Eric Berlow and Sean Gourley: Mapping ideas worth spreading

70,988 views ใƒป 2013-09-18

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Seung Hyun Kim ๊ฒ€ํ† : Gemma Lee
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
๋ฒŒ๋กœ์šฐ: ์ €๋Š” ์ƒํƒœํ•™์ž์ด๊ณ  ์…˜์€ ๋ฌผ๋ฆฌํ•™์ž์ž…๋‹ˆ๋‹ค.
00:15
and we both study complex networks.
1
15623
2108
์ €ํฌ๋Š” ๋ณต์žก๊ณ„ ๋„คํŠธ์›Œํฌ๋ฅผ ์—ฐ๊ตฌํ•˜์ฃ .
00:17
And we met a couple years ago when we discovered
2
17731
1835
๋ช‡ ๋…„ ์ „ ์ €ํฌ ๋‘˜ ๋‹ค ์ „์Ÿ์˜ ์ƒํƒœ์— ๊ด€ํ•˜์—ฌ
00:19
that we had both given a short TED Talk
3
19566
2000
์งง๊ฒŒ TED ๊ฐ•์—ฐ์„ ํ–ˆ๋˜ ๊ฒƒ์„ ๊ณ„๊ธฐ๋กœ
00:21
about the ecology of war,
4
21566
2303
์„œ๋กœ ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
00:23
and we realized that we were connected
5
23869
1447
์‹ค์ œ๋กœ ๋งŒ๋‚˜๊ธฐ ์ „๋ถ€ํ„ฐ ๊ฐ™์€ ์ƒ๊ฐ์„
00:25
by the ideas we shared before we ever met.
6
25316
2818
๊ณต์œ ํ•จ์œผ๋กœ์จ ์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ๊นจ๋‹ฌ์•˜์ฃ .
00:28
And then we thought, you know, there are thousands
7
28134
1556
๊ทธ๋ฆฌ๊ณ  ์„ธ์ƒ์— TEDx์™€ ๊ฐ™์€ ๊ฐ•์—ฐ์ด
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
์ˆ˜์ฒœ ๊ฐœ์”ฉ ๋‚˜์˜ค๊ณ  ์žˆ๋Š”๋ฐ
00:31
that are popping up all over the world.
9
31804
2211
์ƒ๊ฐ์ด ๋ฏธ์ณค์Šต๋‹ˆ๋‹ค.
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
์ด ๊ฐ•์—ฐ๋“ค์€ ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์œผ๋ฉฐ
์ „์„ธ๊ณ„ ์‚ฌ๋žŒ๋“ค์€ ์–ด๋–ค ๋Œ€ํ™”๋ฅผ ํ•˜๊ณ  ์žˆ์„๊นŒ์š”?
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
์—ฐ๊ตฌ ๊ณผ์ •์„ ์…˜์ด ์„ค๋ช…ํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
๊ณ ์–ผ๋ฆฌ: ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค. ์ €ํฌ๋Š” ์ „์„ธ๊ณ„ 147๊ฐœ๊ตญ์—์„œ
00:43
from around the world, 147 different countries,
14
43525
3046
24,000๊ฐœ์˜ TEDx ๊ฐ•์—ฐ์„ ๋ฐ”ํƒ•์œผ๋กœ
00:46
and we took these talks and we wanted to find
15
46571
2123
์ฃผ์ œ๋“ค์„ ๋’ท๋ฐ›์นจํ•˜๋Š”
00:48
the mathematical structures that underly
16
48694
2040
์ˆ˜ํ•™์  ๊ตฌ์กฐ๋ฅผ
00:50
the ideas behind them.
17
50734
1722
์ฐพ๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
00:52
And we wanted to do that so we could see how
18
52456
1370
๊ทธ๋ž˜์„œ ๊ฐ๊ฐ์˜ ์•„์ด๋””์–ด๋“ค์ด
00:53
they connected with each other.
19
53826
2053
์„œ๋กœ ์–ด๋–ป๊ฒŒ ์—ฐ๊ฒฐ๋˜๋Š”์ง€ ์•Œ๊ณ  ์‹ถ์—ˆ์Šต๋‹ˆ๋‹ค.
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
์ด๋Ÿฐ ์—ฐ๊ตฌ๋ฅผ ํ•˜๋ ค๋ฉด ๋จผ์ €
00:57
you need a lot of data.
21
57555
956
์ž๋ฃŒ๊ฐ€ ๋งŽ์ด ํ•„์š”ํ•˜์ฃ .
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
์ง€๋ฃŒ๋Š” ์œ ํŠœ๋ธŒ๋ผ๋Š” ๋ฉ‹์ง„ ๊ณณ์—์„œ ๊ตฌํ•ฉ๋‹ˆ๋‹ค.
01:02
and we can go down and basically pull
23
62197
1768
์œ ํŠœ๋ธŒ์—์„œ ๊ณต๊ฐœ๋œ
01:03
all the open information from YouTube,
24
63965
2267
๋ชจ๋“  ์ •๋ณด๋ฅผ ๋ชจ์œผ๋Š” ๊ฑฐ์ฃ .
