117
371212
3345
μ—¬κΈ° μ˜ˆμ‹œκ°€ μžˆμŠ΅λ‹ˆλ‹€. 제 학뢀생 제자 ν•˜λ‚˜κ°€
06:14
an undergraduate student of mine
118
374557
2072
뢈과 λͺ‡ μ£Όλ§Œμ—
06:16
built an app that ultimately reached 1.3 million users.
119
376629
4111
ꢁ극적으둜 130만 μ‚¬μš©μžμ— λ‹¬ν•˜λŠ” μ•±(app)을 λ§Œλ“€μ—ˆμŠ΅λ‹ˆλ‹€.
06:20
He was able to do that so easily
120
380740
1699
이런 일을 μ†μ‰½κ²Œ ν•΄λ‚Ό 수 μžˆμ—ˆλ˜ μ΄μœ λŠ”
06:22
because he built it on top of Facebook,
121
382439
1827
앱을 페이슀뢁 상에 λ§Œλ“€μ—ˆκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
06:24
and Facebook was built on top of the web,
122
384266
1933
νŽ˜μ΄μŠ€λΆμ€ 웹상에 λ§Œλ“€μ–΄μ‘Œκ³ ,
06:26
and that was built on top of the Internet,
123
386199
1698
웹은 인터넷상에 λ§Œλ“€μ–΄μ‘Œμ£ .
06:27
and so on and so forth.
124
387897
2418
μ΄λ ‡κ²Œ κ³„μ†λ©λ‹ˆλ‹€.
06:30
Now individually, digital, exponential and combinatorial
125
390315
4765
디지털, μ§€μˆ˜μ„±, 쑰합성은
06:35
would each be game-changers.
126
395080
2350
각각 큰 λ³€ν™”λ₯Ό 주도할 수 μžˆκ² μ§€μš”.
06:37
Put them together, and we're seeing a wave
127
397430
2190
ν•˜μ§€λ§Œ κ²°ν•©μ‹œμΌ°λ”λ‹ˆ κ²½μ•…μŠ€λŸ¬μšΈ μ •λ„λ‘œ 획기적인
06:39
of astonishing breakthroughs,
128
399620
1393
λ°œμ „μ˜ 물결이 λ„λž˜ν–ˆμŠ΅λ‹ˆλ‹€.
06:41
like robots that do factory work or run as fast as a cheetah
129
401013
3060
곡μž₯μ—μ„œ μΌν•˜κ±°λ‚˜ μΉ˜νƒ€λ§ŒνΌ λΉ λ₯΄κ²Œ λ›°λŠ” λ‘œλ΄‡,
06:44
or leap tall buildings in a single bound.
130
404073
2796
ν˜Ήμ€ ν•œλ²ˆμ˜ λ„μ•½μœΌλ‘œ 높은 λΉŒλ”©μ„ λ›°μ–΄λ„˜λŠ” λ‘œλ΄‡μ²˜λŸΌμš”.
06:46
You know, robots are even revolutionizing
131
406869
2232
μ•„μ„Έμš”? λ‘œλ΄‡μ€ 고양이 μš΄μ†‘μ˜
06:49
cat transportation.
132
409101
1829
혁λͺ…κΉŒμ§€ μΌμœΌν‚€κ³  μžˆμŠ΅λ‹ˆλ‹€.
06:50
(Laughter)
133
410930
2270
(μ›ƒμŒ)
06:53
But perhaps the most important invention,
134
413200
2732
κ·ΈλŸ¬λ‚˜ μ•„λ§ˆ κ°€μž₯ μ€‘μš”ν•œ 발λͺ…은,
06:55
the most important invention is machine learning.
135
415932
5065
κ°€μž₯ μ€‘μš”ν•œ 발λͺ…은 기계가 ν•™μŠ΅ν•œλ‹€λŠ” κ²ƒμž…λ‹ˆλ‹€.
07:00
Consider one project: IBM's Watson.
136
420997
3376
IBM의 μ™“μŠ¨(Watson) ν”„λ‘œμ νŠΈλ₯Ό 생각해 λ³΄μ„Έμš”.
07:04
These little dots here,
137
424373
1589
μ—¬κΈ° μž‘μ€ 점듀이 μžˆμŠ΅λ‹ˆλ‹€.
