Eric Berlow and Sean Gourley: Mapping ideas worth spreading

71,240 views ใƒป 2013-09-18

TED


ูŠุฑุฌู‰ ุงู„ู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุฃุฏู†ุงู‡ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ.

ุงู„ู…ุชุฑุฌู…: DAHOU Mohamed ุงู„ู…ุฏู‚ู‘ู‚: Ayman Mahmoud
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
ุฅูŠุฑูŠูƒ ุจุฑู„ูˆ: ุฃู†ุง ุนุงู„ู… ุจูŠุฆู‡ ูˆุดูˆู† ููŠุฒูŠุงุฆูŠ
00:15
and we both study complex networks.
1
15623
2108
ูˆ ูƒู„ูŠู†ุง ู†ุฏุฑุณ ุงู„ุดุจูƒุงุช ุงู„ู…ุนู‚ุฏู‡
00:17
And we met a couple years ago when we discovered
2
17731
1835
ูˆุงู„ุชู‚ูŠู†ุง ู‚ุจู„ ุจุถุน ุณู†ูˆุงุช ุนู†ุฏู…ุง ุงูƒุชุดูู†ุง
00:19
that we had both given a short TED Talk
3
19566
2000
ุฃู† ูƒู„ุงู†ุง ุชูƒู„ู…ู†ุง ููŠ ุชูŠุฏ ู…ู† ู‚ุจู„
00:21
about the ecology of war,
4
21566
2303
ุนู† ุงู„ุจูŠุฆุฉ ุงู„ุญุฑุจูŠุฉ
00:23
and we realized that we were connected
5
23869
1447
ูˆุงุฏุฑูƒู†ุง ุฃู†ู†ุง ูƒู†ุง ุนู„ู‰ ุตู„ุฉ
00:25
by the ideas we shared before we ever met.
6
25316
2818
ุจุงู„ุฃููƒุงุฑ ุงู„ุชูŠ ุชุดุงุทุฑู†ุงู‡ุง ู…ู† ู‚ุจู„ ุงู† ู†ู„ุชู‚ูŠ
00:28
And then we thought, you know, there are thousands
7
28134
1556
ูˆู…ู† ุซู… ููƒุฑู†ุง ุฃู† ู‡ู†ุงูƒ ุขู„ุงู
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
ุงู„ู…ุญุงุฏุซุงุช ุงู„ุฃุฎุฑู‰ ุญูˆู„ ุงู„ู…ูˆุถูˆุนุŒ ู„ุง ุณูŠู…ุง ู…ุญุงุฏุซุงุช ุชูŠุฏูƒุณุŒ
00:31
that are popping up all over the world.
9
31804
2211
ุงู„ุชูŠ ุธู‡ุฑุช ููŠ ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู….
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
ูƒูŠู ุงุฑุชุจุท ุจุนุถู‡ู… ุจุจุนุถุŒ
ูˆู…ุง ุดูƒู„ ุชู„ูƒ ุงู„ู…ุญุงุฏุซุฉ ุงู„ุนุงู„ู…ูŠุฉุŸ
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
ุณูŠุญุฏุซูƒู… ุดูˆู† ู‚ู„ูŠู„ุง ุนู† ูƒูŠููŠุฉ ู‚ูŠุงู…ู†ุง ุจุฐู„ูƒ.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
ุดูˆู† ุฌูˆุฑู„ูŠูŠ: ุชู…ุงู…ุง. ุฃุฎุฐู†ุง 24,000 ู…ุญุงุฏุซุฉ ู„ุชูŠุฏูƒุณ
00:43
from around the world, 147 different countries,
14
43525
3046
ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู…ุŒ ู…ู† 147 ุจู„ุฏ ู…ุฎุชู„ูุŒ
00:46
and we took these talks and we wanted to find
15
46571
2123
ูˆุฃุฎุฐู†ุง ู‡ุฐู‡ ุงู„ู…ุญุงุฏุซุงุชุŒ ูˆุฃุฑุฏู†ุง ุงู„ุนุซูˆุฑ ุนู„ู‰
00:48
the mathematical structures that underly
16
48694
2040
ุงู„ู‡ูŠุงูƒู„ ุงู„ุฑูŠุงุถูŠุฉ ุงู„ุชูŠ ู…ู† ูˆุฑุงุฆู‡ุง
00:50
the ideas behind them.
17
50734
1722
ุงู„ุฃููƒุงุฑ ุงู„ุชูŠ ูˆุฑุงุกู‡ุง.