01:06
all the comments, all the views, who's watching it,
25
66232
2349
๋Œ“๊ธ€, ์กฐํšŒ ๊ธฐ๋ก, ์‹œ์ฒญ์ž์ธต,
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
์‹œ์ฒญ์ž์˜ ์œ„์น˜์™€ ๋Œ“๊ธ€ ๋‚ด์šฉ ์™ธ์—๋„
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
์Œ์„ฑ-ํ…์ŠคํŠธ ๋ณ€ํ™˜์„ ์ด์šฉํ•ด ๋Œ€์‚ฌ ์ „๋ฌธ์„
01:14
we can pull the entire transcript,
28
74652
2128
๊ธฐ๋กํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
์ €์ฒ˜๋Ÿผ ์–ต์–‘์ด ์•ฝ๊ฐ„ ์ด์ƒํ•ด๋„ ์ƒ๊ด€์—†์–ด์š”
01:19
So we can take their transcript
30
79460
2106
์ด๋ ‡๊ฒŒ ์˜์ƒ์„ ๊ธฐ๋กํ•œ ์‚ฌ๋ณธ์œผ๋กœ
01:21
and actually do some pretty cool things.
31
81566
2098
์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์žฌ๋ฏธ์žˆ๋Š” ์ž‘์—…์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
01:23
We can take natural language processing algorithms
32
83664
2160
์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ปดํ“จํ„ฐ๋กœ
01:25
to kind of read through with a computer, line by line,
33
85824
2629
์ด ์‚ฌ๋ณธ์„ ํ•œ ์ค„ ํ•œ ์ค„ ์ฝ์–ด๋‚˜๊ฐ€๋ฉฐ
01:28
extracting key concepts from this.
34
88453
2359
ํ•ต์‹ฌ์ด ๋˜๋Š” ๊ฐœ๋…์„ ๋ฝ‘์•„๋ƒ…๋‹ˆ๋‹ค.
01:30
And we take those key concepts and they sort of form
35
90812
2525
์ด๋ ‡๊ฒŒ ๋ชจ์ธ ๊ฐœ๋…๋“ค์€ ํ•œ ์•„์ด๋””์–ด๋ฅผ ๊ตฌ์„ฑํ•˜๋Š”
01:33
this mathematical structure of an idea.
36
93337
3565
์ˆ˜ํ•™์  ๊ตฌ์กฐ ๊ฐ™์€ ํ˜•ํƒœ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค
01:36
And we call that the meme-ome.
37
96902
1757
์šฐ๋ฆฌ๋Š” ์ด๊ฒƒ์„ ๋ฌธํ™”์  ์œ ์ „์ž๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
๋ฌธํ™”์  ์œ ์ „์ž๋ž€ ๊ฐ„๋‹จํžˆ ๋งํ•ด์„œ
01:40
is the mathematics that underlies an idea,
39
100810
2426
์–ด๋–ค ๊ฐœ๋…์„ ๋’ท๋ฐ›์นจํ•˜๋Š” ์ˆ˜ํ•™์  ์†์„ฑ์ธ๋ฐ
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
์ด๊ฒƒ์œผ๋กœ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ํฅ๋ฏธ๋กœ์šด ๋ถ„์„์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
01:45
which I want to share with you now.
41
105168
1981
์ง€๊ธˆ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๋ณด์—ฌ๋“œ๋ฆฌ๊ณ  ์‹ถ๊ตฐ์š”.
01:47
So each idea has its own meme-ome,
42
107149
2190
๊ฐ๊ฐ์˜ ์•„์ด๋””์–ด๋Š” ๊ณ ์œ ํ•œ ๋ฌธํ™”์  ์œ ์ „์ž๋ฅผ ๊ฐ–๊ณ  ์žˆ๊ณ 
01:49
and each idea is unique with that,
43
109339
1951
๊ฐ ์•„์ด๋””์–ด๋Š” ๋…ํŠนํ•ฉ๋‹ˆ๋‹ค.
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
๊ทธ๋Ÿฌ๋‚˜ ์•„์ด๋””์–ด๋Š” ๋‹ค๋ฅธ ์•„์ด๋””์–ด๋ฅผ ๋นŒ๋ฆฌ๊ธฐ๋„ ํ•˜๊ณ 
01:53
they kind of steal sometimes,
45
113778
1184
ํ›”์ณ์˜ค๊ธฐ๋„ ํ•˜๋ฉฐ
01:54
and they certainly build on each other,
46
114962
1827
์„œ๋กœ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฐœ์ „ํ•˜๊ฒŒ ๋งˆ๋ จ์ž…๋‹ˆ๋‹ค.
01:56
and we can go through mathematically
47
116789
1616
์ˆ˜ํ•™์  ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€
01:58
and take the meme-ome from one talk
48
118405
1840
๊ฐ•์—ฐ ํ•˜๋‚˜์˜ ๋ฌธํ™”์  ์œ ์ „์ž๋ฅผ
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
๋‹ค๋ฅธ ๊ฐ•์—ฐ์˜ ๋ฌธํ™”์  ์œ ์ „์ž์™€ ๋น„๊ตํ–ˆ์„ ๋•Œ
02:02
and if there's a similarity between the two of them,
50
122699
1973
์œ ์‚ฌํ•œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋ฉด
02:04
we can create a link and represent that as a graph,
51
124672
3250
์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ๋งŒ๋“ค์–ด ๊ทธ๋ž˜ํ”„๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
02:07
just like Eric and I are connected.