07:05
those are all the champions on the quiz show "Jeopardy."
138
425962
4860
이 점듀은 λͺ¨λ‘ μ œνΌλ””* 의 μš°μŠΉμžλ“€μž…λ‹ˆλ‹€. (Jeopardy: λ―Έκ΅­ 유λͺ… ν€΄μ¦ˆμ‡Ό)
07:10
At first, Watson wasn't very good,
139
430822
2544
μ™“μŠ¨μ˜ 성적은 μ²˜μŒμ—” λ³„λ‘œμ˜€μŠ΅λ‹ˆλ‹€.
07:13
but it improved at a rate faster than any human could,
140
433366
5622
κ·ΈλŸ¬λ‚˜ μ–΄λ–€ 인간보닀 λΉ λ₯΄κ²Œ μ„±μž₯ν–ˆκ³ 
07:18
and shortly after Dave Ferrucci showed this chart
141
438988
2687
데이브 νŽ˜λ£¨μΉ˜κ°€ μ œκ°€ κ°€λ₯΄μΉ˜λŠ” MIT ν•™μƒλ“€μ—κ²Œ
07:21
to my class at MIT,
142
441675
1652
이 차트λ₯Ό 보여 μ€€ 지 μ–Όλ§ˆ μ§€λ‚˜μ§€ μ•Šμ•„
07:23
Watson beat the world "Jeopardy" champion.
143
443327
3542
μ™“μŠ¨μ΄ μ œνΌλ”” 세계 챔피언을 μ΄κ²ΌμŠ΅λ‹ˆλ‹€.
07:26
At age seven, Watson is still kind of in its childhood.
144
446869
3989
μ™“μŠ¨μ€ 7μ‚΄λ‘œ, 아직 μœ λ…„κΈ°μ— μžˆλ‹€κ³  ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
07:30
Recently, its teachers let it surf the Internet unsupervised.
145
450858
5318
졜근 μ™“μŠ¨μ€ μ„ μƒλ‹˜μ˜ 감독 없이 인터넷을 κ²€μƒ‰ν•˜κ²Œ λ˜μ—ˆλŠ”λ°
07:36
The next day, it started answering questions with profanities.
146
456176
5946
κ·Έ λ‹€μŒλ‚ , μš•μ„€μ„ μ„žμ–΄ μ§ˆλ¬Έμ— λŒ€λ‹΅ν•˜κΈ° μ‹œμž‘ν–ˆμ£ .
07:42
Damn. (Laughter)
147
462122
2274
망할. (μ›ƒμŒ)
07:44
But you know, Watson is growing up fast.
148
464396
2280
μ™“μŠ¨μ€ λΉ λ₯΄κ²Œ μ„±μž₯ν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
07:46
It's being tested for jobs in call centers, and it's getting them.
149
466676
4212
μ½œμ„Όν„°μ˜ 업무 심사λ₯Ό λ°›κ³  μ‹€μ œλ‘œ 일자리λ₯Ό λ”°λ‚΄κ³  μžˆμ§€μš”.
07:50
It's applying for legal, banking and medical jobs,
150
470888
3724
μ™“μŠ¨μ€ 법λ₯ , 은행 업무, 의료 λΆ„μ•Όμ—μ„œλ„
07:54
and getting some of them.
151
474612
1950
μ΄λ”°κΈˆμ”© 일자리λ₯Ό 작고 μžˆμ–΄μš”.
07:56
Isn't it ironic that at the very moment
152
476562
1889
인간 역사상 κ°€μž₯ μ€‘μš”ν•œ 발λͺ…일지도 λͺ¨λ₯΄λŠ”
07:58
we are building intelligent machines,
153
478451
2234
지λŠ₯이 νƒ‘μž¬λœ 기계가 λ§Œλ“€μ–΄μ§€λŠ” μ§€κΈˆ,
08:00
perhaps the most important invention in human history,
154
480685
3449
ν•œνŽΈμ—μ„œλŠ” ν˜μ‹ μ΄ 침체되고 μžˆλ‹€κ³ 
08:04
some people are arguing that innovation is stagnating?
155
484134
3975
μ£Όμž₯ν•œλ‹€λŠ” 사싀이 μ•„μ΄λŸ¬λ‹ˆν•˜μ§€ μ•ŠμŠ΅λ‹ˆκΉŒ?