00:52
And we wanted to do that so we could see how
18
52456
1370
ูˆูƒู†ุง ู†ุฑูŠุฏ ุงู„ู‚ูŠุงู… ุจุฐู„ูƒ ุญุชู‰ ูŠู…ูƒู† ุฃู† ู†ุฑู‰ ูƒูŠู
00:53
they connected with each other.
19
53826
2053
ุฃู†ู‡ุง ู…ุฑุชุจุทุฉ ู…ุน ุจุนุถู‡ุง ุงู„ุจุนุถ.
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
ูˆู„ุฐู„ูƒุŒ ุจุงู„ุทุจุนุŒ ุฅุฐุง ูƒู†ุช ุชุฑูŠุฏ ุงู„ู‚ูŠุงู… ุจู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุฃุดูŠุงุกุŒ
00:57
you need a lot of data.
21
57555
956
ุฃู†ุช ุจุญุงุฌุฉ ุฅู„ู‰ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ุจูŠุงู†ุงุช.
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
ุชู„ูƒ ุงู„ุจูŠุงู†ุงุช ุงู„ุชูŠ ุชุณุชุทูŠุน ุงู„ุญุตูˆู„ ุนู„ูŠู‡ุง ู…ู† ุดูŠุก ุนุธูŠู… ูŠุณู…ู‰ ูŠูˆุชูŠูˆุจุŒ
01:02
and we can go down and basically pull
23
62197
1768
ูˆูŠู…ูƒู†ู†ุง ุงู„ุฐู‡ุงุจ ุฅู„ู‰ ุฃุณูู„ ูˆุจุจุณุงุทู‡ ู†ุณุญุจ
01:03
all the open information from YouTube,
24
63965
2267
ุฌู…ูŠุน ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู…ูุชูˆุญุฉ ู…ู† ูŠูˆุชูŠูˆุจุŒ
01:06
all the comments, all the views, who's watching it,
25
66232
2349
ูƒู„ ุงู„ุชุนู„ูŠู‚ุงุชุŒ ุฌู…ูŠุน ุงู„ุขุฑุงุกุŒ ุงู„ุงุดุฎุงุต ุงู„ุฐูŠู† ูŠุดุงู‡ุฏูˆู†.
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
ู…ู† ูŠุดุงู‡ุฏ ุงู„ู†ู‚ุงุทุนุŒ ู…ุงุฐุง ูŠู‚ูˆู„ูˆู† ููŠ ุงู„ุชุนู„ูŠู‚ุงุช.
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
ูˆู„ูƒู† ูŠู…ูƒู† ุฃูŠุถุง ุณุญุจ - ุจุงุณุชุฎุฏุงู… ุชุฑุฌู…ุฉ ุงู„ูƒู„ุงู… ุฅู„ู‰ ู†ุต
01:14
we can pull the entire transcript,
28
74652
2128
ูŠู…ูƒู† ุฃู† ู†ุฎุฑุฌ ู†ุณุฎุฉ ูƒุงู…ู„ุฉ ู…ู† ุงู„ู†ุต
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
ูˆู‡ุฐุง ูŠุนู…ู„ ุญุชู‰ ุจุงู„ู†ุณุจุฉ ู„ู„ุงุดุฎุงุต ู…ุน ู„ู‡ุฌุงุช ู…ุถุญูƒู‡ ู…ุซู„ ู†ูุณูŠ.
01:19
So we can take their transcript
30
79460
2106
ู„ุฐุง ูŠู…ูƒู†ู†ุง ุฃู† ู†ุฃุฎุฐ ุงู„ู†ุต
01:21
and actually do some pretty cool things.
31
81566
2098
ูˆููŠ ุงู„ูˆุงู‚ุน ุงู„ู‚ูŠุงู… ุจุจุนุถ ุงู„ุฃุดูŠุงุก ุงู„ู…ุฐู‡ู„ู‡
01:23
We can take natural language processing algorithms
32
83664
2160
ูŠู…ูƒู†ู†ุง ุฃู† ู†ุงุฎุฐ ุทุฑูŠู‚ุฉ ุชุฑุชูŠุจ ุงู„ูƒู„ุงู… ูˆุงู„ู„ุบู‡
01:25
to kind of read through with a computer, line by line,
33
85824
2629
ุฅู„ู‰ ู†ูˆุน ู…ู† ุงู„ู‚ุฑุงุกุฉ ุนู† ุทุฑูŠู‚ ู…ุน ุฌู‡ุงุฒ ูƒู…ุจูŠูˆุชุฑุŒ ุณุทุฑุงู‹ ุณุทุฑุงู‹ุŒ
01:28
extracting key concepts from this.