52
127922
2394
์—๋ฆญ๊ณผ ์ œ๊ฐ€ ์—ฐ๊ฒฐ๋œ ๊ฒƒ์ฒ˜๋Ÿผ์š”.
02:10
So that's theory, that's great.
53
130316
1394
์ผ๋‹จ ์ด๋ก ์€ ์ด๋ ‡์Šต๋‹ˆ๋‹ค.
02:11
Let's see how it works in actual practice.
54
131710
2526
์‹ค์ œ๋กœ ์ ์šฉ๋˜๋ฉด ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ๋ณด์ฃ .
02:14
So what we've got here now is the global footprint
55
134236
2788
์ง€๋‚œ 4๋…„๊ฐ„ ์ „์„ธ๊ณ„์—์„œ ์Ÿ์•„์ ธ๋‚˜์˜จ
02:17
of all the TEDx Talks over the last four years
56
137024
2293
๋ชจ๋“  TEDx ๊ฐ•์—ฐ์˜ ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
02:19
exploding out around the world
57
139317
1550
๋‰ด์š•์—์„œ
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
๊ตฌ์„์— ์žˆ๋Š” ๋‰ด์งˆ๋žœ๋“œ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€์š”.
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
์ƒ์œ„ 25%๋ฅผ ๋ถ„์„ํ•˜์ž
02:28
and we started to see where the connections occurred,
60
148031
2534
์—ฐ๊ฒฐ๊ณ ๋ฆฌ๊ฐ€ ์–ด๋””์„œ ์ผ์–ด๋‚˜์„œ
02:30
where they connected with each other.
61
150565
1537
์–ด๋””์„œ ์„œ๋กœ ์—ฐ๊ฒฐ๋˜๋Š”์ง€ ๋ณด์ด๊ธฐ ์‹œ์ž‘ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:32
Cameron Russell talking about image and beauty
62
152102
1874
์นด๋ฉ”๋ก  ๋Ÿฌ์…€์˜ ์ด๋ฏธ์ง€์™€ ๋ฏธ์— ๊ด€ํ•œ ๊ฐ•์—ฐ์€
02:33
connected over into Europe.
63
153976
1575
์œ ๋Ÿฝ์œผ๋กœ ์—ฐ๊ฒฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
์ด์Šค๋ผ์—˜๊ณผ ํŒ”๋ ˆ์Šคํƒ€์ธ์— ๋Œ€ํ•ด์„œ๋Š”
02:37
radiating outwards from the Middle East.
65
157963
2255
์ค‘๋™์—์„œ ๋งŽ์€ ์ด๋“ค์ด ํ† ๋ก ํ–ˆ๊ตฐ์š”.
02:40
And we've got something a little broader
66
160218
1298
๋น… ๋ฐ์ดํ„ฐ์ฒ˜๋Ÿผ ๋ณด๋‹ค ๊ด‘๋ฒ”์œ„ํ•œ
02:41
like big data with a truly global footprint
67
161516
2156
์ฃผ์ œ๋Š” ์‹ค๋กœ ์ „์„ธ๊ณ„๋ฅผ ๋ˆ„๋ณ์Šต๋‹ˆ๋‹ค.
02:43
reminiscent of a conversation
68
163672
2179
๋งˆ์น˜ ์–ด๋”œ ๊ฐ€๋„ ๋“ค๋ฆฌ๋Š”
02:45
that is happening everywhere.
69
165851
2016
๋Œ€ํ™” ์ฃผ์ œ์ฒ˜๋Ÿผ ๋ง์ž…๋‹ˆ๋‹ค.
02:47
So from this, we kind of run up against the limits
70
167867
2173
์ง€๋„๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€
02:50
of what we can actually do with a geographic projection,
71
170040
2530
๊ฑฐ์˜ ์—ฌ๊ธฐ๊นŒ์ง€๊ฐ€ ํ•œ๊ณ„์ž…๋‹ˆ๋‹ค๋งŒ,
02:52
but luckily, computer technology allows us to go out
72
172570
2052
์ปดํ“จํ„ฐ ๊ธฐ์ˆ  ๋•์— ๋‹ค์ฐจ์›์  ๊ณต๊ฐ„์„ ๋ฐฐ๊ฒฝ์œผ๋กœ
02:54
into multidimensional space.
73
174622
1546
๋” ๋งŽ์€ ๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
02:56
So we can take in our network projection
74
176168
1875
์ด ๋„คํŠธ์›Œํฌ ํˆฌ์‚ฌ๋„์—
02:58
and apply a physics engine to this,
75
178043
1750
๋ฌผ๋ฆฌ์  ๋„๊ตฌ์„ ์ ์šฉํ•˜๋ฉด
02:59
and the similar talks kind of smash together,
76
179793
1885
๋น„์Šทํ•œ ๊ฐ•์—ฐ๋“ค์€ ๊ฐ€๊นŒ์ด ๋ถ™๊ณ 
03:01
and the different ones fly apart,
77
181678
2004
๋‹ค๋ฅธ ๊ฐ•์—ฐ๋“ค์€ ๋ฉ€์–ด์ง‘๋‹ˆ๋‹ค.
03:03
and what we're left with is something quite beautiful.