08:08
Like the first two industrial revolutions,
156
488109
2419
처음 두 μ‚°μ—… 혁λͺ…이 κ·Έλž¬λ“―
08:10
the full implications of the new machine age
157
490528
3134
μƒˆλ‘œμš΄ 기계 μ‹œλŒ€μ˜ 영ν–₯은
08:13
are going to take at least a century to fully play out,
158
493662
2682
적어도 ν•œ μ„ΈκΈ°λŠ” κΈ°λ‹€λ €μ•Ό μ˜¨μ „νžˆ λ“œλŸ¬λ‚˜κ² μ§€λ§Œ
08:16
but they are staggering.
159
496344
3032
정말 λ―ΏκΈ° μ–΄λ €μšΈ μ •λ•λ‹ˆλ‹€.
08:19
So does that mean we have nothing to worry about?
160
499376
3336
그러면 μš°λ¦¬λŠ” 아무것도 μ—Όλ €ν•  ν•„μš”κ°€ μ—†μ„κΉŒμš”?
08:22
No. Technology is not destiny.
161
502712
3680
μ•„λ‹™λ‹ˆλ‹€. κΈ°μˆ μ€ 운λͺ…이 μ•„λ‹™λ‹ˆλ‹€.
08:26
Productivity is at an all time high,
162
506392
2569
생산성이 μ—­λŒ€ μ΅œκ³ μ‘°μ— μžˆλŠ”λ°
08:28
but fewer people now have jobs.
163
508961
2983
μ˜ˆμ „μ— λΉ„ν•΄ μΌμžλ¦¬κ°€ μ€„μ—ˆμŠ΅λ‹ˆλ‹€.
08:31
We have created more wealth in the past decade than ever,
164
511944
3120
μ§€λ‚œ 10λ…„ λ™μ•ˆ κ·Έ μ–΄λŠ λ•Œλ³΄λ‹€λ„ λ§Žμ€ λΆ€λ₯Ό μ°½μΆœν–ˆμ§€λ§Œ
08:35
but for a majority of Americans, their income has fallen.
165
515064
3904
λŒ€λ‹€μˆ˜ λ―Έκ΅­μΈλ“€μ˜ μˆ˜μž…μ€ 였히렀 μ€„μ—ˆμŠ΅λ‹ˆλ‹€.
08:38
This is the great decoupling
166
518968
2312
이것은 생산성과 고용,
08:41
of productivity from employment,
167
521280
2976
그리고 뢀와 일자리 κ°„μ˜
08:44
of wealth from work.
168
524256
3104
κ±°λŒ€ν•œ λΉ„λ™μ‘°ν™”μž…λ‹ˆλ‹€.
08:47
You know, it's not surprising that millions of people
169
527360
2346
수백만의 μ‚¬λžŒλ“€μ΄ 이런 λŒ€ 뢄리화에
08:49
have become disillusioned by the great decoupling,
170
529706
2846
점점 더 ν™˜λ©Έμ„ λŠλΌλŠ” 것도 μ–΄λ–»κ²Œ 보면 λ‹Ήμ—°ν•©λ‹ˆλ‹€.
08:52
but like too many others,
171
532552
1747
λ‹€λ₯Έ 이듀이 λ„ˆλ¬΄λ„ ν”νžˆ κ·Έλ ‡λ“―
08:54
they misunderstand its basic causes.
172
534299
3097
기본적인 원인에 λŒ€ν•œ 이해λ₯Ό λͺ» ν•˜κ³  μžˆμ„ λΏμ΄μ§€μš”.
08:57
Technology is racing ahead,
173
537396
2610
과학은 λΉ λ₯Έ μ†λ„λ‘œ μ§„λ³΄ν•˜κ³  μžˆμœΌλ‚˜
09:00
but it's leaving more and more people behind.
174
540006
3550
μ΄λŠ” 점점 더 λ§Žμ€ μ‚¬λžŒλ“€μ„ λ’€μ²˜μ§€κ²Œ ν•©λ‹ˆλ‹€.
