Eric Berlow and Sean Gourley: Mapping ideas worth spreading

71,099 views ・ 2013-09-18

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Mile Živković Lektor: Dejan Vicai
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
Erik Berlou: Ja sam ekolog, a Šon je fizičar
00:15
and we both study complex networks.
1
15623
2108
i obojica proučavamo kompleksne mreže.
00:17
And we met a couple years ago when we discovered
2
17731
1835
Sreli smo se pre nekoliko godina kada smo otkrili
00:19
that we had both given a short TED Talk
3
19566
2000
da smo obojica imali kratak TED govor
00:21
about the ecology of war,
4
21566
2303
o ekologiji rata
00:23
and we realized that we were connected
5
23869
1447
i shvatili smo da smo povezani
00:25
by the ideas we shared before we ever met.
6
25316
2818
idejama koje smo delili pre nego što smo se upoznali.
00:28
And then we thought, you know, there are thousands
7
28134
1556
I onda smo pomislili da postoji hiljade
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
govora, naročito TEDx govora
00:31
that are popping up all over the world.
9
31804
2211
koji nastaju po celom svetu.
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
Kako su oni povezani,
i na šta liči taj globalni razgovor?
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
Šon će vam reći nešto o tome kako smo to uradili.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
Šon Gurli: Upravo tako. Uzeli smo 24 000 TEDx govora
00:43
from around the world, 147 different countries,
14
43525
3046
iz celog sveta, 147 različitih zemalja,
00:46
and we took these talks and we wanted to find
15
46571
2123
uzeli smo ih i pokušali smo da pronađemo
00:48
the mathematical structures that underly
16
48694
2040
matematičke strukture
00:50
the ideas behind them.
17
50734
1722
ideja iza njih.
00:52
And we wanted to do that so we could see how
18
52456
1370
To smo hteli da uradimo kako bismo videli na koji način
00:53
they connected with each other.
19
53826
2053
su povezani jedni sa drugima.
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
Naravno, ako želite da radite nešto poput ovog,
00:57
you need a lot of data.
21
57555
956
biće vam potrebno puno podataka.
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
Podaci koje imate su sa ove sjajne stvari, Jutjuba
01:02
and we can go down and basically pull
23
62197
1768
i u osnovi možemo uzeti
01:03
all the open information from YouTube,
24
63965
2267
sve otvorene informacije sa Jutjuba,
01:06
all the comments, all the views, who's watching it,
25
66232
2349
sve komentare, broj pregleda, ko je gledao te snimke,
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
odakle ih gledaju, šta kažu u komentarima.
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
Ali takođe putem prevođenja govora u tekst, možemo uzeti
01:14
we can pull the entire transcript,
28
74652
2128
ceo transkript
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
i to funkcioniše čak i za ljude sa čudnim akcentom poput mog.
01:19
So we can take their transcript
30
79460
2106
Možemo uzeti njihov transkript
01:21
and actually do some pretty cool things.
31
81566
2098
i zapravo uraditi neke prilično kul stvari.
01:23
We can take natural language processing algorithms
32
83664
2160
Možemo da uzmemo algoritme za obradu prirodnog jezika
01:25
to kind of read through with a computer, line by line,
33
85824
2629
kako bimso na neki način čitali kompjuterom, red po red,
01:28
extracting key concepts from this.
34
88453
2359
izvlačeći glavne koncepte.
01:30
And we take those key concepts and they sort of form
35
90812
2525
Uzimamo te glavne koncepte i na neki način oni formiraju
01:33
this mathematical structure of an idea.
36
93337
3565
matematičku strukturu ideje.
01:36
And we call that the meme-ome.
37
96902
1757
To zovemo mimom.
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
Jednostavno govoreći, mimom je
01:40
is the mathematics that underlies an idea,
39
100810
2426
matematika koja stoji iza ideje
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
i sa njom možemo da napravimo prilično zanimljivu analizu,
01:45
which I want to share with you now.
41
105168
1981
koju želim da sada podelim sa vama.
01:47
So each idea has its own meme-ome,
42
107149
2190
Svaka ideja ima sopstveni mimom
01:49
and each idea is unique with that,
43
109339
1951
i svaka ideja je tako unikatna,
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
ali ideje naravno pozajmljuju jedna od druge,
01:53
they kind of steal sometimes,
45
113778
1184
ponekad kao da kradu,
01:54
and they certainly build on each other,
46
114962
1827
i svakako se unapređuju
01:56
and we can go through mathematically
47
116789
1616
i možemo matematički da prođemo
01:58
and take the meme-ome from one talk
48
118405
1840
i uzmemo mimom iz jednog govora
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
i uporedimo ga sa mimomom iz svakog drugog govora,
02:02
and if there's a similarity between the two of them,
50
122699
1973
i ako postoji sličnost između to dvoje,
02:04
we can create a link and represent that as a graph,
51
124672
3250
možemo da napravimo vezu i prikažemo je grafikonom,
02:07
just like Eric and I are connected.