34
88453
2359
ู„ุงุณุชุฎุฑุงุฌ ุงู„ู…ูุงู‡ูŠู… ุงู„ุฑุฆูŠุณูŠุฉ ู…ู†ู‡
01:30
And we take those key concepts and they sort of form
35
90812
2525
ูˆู†ุณุชุนู…ู„ ุชู„ูƒ ุงู„ู…ูุงู‡ูŠู… ุงู„ุฑุฆูŠุณูŠุฉุŒ ูˆุชูƒูˆู† ู„ู†ุง
01:33
this mathematical structure of an idea.
36
93337
3565
ู‡ุฐุง ุงู„ู‡ูŠูƒู„ ุงู„ุฑูŠุงุถูŠ ู„ููƒุฑุฉ
01:36
And we call that the meme-ome.
37
96902
1757
ูˆู†ุฏุนูˆ ุฃู† ู…ูŠู…ูŠ-ุฃูˆู…
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
ูˆู…ูŠู…ูŠ-ุงูˆู… ูƒู…ุง ุชุนู„ู…ูˆู†ุŒ ุจูƒู„ ุจุณุงุทุฉุŒ
01:40
is the mathematics that underlies an idea,
39
100810
2426
ู‡ูˆ ุงู„ุฑูŠุงุถูŠุงุช ุงู„ุฐูŠ ูŠูƒู…ู† ูˆุฑุงุก ููƒุฑุฉุŒ
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
ูˆูŠู…ูƒู†ู†ุง ุงู„ู‚ูŠุงู… ุจุจุนุถ ุงู„ุชุญุงู„ูŠู„ ู…ุซูŠุฑุฉ ู„ู„ุงู‡ุชู…ุงู… ุฌุฏุงู‹ ู…ุนู‡ุงุŒ
01:45
which I want to share with you now.
41
105168
1981
ูˆุฃุฑูŠุฏ ุฃู† ุงุดุงุฑูƒู‡ุง ู…ุนูƒ ุงู„ุขู†.
01:47
So each idea has its own meme-ome,
42
107149
2190
ู„ุฐุง ู‚ุฏ ูƒู„ ููƒุฑุฉ ู…ูŠู…ูŠ-ุงูˆู… ุงู„ุฎุงุตุฉ ุจู‡ุŒ
01:49
and each idea is unique with that,
43
109339
1951
ูˆูƒู„ ููƒุฑุฉ ูุฑูŠุฏุฉ ู…ู† ู†ูˆุนู‡ุง
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
ูˆู„ูƒู† ุจุทุจูŠุนุฉ ุงู„ุญุงู„ุŒ ุงู„ุฃููƒุงุฑุŒ ุฃู†ู‡ุง ุชุณุชู„ู ู…ู† ุจุนุถู‡ุง ุงู„ุจุนุถุŒ
01:53
they kind of steal sometimes,
45
113778
1184
ุฃู†ู‡ุง ู†ูˆุน ู…ู† ุงู„ุณุฑู‚ุฉ ููŠ ุจุนุถ ุงู„ุฃุญูŠุงู†ุŒ
01:54
and they certainly build on each other,
46
114962
1827
ูˆุฃู†ู‡ุง ู…ู† ุงู„ู…ุคูƒุฏ ุจู†ุงุก ุนู„ู‰ ุจุนุถู‡ุง ุงู„ุจุนุถุŒ
01:56
and we can go through mathematically
47
116789
1616
ูˆูŠู…ูƒู†ู†ุง ุฃู† ู†ุฐู‡ุจ ู…ู† ุฎู„ุงู„ ุงู„ุฑูŠุงุถูŠุงุช
01:58
and take the meme-ome from one talk
48
118405
1840
ูˆุชุฃุฎุฐ ู…ูŠู…ูŠ-ุงูˆู… ู…ู† ู†ู‚ุงุด ูˆุงุญุฏ
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
ูˆู†ู‚ุงุฑู† ุงู„ู…ูŠู…ูŠ-ุงูˆู… ู…ู† ูƒู„ ู†ู‚ุงุด ุฃุฎุฑู‰ุŒ
02:02
and if there's a similarity between the two of them,
50
122699
1973
ูˆุฅุฐุง ูƒุงู† ู‡ู†ุงูƒ ุชุดุงุจู‡ ุจูŠู† ุงุซู†ูŠู† ู…ู†ู‡ู…ุŒ
02:04
we can create a link and represent that as a graph,
51
124672
3250
ูˆู†ุณุชุทูŠุน ุฅู†ุดุงุก ุงุฑุชุจุงุท ูˆุชู…ุซู„ ุฐู„ูƒ ูƒุฑุณู… ุจูŠุงู†ูŠุŒ
02:07
just like Eric and I are connected.