09:03
Today, we can take a routine job,
175
543556
3519
μ˜€λŠ˜λ‚ , μš°λ¦¬λŠ” ν‰λ²”ν•œ μž‘μ—…μ„
09:07
codify it in a set of machine-readable instructions,
176
547075
3091
기계가 읽을 수 μžˆλŠ” λͺ…λ ΉμœΌλ‘œ μ½”λ“œ μ²˜λ¦¬ν•΄
09:10
and then replicate it a million times.
177
550166
2827
수백만 번 λ˜ν’€μ΄ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
09:12
You know, I recently overheard a conversation
178
552993
2279
μ €λŠ” μ΅œκ·Όμ— 이 μƒˆλ‘œμš΄ 경제λ₯Ό μ™„λ²½ν•˜κ²Œ 보여 μ£ΌλŠ”
09:15
that epitomizes these new economics.
179
555272
1952
λŒ€ν™”λ₯Ό μš°μ—°νžˆ λ“€μ—ˆμŠ΅λ‹ˆλ‹€.
09:17
This guy says, "Nah, I don't use H&R Block anymore.
180
557224
4197
"λ‚œ 더 이상 H&R 블락을 μ‚¬μš©ν•˜μ§€ μ•Šμ•„. (H&R Block: 미ꡭ의 μ„Έλ¬΄νšŒκ³„λ²•μΈ)
09:21
TurboTax does everything that my tax preparer did,
181
561421
2448
ν„°λ³΄νƒμŠ€(TurboTax) λŠ” 세무사가 ν•˜λ˜ 일을 λ‹€ ν•΄ μ£Όκ±°λ“ .
09:23
but it's faster, cheaper and more accurate."
182
563869
4558
더 λΉ λ₯΄κ²Œ, 더 μ‹Έκ²Œ, 더 μ •ν™•ν•˜κ²Œ 말이야."
09:28
How can a skilled worker
183
568427
1799
μˆ™λ ¨λœ 세무사가 μ–΄λ–»κ²Œ
09:30
compete with a $39 piece of software?
184
570226
3009
39λ‹¬λŸ¬μ§œλ¦¬ μ†Œν”„νŠΈμ›¨μ–΄μ™€ κ²½μŸν•  수 μžˆμ„κΉŒμš”?
09:33
She can't.
185
573235
1967
λͺ»ν•©λ‹ˆλ‹€.
09:35
Today, millions of Americans do have faster,
186
575202
2780
μ˜€λŠ˜λ‚  수백만의 미ꡭ인이 더 λΉ λ₯΄κ³  더 μ‹Έλ©°
09:37
cheaper, more accurate tax preparation,
187
577982
2387
더 μ •ν™•ν•œ μ„ΈκΈˆ 보고 ν”„λ‘œκ·Έλž¨μ„ 가지고 μžˆμŠ΅λ‹ˆλ‹€.
09:40
and the founders of Intuit
188
580369
1486
그리고 인튜이트*의 μ°½λ¦½μžλ“€μ€ (인튜이트: ν„°λ³΄νƒμŠ€ κ°œλ°œμ‚¬)
09:41
have done very well for themselves.
189
581855
2493
μ•„μ£Ό ν›Œλ₯­ν•œ μ„±κ³Όλ₯Ό κ±°λ‘μ—ˆμ£ .
09:44
But 17 percent of tax preparers no longer have jobs.
190
584348
4214
ν•˜μ§€λ§Œ 17%에 이λ₯΄λŠ” 세무사듀이 일자리λ₯Ό μžƒμ—ˆμŠ΅λ‹ˆλ‹€.
09:48
That is a microcosm of what's happening,
191
588562
2078
이것은 μ•žμœΌλ‘œ 일어날 일의 μΆ•μ†ŒνŒμž…λ‹ˆλ‹€.
09:50
not just in software and services, but in media and music,
192
590640
4677
μ†Œν”„νŠΈμ›¨μ–΄μ™€ μ„œλΉ„μŠ€ 뿐만 μ•„λ‹ˆλΌ 미디어와 μŒμ•…,
09:55
in finance and manufacturing, in retailing and trade --
193
595317
3686
재무, μ œμ‘°μ—…, μœ ν†΅κ³Ό 무역 λ“±
09:59
in short, in every industry.
194
599003
3895
λͺ¨λ“  μ‚°μ—…μ—μ„œ λ§μž…λ‹ˆλ‹€.