78
183682
2072
์ด๋ ‡๊ฒŒ ์•„๋ฆ„๋‹ค์šด ๊ตฌ์กฐ๊ฐ€ ํ˜•์„ฑ๋˜์ฃ .
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
๋ฒŒ๋กœ์šฐ: ์—ฌ๊ธฐ ์žˆ๋Š” ๊ต์  ํ•˜๋‚˜ํ•˜๋‚˜๊ฐ€ ๋ชจ๋‘ ๊ฐ•์—ฐ์ด๋ฉฐ
03:08
they're linked if they share similar ideas,
80
188711
2589
๋น„์Šทํ•œ ๊ฐœ๋…์„ ๋‹ค๋ฃจ๋Š” ๊ฒฝ์šฐ๋Š” ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:11
and that comes from a machine reading
81
191300
2084
๊ฐ•์—ฐ ์ „๋ฌธ์„ ์ปดํ“จํ„ฐ๋กœ ์ฝ์–ด๋“ค์—ฌ
03:13
of entire talk transcripts,
82
193384
2067
๋ถ„์„ํ•œ ๊ฒƒ์ด์ฃ .
03:15
and then all these topics that pop out,
83
195451
2231
์ด๋ ‡๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ์ฃผ์ œ๋“ค์€
03:17
they're not from tags and keywords.
84
197682
1790
ํƒœ๊ทธ๋‚˜ ํ‚ค์›Œ๋“œ๋ฅผ ์ข…ํ•ฉํ•ด ์–ป์€ ๊ฒŒ ์•„๋‹ˆ๋ผ
03:19
They come from the network structure
85
199472
1725
์„œ๋กœ ์—ฐ๊ฒฐ๋œ ์•„์ด๋””์–ด๋กœ ์ด๋ฃจ์–ด์ง„
03:21
of interconnected ideas. Keep going.
86
201197
2168
๋„คํŠธ์›Œํฌ์—์„œ ์ฐฝ์ถœ๋œ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ณ„์† ํ•˜์‹œ์ฃ .
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
๊ณ ์–ผ๋ฆฌ: ๋„ค, ์ œ๊ฐ€ ์ข€ ์„ฑ๊ธ‰ํžˆ ์ง„ํ–‰ํ–ˆ๋Š”๋ฐ
03:25
but he's going to slow me down.
88
205387
1475
์—๋ฆญ์ด ์กฐ์ ˆํ•ด ์ค„ ํ…Œ๋‹ˆ ๊ดœ์ฐฎ์•„์š”.
03:26
We've got education connected to storytelling
89
206862
2034
'๊ต์œก' ์€ '์ด์•ผ๊ธฐํ•˜๊ธฐ' ์™€ ์—ฐ๊ฒฐ๋˜์—ˆ๊ณ 
03:28
triangulated next to social media.
90
208896
1643
'์†Œ์…œ๋ฏธ๋””์–ด'์™€ ํ•จ๊ป˜ ์‚ผ๊ฐํ˜•์„ ์ด๋ฃน๋‹ˆ๋‹ค.
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
'์ธ๊ฐ„ ๋‘๋‡Œ'๊ฐ€ '์˜๋ฃŒ' ์˜†์— ์žˆ๋Š” ๊ฒƒ์€
03:33
which you might expect,
92
213014
1386
์ด์ƒํ•˜์ง€ ์•Š์„์ง€ ๋ชจ๋ฅด์ง€๋งŒ
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
'๋น„๋””์˜ค ๊ฒŒ์ž„' ๋„ ์ด ๋‘ ๊ฐ€์ง€๊ฐ€ ๋‹ฟ์•„ ์žˆ๋Š” ์œ„์น˜์—์„œ
03:36
as those two spaces interface with each other.
94
216795
2740
๋ฉ€์ง€ ์•Š์€ ๊ณณ์— ์žˆ์Šต๋‹ˆ๋‹ค.
03:39
But I want to take you into one cluster
95
219535
1535
์ด์ œ ์ง‘์ค‘ํ•  ๊ณณ์€
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
์ œ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•˜๊ฒŒ ์ƒ๊ฐํ•˜๋Š” ํ™˜๊ฒฝ์— ๊ด€๋ จ๋œ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค.
03:43
And I want to kind of zoom in on that
97
223938
1493
๊ทธ์ชฝ ๊ตฐ๋ฝ์„ ํ™•๋Œ€ํ•ด์„œ
03:45
and see if we can get a little more resolution.
98
225431
2363
ํ•ด์ƒ๋„๋ฅผ ์ข€ ๋†’์—ฌ ๋ณด๋„๋ก ํ•˜์ฃ .
03:47
So as we go in here, what we start to see,
99
227794
2347
๊ฐ€๊นŒ์ด ๋‹ค๊ฐ€๊ฐˆ์ˆ˜๋ก ๋“œ๋Ÿฌ๋‚˜๋Š” ๊ฒƒ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
03:50
apply the physics engine again,
100
230141
1504
๋ฌผ๋ฆฌ์  ๋„๊ตฌ๋ฅผ ๋‹ค์‹œ ์ ์šฉํ•˜๋ฉด
03:51
we see what's one conversation
101
231645
1676
ํ•˜๋‚˜์˜ ํ† ๋ก ์ด ์‹ค์€
03:53
is actually composed of many smaller ones.