52
127922
2394
kao što smo povezani Erik i ja.
02:10
So that's theory, that's great.
53
130316
1394
To je teorija, to je sjajno.
02:11
Let's see how it works in actual practice.
54
131710
2526
Hajde da vidimo kako zaista radi u praksi.
02:14
So what we've got here now is the global footprint
55
134236
2788
Ovde imamo globalni otisak
02:17
of all the TEDx Talks over the last four years
56
137024
2293
svih TEDx govora iz protekle 4 godine
02:19
exploding out around the world
57
139317
1550
kako eksplodiraju širom sveta
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
od Njujorka pa sve dole do Novog Zelanda.
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
Ovde smo analizirali gornjih 25% govora
02:28
and we started to see where the connections occurred,
60
148031
2534
i počeli smo da vidimo gde se javljaju veze,
02:30
where they connected with each other.
61
150565
1537
gde su bili povezani jedan sa drugim.
02:32
Cameron Russell talking about image and beauty
62
152102
1874
Kameron Rasel koja priča o izgledu i lepoti
02:33
connected over into Europe.
63
153976
1575
povezana je sa Evropom.
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
Razgovori o Izraelu i Palestini se više šire
02:37
radiating outwards from the Middle East.
65
157963
2255
ka napolju od Srednjeg istoka.
02:40
And we've got something a little broader
66
160218
1298
Imamo nešto malo šire
02:41
like big data with a truly global footprint
67
161516
2156
poput velikih podataka sa stvarno globalnim otiskom
02:43
reminiscent of a conversation
68
163672
2179
koji podseća na razgovor
02:45
that is happening everywhere.
69
165851
2016
koji se dešava svuda.
02:47
So from this, we kind of run up against the limits
70
167867
2173
Odavde smo nekako došli do granica onoga
02:50
of what we can actually do with a geographic projection,
71
170040
2530
što možemo da uradimo sa geografskom projekcijom,
02:52
but luckily, computer technology allows us to go out
72
172570
2052
ali srećom, kompjuterska tehnologija nam dozvoljava da zađemo
02:54
into multidimensional space.
73
174622
1546
u multidimenzionalni prostor.
02:56
So we can take in our network projection
74
176168
1875
Možemo uzeti našu projekciju mreže
02:58
and apply a physics engine to this,
75
178043
1750
i na nju primeniti podlogu za fiziku
02:59
and the similar talks kind of smash together,
76
179793
1885
i slični govori se nekako sudaraju
03:01
and the different ones fly apart,
77
181678
2004
a suprotni odbijaju
03:03
and what we're left with is something quite beautiful.
78
183682
2072
i za posledicu imamo nešto zaista predivno.
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
EB: Hteo bih da naglasim da je svaki čvor jedan govor,
03:08
they're linked if they share similar ideas,
80
188711
2589
povezani su ako imaju slične ideje
03:11
and that comes from a machine reading
81
191300
2084
i to potiče iz mašinskog čitanja
03:13
of entire talk transcripts,
82
193384
2067
transkripta celih govora,
03:15
and then all these topics that pop out,
83
195451
2231
a sve ove teme koje iskaču
03:17
they're not from tags and keywords.
84
197682
1790
nisu ključne reči i oznake.
03:19
They come from the network structure
85
199472
1725
One potiču iz mrežne strukture
03:21
of interconnected ideas. Keep going.
86
201197
2168
povezanih ideja. Nastavi.
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
ŠG: Naravno. Malo sam brzo uleteo u to,
03:25
but he's going to slow me down.
88
205387
1475
ali on će me usporiti.
03:26
We've got education connected to storytelling
89
206862
2034
Imamo obrazovanje povezano sa pričanjem priča,
03:28
triangulated next to social media.
90
208896
1643
u trouglu sa društvenim medijima.
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
Ljudski mozak je, naravno, odmah pored zdravstva,
03:33
which you might expect,
92
213014
1386
što se dalo očekivati,
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
ali takođe imate video igrice, koje su donkele bliske
03:36
as those two spaces interface with each other.
94
216795
2740
jer se ta dva prostora susreću jedan sa drugim.
03:39
But I want to take you into one cluster
95
219535
1535
Hoću da vas povedem do jedne grupe
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
koja mi je naročito bitna, a to je okolina.
03:43
And I want to kind of zoom in on that
97
223938
1493
Hteo bih da zumiram na to
03:45
and see if we can get a little more resolution.
98
225431
2363
i vidim da li možemo dobiti malo više rezolucije.