10:02
People are racing against the machine,
195
602898
3095
μ‚¬λžŒλ“€μ€ 기계와 κ²½μŸν•˜κ³  μžˆμŠ΅λ‹ˆλ‹€.
10:05
and many of them are losing that race.
196
605993
3090
그리고 λ§Žμ€ μ‚¬λžŒλ“€μ΄ κ·Έ κ²½μŸμ—μ„œ μ§€μ§€μš”.
10:09
What can we do to create shared prosperity?
197
609083
3886
μš°λ¦¬κ°€ ν•¨κ»˜ λ²ˆμ˜ν•˜λ €λ©΄ μ–΄λ–»κ²Œ ν•΄μ•Ό ν• κΉŒμš”?
10:12
The answer is not to try to slow down technology.
198
612969
3017
닡은 기술의 속도λ₯Ό λŠ¦μΆ”λŠ” 것이 μ•„λ‹™λ‹ˆλ‹€.
10:15
Instead of racing against the machine,
199
615986
2557
기계와 κ²½μŸν•˜λŠ” λŒ€μ‹ ,
10:18
we need to learn to race with the machine.
200
618543
3677
μš°λ¦¬λŠ” 기계와 ν˜‘λ ₯ν•˜λŠ” 방법을 λ°°μ›Œμ•Ό ν•©λ‹ˆλ‹€.
10:22
That is our grand challenge.
201
622220
3129
이것이 우리의 μ›λŒ€ν•œ κ³Όμ œμ΄μ§€μš”.
10:25
The new machine age
202
625349
2324
μƒˆλ‘œμš΄ 기계 μ‹œλŒ€λŠ”
10:27
can be dated to a day 15 years ago
203
627673
3113
15λ…„ 전에 λ„λž˜ν–ˆλ‹€κ³  ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
10:30
when Garry Kasparov, the world chess champion,
204
630786
2878
세계 체슀 챔피언인 가리 μΉ΄μŠ€νŒŒλ‘œν”„κ°€
10:33
played Deep Blue, a supercomputer.
205
633664
3706
μŠˆνΌμ»΄ν“¨ν„° λ”₯ 블루(Deep Blue)와 κ²¨λ£¨μ—ˆμ„ λ•Œ 말이죠.
10:37
The machine won that day,
206
637370
2012
κ·Έ λ‚  기계가 μŠΉλ¦¬ν–ˆκ³ ,
10:39
and today, a chess program running on a cell phone
207
639382
2968
μ˜€λŠ˜λ‚  ν•Έλ“œν°μ— κΉ”λ¦° 체슀 ν”„λ‘œκ·Έλž¨μ€
10:42
can beat a human grandmaster.
208
642350
2296
인간 κ·Έλžœλ“œλ§ˆμŠ€ν„°λ„ 이길 수 μžˆμŠ΅λ‹ˆλ‹€.
10:44
It got so bad that, when he was asked
209
644646
3365
μ–Όλ§ˆλ‚˜ μ‹¬κ°ν•œκ°€ ν•˜λ©΄, μ–Έμ  κ°€ λ„€λœλž€λ“œμ˜ μ±”ν”Όμ–Έ
10:48
what strategy he would use against a computer,
210
648011
2563
μ–€ λ„λ„ˆκ°€ 컴퓨터λ₯Ό 이기렀면 μ–΄λ–€ μ „λž΅μ„ 써야 ν•˜λƒλŠ”
10:50
Jan Donner, the Dutch grandmaster, replied,
211
650574
4016
μ§ˆλ¬Έμ„ λ°›κ³ μ„œ μ΄λ ‡κ²Œ λŒ€λ‹΅ν–ˆμ„ μ •λ„μž…λ‹ˆλ‹€.
10:54
"I'd bring a hammer."
212
654590
1771
"망치λ₯Ό κ°€μ Έμ™€μ•Όκ² μ§€μš”."
10:56
(Laughter)
213
656361
3680
(μ›ƒμŒ)
11:00
But today a computer is no longer the world chess champion.
214
660041
4544
κ·ΈλŸ¬λ‚˜ 이제 세계 체슀 챔피언은 더 이상 컴퓨터가 μ•„λ‹™λ‹ˆλ‹€.