102
233321
2560
์ˆ˜๋งŽ์€ ์ž‘์€ ํ† ๋ก ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.
03:55
The structure starts to emerge
103
235881
1929
๊ตฌ์กฐ๊ฐ€ ๋“œ๋Ÿฌ๋‚˜๊ธฐ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
03:57
where we see a kind of fractal behavior
104
237810
2070
์„ธ๊ณ„ ๊ฐ์ฒ˜์—์„œ ์ค‘์š”ํ•˜๋‹ค๊ณ  ์—ฌ๊ธฐ๋Š” ๊ฒƒ๋“ค์„
03:59
of the words and the language that we use
105
239880
1619
๋ฌ˜์‚ฌํ•˜๋Š” ๋‹จ์–ด์™€ ํ‘œํ˜„๋“ค์ด ๋ชจ์—ฌ
04:01
to describe the things that are important to us
106
241499
1702
์ผ์ข…์˜ ํ”„๋ž™ํƒˆ ์–‘์ƒ์„
04:03
all around this world.
107
243201
1433
๋ ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:04
So you've got food economy and local food at the top,
108
244634
2332
๋งจ ์œ„์—๋Š” '์‹ํ’ˆ ๊ฒฝ์ œ'์™€ '์ง€์—ญ ์Œ์‹'์ด ์žˆ๋„ค์š”.
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
'์˜จ์‹ค ๊ฐ€์Šค'์™€ 'ํƒœ์–‘์—ด', 'ํ•ต ํ๊ธฐ๋ฌผ'๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
๋ณด๋‹ค ์ž‘์€ ๊ทœ๋ชจ์˜ ํ† ๋ก ๊ณผ ๋Œ€ํ™”๋“ค์ด
04:12
each connected to each other through the ideas
111
252316
2301
๊ณตํ†ต์ ์ธ ๊ฐœ๋…๊ณผ ์–ธ์–ด๋ฅผ ํ†ตํ•ด
04:14
and the language they share,
112
254617
1301
์„œ๋กœ ์—ฐ๊ฒฐ๋˜๋ฉด์„œ
04:15
creating a broader concept of the environment.
113
255918
2450
'ํ™˜๊ฒฝ'์ด๋ผ๋Š” ๊ฐœ๋…์„ ํ™•์žฅ์‹œํ‚ค๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:18
And of course, from here, we can go
114
258368
1532
์—ฌ๊ธฐ์„œ ๋” ์„ธ๋ถ€์ ์œผ๋กœ ๋“ค์–ด๊ฐ€ ๋ณด์ฃ .
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
์ Š์€์ด๋“ค์€ ๋ฌด์—‡์— ๊ด€์‹ฌ์„ ๊ฐ€์ง€๊ณ  ์žˆ์„๊นŒ์š”?
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
์—๋„ˆ์ง€ ๊ธฐ์ˆ ๊ณผ ํ•ต์œตํ•ฉ ๊ด€๋ จ ๋‚ด์šฉ์„ ์‹œ์ฒญํ–ˆ๋„ค์š”.
04:25
This is their kind of resonance
117
265779
1674
์ Š์€์ด๋“ค์€ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ํ† ๋ก ์—์„œ
04:27
for the conversation around the environment.
118
267453
2406
์ด๋Ÿฌํ•œ ์ฃผ์ œ๋ฅผ ํŒŒ์ƒ์‹œํ‚ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
04:29
If we split along gender lines,
119
269859
1899
์„ฑ๋ณ„์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ•ด ๋ณด์ž๋ฉด
04:31
we can see females resonating heavily
120
271758
1987
์—ฌ์„ฑ๋“ค์€ ์‹ํ’ˆ ๊ฒฝ์ œ๋ฅผ ๋งŽ์ด ๋‹ค๋ฃจ์—ˆ์ง€๋งŒ
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
ํฌ๋ง๊ณผ ๋‚™๊ด€์ฃผ์˜์— ๋Œ€ํ•ด์„œ๋„ ํ† ๋ก ํ–ˆ์Šต๋‹ˆ๋‹ค.
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
์ด ์ž๋ฃŒ๋Š” ์ •๋ง ๋‹ค๋ฐฉ๋ฉด์œผ๋กœ ์“ฐ์ผ ์ˆ˜ ์žˆ์–ด์š”.
04:39
and I'll throw to Eric for the next part.
123
279872
1762
์—๋ฆญ์ด ๊ณ„์† ์„ค๋ช…ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
๋ฒŒ๋กœ์šฐ: ๋„ค, ๋‹ค์‹œ ๋ง์”€๋“œ๋ฆฌ์ง€๋งŒ
04:43
you cannot get this kind of perspective
125
283236
1538
์œ ํŠœ๋ธŒ์—์„œ ๋‹จ์ˆœํžˆ ํƒœ๊ทธ ๊ฒ€์ƒ‰์œผ๋กœ๋Š” ๋ถˆ๊ฐ€๋Šฅํ•œ
04:44
from a simple tag search on YouTube.
126
284774
3360
ํญ๋„“์€ ๊ฐ๋„์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ณด๋Š” ๊ฒ๋‹ˆ๋‹ค.