52
127922
2394
ุชู…ุงู…ุง ู…ุซู„ ุงุชุตุงู„ูŠ ุงู†ุง ูˆ ุฅุฑูŠูƒ
02:10
So that's theory, that's great.
53
130316
1394
ุชู„ูƒ ูู‚ุท ู†ุธุฑูŠุฉุŒ ู‡ุฐุง ุฃู…ุฑ ุนุธูŠู….
02:11
Let's see how it works in actual practice.
54
131710
2526
ุฏุนูˆู†ุง ู†ุฑู‰ ูƒูŠู ูŠุทุจู‚ ู‡ุฐุง ููŠ ุงู„ู…ู…ุงุฑุณุฉ ุงู„ูุนู„ูŠุฉ.
02:14
So what we've got here now is the global footprint
55
134236
2788
ู…ุง ู„ุฏูŠู†ุง ู‡ู†ุง ู‡ูˆ ุญุชู‰ ุงู„ุขู† ุงู„ุฃุซุฑ ุงู„ุนุงู„ู…ูŠ
02:17
of all the TEDx Talks over the last four years
56
137024
2293
ู…ู† ุฌู…ูŠุน ู…ุญุงุฏุซุงุช TEDx ุนู„ู‰ ู…ุฑ ุงู„ุณู†ูˆุงุช ุงู„ุฃุฑุจุน ุงู„ู…ุงุถูŠุฉ
02:19
exploding out around the world
57
139317
1550
ุงู„ุชูŠ ุชู†ุจุน ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู…
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
ู…ู† ู†ูŠูˆูŠูˆุฑูƒ ูˆุตูˆู„ุงู‹ ุญุชู‰ ุฅู„ู‰ ู†ูŠูˆุฒูŠู„ู†ุฏุง
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
ูˆู…ุง ู‚ู…ู†ุง ุจู‡ ููŠ ู‡ุฐุง ุฃู†ู†ุง ุญู„ู„ ุฃุนู„ู‰ 25 ููŠ ุงู„ู…ุฆุฉ ู…ู† ู‡ุคู„ุงุกุŒ
02:28
and we started to see where the connections occurred,
60
148031
2534
ูˆุจุฏุฃู†ุง ู†ุฑู‰ ุงู„ู…ุญุงุฏุซุงุช ุงู„ุชูŠ ุญุฏุซุช ููŠู‡ุง ุงุชุตุงู„ุงุชุŒ
02:30
where they connected with each other.
61
150565
1537
ุญูŠุซ ุฃู†ู‡ุง ู…ุฑุชุจุทุฉ ู…ุน ุจุนุถู‡ุง ุงู„ุจุนุถ.
02:32
Cameron Russell talking about image and beauty
62
152102
1874
ูƒุงู…ูŠุฑูˆู† ุฑุงุณู„ ูŠุชุญุฏุซ ุนู† ุงู„ุตูˆุฑุฉ ูˆุงู„ุฌู…ุงู„
02:33
connected over into Europe.
63
153976
1575
ู…ุชุตู„ ุนุจุฑ ุฃูˆุฑูˆุจุง.
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
ู„ู‚ุฏ ุญุตู„ู†ุง ุนู„ู‰ ู…ุญุงุฏุซุฉ ุฃูƒุจุฑ ุญูˆู„ ุฅุณุฑุงุฆูŠู„ ูˆูู„ุณุทูŠู†
02:37
radiating outwards from the Middle East.
65
157963
2255
ูŠุดุน ู…ู† ู…ู†ุทู‚ุฉ ุงู„ุดุฑู‚ ุงู„ุฃูˆุณุท.
02:40
And we've got something a little broader
66
160218
1298
ูˆู„ู‚ุฏ ุญุตู„ู†ุง ุนู„ู‰ ุดูŠุก ุฃูˆุณุน ู‚ู„ูŠู„ุงู‹
02:41
like big data with a truly global footprint
67
161516
2156
ู…ุซู„ ุงู„ุจูŠุงู†ุงุช ุงู„ูƒุจูŠุฑุฉ ู…ุน ุจุตู…ุฉ ุนุงู„ู…ูŠุฉ ุญู‚ุงู‹
02:43
reminiscent of a conversation
68
163672
2179
ูŠุฐูƒุฑู†ุง ุจู…ุญุงุฏุซุฉ
02:45
that is happening everywhere.