11:04
Neither is a human,
215
664585
2654
μ‚¬λžŒλ„ μ•„λ‹ˆμ£ .
11:07
because Kasparov organized a freestyle tournament
216
667239
3579
μΉ΄μŠ€νŒŒλ‘œν”„κ°€ 인간과 컴퓨터 간에 νŒ€μ„ 이룰 수 μžˆλŠ”
11:10
where teams of humans and computers
217
670818
1916
ν”„λ¦¬μŠ€νƒ€μΌ λŒ€νšŒλ₯Ό
11:12
could work together,
218
672734
2099
μ‘°μ§ν–ˆκΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€.
11:14
and the winning team had no grandmaster,
219
674833
3157
μŠΉλ¦¬ν•œ νŒ€μ— κ·Έλžœλ“œλ§ˆμŠ€ν„°κ°€ μžˆμ—ˆλ˜ 것도 μ•„λ‹ˆκ³ 
11:17
and it had no supercomputer.
220
677990
2465
슈퍼 컴퓨터도 μ—†μ—ˆμŠ΅λ‹ˆλ‹€.
11:20
What they had was better teamwork,
221
680455
4175
이 νŒ€μ— μžˆμ—ˆλ˜ 것은 λ›°μ–΄λ‚œ νŒ€μ›Œν¬μ˜€μ§€μš”.
11:24
and they showed that a team of humans and computers,
222
684630
5016
이듀은 μ‚¬λžŒκ³Ό 컴퓨터가 ν•¨κ»˜ ν˜‘λ ₯ν•˜λ©΄
11:29
working together, could beat any computer
223
689646
3048
μ„Έμƒμ˜ μ–΄λ–€ μ»΄ν“¨ν„°λ‚˜ μ–΄λ–€ μ‚¬λžŒλ„ 이길 수 μžˆλ‹€λŠ” κ±Έ
11:32
or any human working alone.
224
692694
3520
보여 μ£Όμ—ˆμ£ .
11:36
Racing with the machine
225
696214
1664
기계와 ν˜‘λ ₯ν•˜κ²Œ 되면
11:37
beats racing against the machine.
226
697878
2343
기계와 κ²½μŸν•˜λŠ” 것을 λŠ₯κ°€ν•˜κ²Œ λ©λ‹ˆλ‹€.
11:40
Technology is not destiny.
227
700221
2564
κΈ°μˆ μ€ 운λͺ…이 μ•„λ‹™λ‹ˆλ‹€.
11:42
We shape our destiny.
228
702785
1742
μš°λ¦¬κ°€ 운λͺ…을 λ§Œλ“œλŠ” κ±°μ§€μš”.
11:44
Thank you.
229
704527
1447
κ°μ‚¬ν•©λ‹ˆλ‹€.
11:45
(Applause)
230
705974
5016
(λ°•μˆ˜)
이 μ›Ήμ‚¬μ΄νŠΈ 정보

이 μ‚¬μ΄νŠΈλŠ” μ˜μ–΄ ν•™μŠ΅μ— μœ μš©ν•œ YouTube λ™μ˜μƒμ„ μ†Œκ°œν•©λ‹ˆλ‹€. μ „ 세계 졜고의 μ„ μƒλ‹˜λ“€μ΄ κ°€λ₯΄μΉ˜λŠ” μ˜μ–΄ μˆ˜μ—…μ„ 보게 될 κ²ƒμž…λ‹ˆλ‹€. 각 λ™μ˜μƒ νŽ˜μ΄μ§€μ— ν‘œμ‹œλ˜λŠ” μ˜μ–΄ μžλ§‰μ„ 더블 ν΄λ¦­ν•˜λ©΄ κ·Έκ³³μ—μ„œ λ™μ˜μƒμ΄ μž¬μƒλ©λ‹ˆλ‹€. λΉ„λ””μ˜€ μž¬μƒμ— 맞좰 μžλ§‰μ΄ μŠ€ν¬λ‘€λ©λ‹ˆλ‹€. μ˜κ²¬μ΄λ‚˜ μš”μ²­μ΄ μžˆλŠ” 경우 이 문의 양식을 μ‚¬μš©ν•˜μ—¬ λ¬Έμ˜ν•˜μ‹­μ‹œμ˜€.

https://forms.gle/WvT1wiN1qDtmnspy7