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
์ด์ œ ํ™˜๊ฒฝ์ด๋ผ๋Š” ์ฃผ์ œ์—์„œ ๋‹ค์‹œ ์ „์„ธ๊ณ„์  ์‹œ์ ์œผ๋กœ
04:52
out of environment, and look at all the talks together.
128
292322
2534
๋Œ์•„๊ฐ€ ๊ฐ•์—ฐ ์ „์ฒด๋ฅผ ์‚ดํŽด๋ด…์‹œ๋‹ค.
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
์ž๋ฃŒ๊ฐ€ ์ด๋ ‡๊ฒŒ ๋งŽ์„ ๋•Œ๋Š” ๋ช‡ ๊ฐ€์ง€ ์ž‘์—…์„ ํ†ตํ•ด
04:57
we do a couple of things to simplify it.
130
297783
2431
๋‹จ์ˆœํ™”์‹œํ‚ต๋‹ˆ๋‹ค.
05:00
We might just say, well,
131
300214
1314
์˜ˆ๋ฅผ ๋“ค์–ด,
05:01
what are the most popular talks out there?
132
301528
2829
์ œ์ผ ์ธ๊ธฐ์žˆ๋Š” ๊ฐ•์—ฐ์„ ์ฐพ์•„๋ณด๋ฉด
05:04
And a few rise to the surface.
133
304357
1397
๋ช‡ ๊ฐ€์ง€๊ฐ€ ์ถ”๋ ค์ง‘๋‹ˆ๋‹ค.
05:05
There's a talk about gratitude.
134
305754
1828
'๊ฐ์‚ฌ'์— ๋Œ€ํ•œ ๊ฐ•์—ฐ,
05:07
There's another one about personal health and nutrition.
135
307582
3344
๊ฐœ์ธ ๊ฑด๊ฐ•๊ณผ ์˜์–‘์— ๋Œ€ํ•œ ๊ฐ•์—ฐ,
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
ํฌ๋ฅด๋…ธ์— ๋Œ€ํ•œ ๊ฐ•์—ฐ๋„ ๋นผ๋†“์„ ์ˆ˜ ์—†๊ฒ ์ฃ .
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
๊ฐ์‚ฌ์— ๋Œ€ํ•œ ๊ฐ•์—ฐ์€ ์ง€๋‚œ ํ•ด์˜€๋Š”๋ฐ
05:17
What's trending now? What's the popular talk now?
138
317089
2522
์ง€๊ธˆ์€ ๋ญ๊ฐ€ ์œ ํ–‰์ผ๊นŒ์š”? ํ˜„์žฌ ์ธ๊ธฐ์žˆ๋Š” ๊ฐ•์—ฐ์€ ๋ญ˜๊นŒ์š”?
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
์ƒˆ๋กœ ๋– ์˜ค๋ฅด๋Š” ํ™”์ œ๋Š” ๋””์ง€ํ„ธ ์‚ฌ์ƒํ™œ์ด๋ผ๋Š” ๊ฒƒ์„
05:22
is about digital privacy.
140
322932
2666
์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
05:25
So this is great. It simplifies things.
141
325598
1693
์ข‹์Šต๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•ด์ง€์ฃ .
05:27
But there's so much creative content
142
327291
1827
ํ•˜์ง€๋งŒ ์ € ๋ฐ”๋‹ฅ์— ์ฐฝ์˜์ ์ธ ๋‚ด์šฉ์ด
05:29
that's just buried at the bottom.
143
329118
1921
๋„ˆ๋ฌด๋‚˜ ๋งŽ์ด ๋ฌปํ˜€ ์žˆ์–ด์š”.
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
๊ทธ๋Ÿฌ๋ฉด ์•ˆ ๋˜์ฃ . ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ์ •๋ง ์ฐฝ์˜์ ์ด๊ณ 
05:34
that's maybe really creative and interesting?
145
334357
2458
์žฌ๋ฏธ์žˆ๋Š” ๋‚ด์šฉ๋“ค์ด ์ˆ˜๋ฉด ์œ„๋กœ ๋– ์˜ค๋ฅด๊ฒŒ ํ• ๊นŒ์š”?
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•„์ด๋””์–ด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋กœ
05:39
to do that.
147
339746
1430
๋Œ์•„๊ฐ€์•ผ ํ•ฉ๋‹ˆ๋‹ค.
05:41
Remember, it's that network structure
148
341176
2114
์• ์ดˆ์— ์ด๋Ÿฐ ํ† ๋ก  ์ฃผ์ œ๋“ค์ด ๋– ์˜ค๋ฅด๊ฒŒ ๋œ ๊ณ„๊ธฐ๊ฐ€
05:43
that is creating these emergent topics,
149
343290
2268
๋„คํŠธ์›Œํฌ๋ผ๋Š” ๊ฑธ ๊ธฐ์–ตํ•˜์„ธ์š”.
05:45
and let's say we could take two of them,
150
345558
1515
๋„์‹œ์™€ ์œ ์ „ํ•™์ด๋ผ๋Š”
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
ํŒ์ดํ•œ ๋‘ ๊ฐ€์ง€ ์ฃผ์ œ๋ฅผ ๋…์ฐฝ์ ์œผ๋กœ ์—ฐ๊ฒฐ์‹œํ‚ค๋Š”
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
๊ฐ•์—ฐ์ด ์žˆ๋Š”์ง€ ์•Œ์•„๋ณด๋„๋ก ํ•˜์ฃ .