03:47
So as we go in here, what we start to see,
99
227794
2347
Kako zalazimo tu, opet primenjujemo fizičku podlogu
03:50
apply the physics engine again,
100
230141
1504
na ono što počinjemo da vidimo,
03:51
we see what's one conversation
101
231645
1676
vidimo da se jedan razgovor
03:53
is actually composed of many smaller ones.
102
233321
2560
zapravo sastoji od mnogo manjih.
03:55
The structure starts to emerge
103
235881
1929
Počinje da se javlja struktura
03:57
where we see a kind of fractal behavior
104
237810
2070
tamo gde vidimo fraktalno ponašanje
03:59
of the words and the language that we use
105
239880
1619
reči i jezika koje koristimo
04:01
to describe the things that are important to us
106
241499
1702
da bismo opisali nama bitne stvari
04:03
all around this world.
107
243201
1433
širom sveta.
04:04
So you've got food economy and local food at the top,
108
244634
2332
Ekonomija hrane i lokalna hrana su na vrhu,
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
imate efekat staklene bašte, solarni i nuklearni otpad.
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
Dobijate asortiman manjih razgovora
04:12
each connected to each other through the ideas
111
252316
2301
koji su svi povezani jedan sa drugim kroz ideje
04:14
and the language they share,
112
254617
1301
i jezik koji su im zajednički
04:15
creating a broader concept of the environment.
113
255918
2450
i tako stvaraju širi koncept čovekove okoline.
04:18
And of course, from here, we can go
114
258368
1532
Odavde naravno možemo zumirati
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
i pogledati, u šta to gledaju mladi?
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
Gledaju na tehnologiju energije i nuklearnu fuziju.
04:25
This is their kind of resonance
117
265779
1674
Ovo je njihova vrsta rezonance
04:27
for the conversation around the environment.
118
267453
2406
za razgovor o čovekovoj okolini.
04:29
If we split along gender lines,
119
269859
1899
Ako podelimo ovo na polove
04:31
we can see females resonating heavily
120
271758
1987
možemo videti da žene jako odjekuju
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
sa ekonomijom hrane, ali da ima i nade i optimizma.
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
Ima dosta toga uzbudljivog što ovde možemo uradi
04:39
and I'll throw to Eric for the next part.
123
279872
1762
i sada će Erik nastaviti sa sledećim delom.
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
EB: Da, samo da naglasim,
04:43
you cannot get this kind of perspective
125
283236
1538
ovakvu vrstu perspektive ne možete dobiti
04:44
from a simple tag search on YouTube.
126
284774
3360
jednostavnom pretragom oznaka na Jutjubu.
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
Hajde sada da odzumiramo na ceo globalni razgovor
04:52
out of environment, and look at all the talks together.
128
292322
2534
o okolini i pogledamo sve govore zajedno.
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
Često kada smo suočeni sa ovom količinom sadržaja
04:57
we do a couple of things to simplify it.
130
297783
2431
učinićemo nekoliko stvari da to pojednostavimo.
05:00
We might just say, well,
131
300214
1314
Možda samo kažemo,
05:01
what are the most popular talks out there?
132
301528
2829
pa koji su to najpopularniji govori?
05:04
And a few rise to the surface.
133
304357
1397
Nekoliko ih isplivava na površinu.
05:05
There's a talk about gratitude.
134
305754
1828
Tu je govor o zahvalnosti.
05:07
There's another one about personal health and nutrition.
135
307582
3344
Još jedan o ličnom zdravlju i ishrani.
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
Naravno, mora da postoji i jedan o pornografiji, zar ne?
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
Onda možemo reći, zahvalnost je stvar prošle godine.
05:17
What's trending now? What's the popular talk now?
138
317089
2522
Šta je sada popularno? Koji je govor sada popularan?
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
Možemo videti da je nova, najpopularnija tema u nastajanju -
05:22
is about digital privacy.
140
322932
2666
digitalna privatnost.
05:25
So this is great. It simplifies things.
141
325598
1693
Ovo je sjajno. Pojednostavljuje stvari.
05:27
But there's so much creative content
142
327291
1827
Ali ima toliko kreativnog sadržaja
05:29
that's just buried at the bottom.
143
329118
1921
na samom dnu gomile.
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
Mrzim to. Kako da na površinu dovedemo stvari koje su
05:34
that's maybe really creative and interesting?
145
334357
2458
možda zaista kreativne i zanimljive?
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
Možemo se vratiti na mrežnu strukturu ideja
05:39
to do that.
147
339746
1430
kako bismo to uradili.
05:41
Remember, it's that network structure
148
341176
2114
Setite se, ta mrežna struktura
05:43
that is creating these emergent topics,
149
343290
2268
stvara ove novonastale teme.