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
์ด์™€ ๊ฐ™์€ ์ฐฝ์˜์ ์ธ ์ž๋ฃŒ ์กฐ์ž‘์€
05:54
is one of the hallmarks of innovation.
154
354964
1840
ํ˜์‹ ์˜ ํŠน์ง• ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
05:56
Well here's one by Jessica Green
155
356804
1606
์ œ์‹œ์นด ๊ทธ๋ฆฐ์˜
05:58
about the microbial ecology of buildings.
156
358410
2379
๊ฑด๋ฌผ์˜ ๋ฏธ์ƒ๋ฌผ ์ƒํƒœ์— ๋Œ€ํ•œ ๊ฐ•์—ฐ์„ ์ฐพ์•˜์Šต๋‹ˆ๋‹ค.
06:00
It's literally defining a new field.
157
360789
2010
์ƒˆ๋กœ์šด ๋ถ„์•ผ์˜ ๊ฐœ์ฒ™์ด์—์š”.
06:02
And we could go back to those topics and say, well,
158
362799
2103
๊ฐ ์ฃผ์ œ์— ๋Œ€ํ•œ ํ† ๋ก ์˜ ์ค‘์‹ฌ์—๋Š”
06:04
what talks are central to those conversations?
159
364902
2768
์–ด๋–ค ๊ฐ•์—ฐ๋“ค์ด ์žˆ์„๊นŒ์š”?
06:07
In the cities cluster, one of the most central
160
367670
1690
'๋„์‹œ' ๋ฌด๋ฆฌ ๊ฐ€์žฅ ์ค‘์‹ฌ์—๋Š”
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
๋ฏธ์น˜ ์š”์•„ํ‚ด์˜ ์ƒํƒœ ๋„์‹œ์— ๋Œ€ํ•œ ๊ฐ•์—ฐ์ด ์žˆ๊ณ 
06:13
and in the genetics cluster,
162
373312
1720
'์œ ์ „ํ•™' ๋ฌด๋ฆฌ ์ค‘์‹ฌ์—๋Š”
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
ํฌ๋ ˆ์ดํฌ ๋ฒคํ„ฐ์˜ ํ•ฉ์„ฑ ์ƒ๋ฌผํ•™ ๊ฐ•์—ฐ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
๊ฐ ๋ถ„์•ผ ๋‚ด ์ˆ˜๋งŽ์€ ๊ฐ•์—ฐ๋“ค์„ ์ด์–ด์ฃผ๋Š” ์—ฐ๊ฒฐ๊ณ ๋ฆฌ์ž…๋‹ˆ๋‹ค.
06:21
We could go the other direction and say, well,
165
381578
1843
๋ฐ˜๋Œ€๋กœ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋ฅผ ํญ๋„“๊ฒŒ ์•„์šฐ๋ฅด๋Š”
06:23
what are talks that are broadly synthesizing
166
383421
2272
๊ฐ•์—ฐ์—๋Š” ์–ด๋–ค ๊ฒƒ์ด ์žˆ๋Š”์ง€
06:25
a lot of different kinds of fields.
167
385693
1448
์•Œ์•„๋ณผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
์ƒํƒœํ•™์  ๋‹ค์–‘์„ฑ์˜ ์ฒ™๋„๋ฅผ ํ†ตํ•ด ์–ป์€ ๊ฒฐ๊ณผ์ธ๋ฐ
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
์˜ˆ๋ฅผ ๋“ค์–ด ํญ๋ ฅ์˜ ์—ญ์‚ฌ์— ๊ด€ํ•œ ์Šคํ‹ฐ๋ธ ํ•‘์ปค์˜ ๊ฐ•์—ฐ์€
06:32
very synthetic.
170
392410
1180
๋งค์šฐ ์ข…ํ•ฉ์ ์ด์ฃ .
06:33
And then, of course, there are talks that are so unique
171
393590
2078
ํ•œํŽธ์œผ๋กœ๋Š” ๋„ˆ๋ฌด๋‚˜ ๋…ํŠนํ•ด์„œ
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
์—ฐ๊ฒฐ์  ์—†์ด ํ˜ผ์ž ๋–จ์–ด์ ธ ์žˆ๋Š” ๊ฐ•์—ฐ๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
์ €ํฌ๋Š” ์ด๋ฅผ '์ฝœ๋ฆฐ ํ”Œ๋ž˜๋‚ด๊ฑด ์ง€์ˆ˜'๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
๋ชจ๋ฅด์‹ค๊นŒ๋ด ๋ง์”€๋“œ๋ฆฌ์ž๋ฉด ์ฝœ๋ฆฐ์€ ์˜ˆ์ˆ ๊ฐ€์ž…๋‹ˆ๋‹ค.
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ์•„์ด๋””์–ด์˜ ์šฐ์ฃผ์—์„œ
06:45
in the stratosphere of our idea space?"
176
405849
1672
์„ฑ์ธต๊ถŒ์— ํ˜ผ์ž ๋–จ์–ด์ ธ ์žˆ๋Š” ๊ธฐ๋ถ„์ด ์–ด๋– ๋ƒ๊ณ  ๋ฌผ์—ˆ๋”๋‹ˆ
06:47
And apparently it smells like bacon.