05:45
and let's say we could take two of them,
150
345558
1515
Recimo da uzmemo dve takve teme
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
poput gradova i genetike i vidimo da li ima govora
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
koji na kreativan način povezuju ove dve zaista različite discipline.
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
I to je - zapravo, ova vrsta kreativnog remiksa
05:54
is one of the hallmarks of innovation.
154
354964
1840
jedna je od oznaka inovacije.
05:56
Well here's one by Jessica Green
155
356804
1606
Evo jednog sa Džesikom Grin
05:58
about the microbial ecology of buildings.
156
358410
2379
o mikrobiološkoj ekologiji zgrada.
06:00
It's literally defining a new field.
157
360789
2010
Bukvalno se definiše novo polje.
06:02
And we could go back to those topics and say, well,
158
362799
2103
Možemo da se vratimo na te teme i kažemo,
06:04
what talks are central to those conversations?
159
364902
2768
koji govori su ključni za ove razgovore?
06:07
In the cities cluster, one of the most central
160
367670
1690
U grupi o gradovima, jedan od ključnih
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
je govor Miča Joakima o ekološkim gradovima,
06:13
and in the genetics cluster,
162
373312
1720
a u grupi o genetici
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
imamo govor o sintetičkoj biologiji Grega Ventera.
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
Ovo su govori koji povezuju mnogo drugih unutar svoje discipline.
06:21
We could go the other direction and say, well,
165
381578
1843
Možemo otići u drugom pravcu i reći,
06:23
what are talks that are broadly synthesizing
166
383421
2272
koji su govori koji naširoko sintetizuju
06:25
a lot of different kinds of fields.
167
385693
1448
više različitih polja?
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
Da bismo ovo dobili koristili smo merenje ekološke raznovrsnosti.
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
Na primer, govor Stivena Pinkera o istoriji nasilja
06:32
very synthetic.
170
392410
1180
je veoma sintetički.
06:33
And then, of course, there are talks that are so unique
171
393590
2078
Naravno postoje i govori koji su tako unikatni
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
da su u stratosferi, na svom posebnom mestu
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
i to zovemo indeksom Kolin Flenagan.
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
Ako ne znate Kolin, ona je umetnica
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
i pitao sam je: "Kako je to biti
06:45
in the stratosphere of our idea space?"
176
405849
1672
u stratosferi našeg prostora ideja?"
06:47
And apparently it smells like bacon.
177
407521
3255
Izgleda da to miriše kao slanina.
06:50
I wouldn't know.
178
410776
1791
Ne bih znao.
06:52
So we're using these network motifs
179
412567
2248
Koristimo ove motive mreže
06:54
to find talks that are unique,
180
414815
1186
da nađemo unikatne govore,
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
one koji na kreativan način sintetizuju mnogo različitih polja,
06:58
ones that are central to their topic,
182
418711
1659
one koji su bitni za svoju temu
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
i one koji na kreativan način povezuju nepovezana polja.
07:03
Okay? We never would have found those with our obsession
184
423744
2102
U redu? Ovo nikada ne bismo pronašli sa našom opsesijom
07:05
with what's trending now.
185
425846
2313
o tome šta je sada popularno.
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
Ovo sve kreće od arhitekture kompleksnosti,
07:11
or the patterns of how things are connected.
187
431045
2960
od šablona po kojima su stvari povezane.
07:14
SG: So that's exactly right.
188
434005
1625
ŠG: Upravo tako.
07:15
We've got ourselves in a world
189
435630
2479
Zatekli smo se u svetu
07:18
that's massively complex,
190
438109
2044
koji je neverovatno kompleksan
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
i koristimo algoritme kako bismo sve to filtrirali
07:23
so we can navigate through it.
192
443020
1786
i upravljali kroz to.
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
Ovi algoritmi, iako su nekako korisni,
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
takođe su veoma uske primene i mi možemo bolje od toga
07:30
because we can realize that their complexity is not random.
195
450620
2566
jer možemo da shvatimo da njihova kompleksnost nije nasumična.
07:33
It has mathematical structure,
196
453186
1954
Ona ima matematičku strukturu
07:35
and we can use that mathematical structure
197
455140
1803
i možemo iskoristiti tu matematičku strukturu
07:36
to go and explore things like the world of ideas
198
456943
2214
da istražimo stvari poput sveta ideja
07:39
to see what's being said, to see what's not being said,
199
459157
3000
da vidimo šta se govori, šta se ne govori
07:42
and to be a little bit more human
200
462157
1407
i da budemo malo više ljudi
07:43
and, hopefully, a little smarter.
201
463564
1867
i nadam se malo pametniji.
07:45
Thank you.
202
465431
966
Hvala vam.
07:46
(Applause)
203
466397
4220
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7