177
407521
3255
๋ฒ ์ด์ปจ ๋ƒ„์ƒˆ๊ฐ€ ๋‚œ๋‹ค๊ณ  ํ•˜๋”๊ตฐ์š”.
06:50
I wouldn't know.
178
410776
1791
์ €์•ผ ๋ชจ๋ฅผ ์ผ์ž…๋‹ˆ๋‹ค.
06:52
So we're using these network motifs
179
412567
2248
์ด๋ ‡๊ฒŒ ๋„คํŠธ์›Œํฌ ์ฃผ์ œ๋ฅผ ์ด์šฉํ•ด
06:54
to find talks that are unique,
180
414815
1186
๋…ํŠนํ•œ ๊ฐ•์—ฐ๊ณผ
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
์—ฌ๋Ÿฌ ๋ถ„์•ผ๋ฅผ ํ†ตํ•ฉํ•˜๋Š” ๊ฐ•์—ฐ ๋ฐ
06:58
ones that are central to their topic,
182
418711
1659
๊ฐ•์—ฐ ์ฃผ์ œ์˜ ์ค‘์‹ฌ์ด ๋˜๋Š” ๊ฐ•์—ฐ๊ณผ
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
์ƒ์ดํ•œ ๋ถ„์•ผ๋ฅผ ์ด์–ด ์ฃผ๋Š” ๊ฐ•์—ฐ๋“ค์„ ์ฐพ์•„๋ณด์•˜์Šต๋‹ˆ๋‹ค.
07:03
Okay? We never would have found those with our obsession
184
423744
2102
์ง€๊ธˆ ์ด ์ˆœ๊ฐ„์˜ ๋™ํ–ฅ์— ๋Œ€ํ•œ ์ง‘์ฐฉ์„ ๋ฒ„๋ฆฌ์ง€ ์•Š๊ณ ์„œ๋Š”
07:05
with what's trending now.
185
425846
2313
์•Œ์•„๋‚ผ ์ˆ˜ ์—†์—ˆ์„ ๊ฒ๋‹ˆ๋‹ค.
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
์ด ๋ชจ๋“  ๊ฒƒ์˜ ๊ทผ์›์€ ๋ณต์žก์„ฑ์˜ ๊ตฌ์กฐ,
07:11
or the patterns of how things are connected.
187
431045
2960
์ฆ‰ ๋งŒ๋ฌผ์ด ์„œ๋กœ ์—ฐ๊ฒฐ๋˜๋Š” ๋ฌด๋Šฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.
07:14
SG: So that's exactly right.
188
434005
1625
๊ณ ์–ผ๋ฆฌ: ๋ฐ”๋กœ ๊ทธ๋ ‡์Šต๋‹ˆ๋‹ค
07:15
We've got ourselves in a world
189
435630
2479
์šฐ๋ฆฌ๊ฐ€ ์‚ฌ๋Š” ์„ธ์ƒ์€
07:18
that's massively complex,
190
438109
2044
์—„์ฒญ๋‚˜๊ฒŒ ๋ณต์žกํ•ด์„œ
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
๊ทธ ์•ˆ์—์„œ ๋ฐฉํ–ฅ์„ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด
07:23
so we can navigate through it.
192
443020
1786
์ •๋ณด๋ฅผ ์—ฌ๊ณผํ–ˆ์Šต๋‹ˆ๋‹ค.
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
์ด๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์œ ์šฉํ•˜๊ธด ํ•˜์ง€๋งŒ
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
๊ต‰์žฅํžˆ ํญ์ด ์ข์•„ ๊ฐœ์„ ์˜ ์—ฌ์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
07:30
because we can realize that their complexity is not random.
195
450620
2566
์„ธ์ƒ์€ ๋ณต์žกํ•˜๋‚˜ ์‚ฌ์‹ค ์ˆ˜ํ•™์  ๊ตฌ์กฐ๊ฐ€
07:33
It has mathematical structure,
196
453186
1954
๋’ท๋ฐ›์นจํ•˜๊ณ  ์žˆ์œผ๋ฉฐ
07:35
and we can use that mathematical structure
197
455140
1803
์ด ์ˆ˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜๋ฉด
07:36
to go and explore things like the world of ideas
198
456943
2214
๋ฐฉ๋Œ€ํ•œ ์•„์ด๋””์–ด์˜ ์„ธ๊ณ„๋ฅผ ํƒํ—˜ํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
07:39
to see what's being said, to see what's not being said,
199
459157
3000
๋ฌด์—‡์„ ๋งํ•˜๊ณ  ๋ฌด์—‡์„ ๋งํ•˜์ง€ ์•Š๋Š”์ง€๋ฅผ ์ฐพ๊ณ 
07:42
and to be a little bit more human
200
462157
1407
๋ณด๋‹ค ์ธ๊ฐ„์ ์ด๊ณ 
07:43
and, hopefully, a little smarter.
201
463564
1867
์˜๋ฆฌํ•ด์งˆ ์ˆ˜ ์žˆ๋„๋ก ๋ง์ž…๋‹ˆ๋‹ค
07:45
Thank you.
202
465431
966
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค
07:46
(Applause)
203
466397
4220
(๋ฐ•์ˆ˜)
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7