69
165851
2016
ุฃู† ู…ุง ูŠุญุฏุซ ููŠ ูƒู„ ู…ูƒุงู†.
02:47
So from this, we kind of run up against the limits
70
167867
2173
ู„ุฐุง ู…ู† ู‡ุฐุงุŒ ู‚ุงุจู„ู†ุง ู†ูˆุน ู…ู† ุชุตุงุฏู… ุญุฏูˆุฏ
02:50
of what we can actually do with a geographic projection,
71
170040
2530
ู„ู…ุง ูŠู…ูƒู† ุฃู† ู†ูุนู„ ููŠ ุชูˆู‚ุน ุฌุบุฑุงููŠุŒ
02:52
but luckily, computer technology allows us to go out
72
172570
2052
ูˆู„ูƒู† ู„ุญุณู† ุงู„ุญุธุŒ ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ุญุงุณูˆุจ ูŠุณู…ุญ ู„ู†ุง ุจุงู„ุฎุฑูˆุฌ
02:54
into multidimensional space.
73
174622
1546
ุงู„ู‰ ูุถุงุก ู…ุชุนุฏุฏ ุงู„ุฃุจุนุงุฏ.
02:56
So we can take in our network projection
74
176168
1875
ู„ุฐุง ูŠู…ูƒู† ุฃู† ู†ุชุฎุฐู‡ุง ููŠ ุจู†ุงุก ุดุจูƒุฉ ุงู„ุชูˆู‚ุน
02:58
and apply a physics engine to this,
75
178043
1750
ูˆุชุทุจูŠู‚ ู…ุญุฑูƒ ููŠุฒูŠุงุก ู„ู‡ุฐุงุŒ
02:59
and the similar talks kind of smash together,
76
179793
1885
ูˆ ุงู„ู…ุญุงุฏุซุงุช ุงู„ู…ู…ุงุซู„ุฉ ู…ู…ุฒูˆุฌู‡ ู…ุนุง
03:01
and the different ones fly apart,
77
181678
2004
ูˆุงู„ู…ุฎุชู„ูุฉ ุชุจุชุนุฏ ุนู† ุจุนุถู‡ุง ุงู„ุจุนุถุŒ
03:03
and what we're left with is something quite beautiful.
78
183682
2072
ูˆุจู‚ูŠู†ุง ู…ุน ุดูŠุก ุฌู…ูŠู„ ุฌุฏุงู‹.
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
ู„ุฐู„ูƒ ุฃุฑูŠุฏ ูู‚ุท ุฃู† ุฃุดูŠุฑ ู‡ู†ุง ุฃู† ูƒู„ ู†ู‚ุทุฉ ู‡ูŠ ุนุจุงุฑู‡ ุนู† ุญุฏูŠุซุŒ
03:08
they're linked if they share similar ideas,
80
188711
2589
ู…ุฑุชุจุทุฉ ุฅุฐุง ูƒุงู†ุช ุชุดุงุทุฑ ุฃููƒุงุฑ ู…ู…ุงุซู„ุฉุŒ
03:11
and that comes from a machine reading
81
191300
2084
ูˆู‡ุฐุง ูŠุฃุชูŠ ู…ู† ู‚ุฑุงุกุฉ ุงู„ุฌู‡ุงุฒ
03:13
of entire talk transcripts,
82
193384
2067
ู„ูƒุงู…ู„ ู†ู‚ุงุด ุงู„ู†ุต
03:15
and then all these topics that pop out,
83
195451
2231
ูˆุซู… ูƒู„ ู‡ุฐู‡ ุงู„ู…ูˆุงุถูŠุน ุงู„ุชูŠ ุชุฎุฑุฌุŒ
03:17
they're not from tags and keywords.
84
197682
1790
ุฃู†ู‡ู… ู„ูŠุณูˆุง ู…ู† ุงู„ุนู„ุงู…ุงุช ูˆุงู„ูƒู„ู…ุงุช ุงู„ุฑุฆูŠุณูŠุฉ.
03:19
They come from the network structure
85
199472
1725
ุฃู†ู‡ุง ุชุฃุชูŠ ู…ู† ู‡ูŠูƒู„ ุงู„ุดุจูƒุฉ
03:21
of interconnected ideas. Keep going.
86
201197
2168
ู…ู† ุงู„ุฃููƒุงุฑ ุงู„ู…ุชุฑุงุจุทุฉ. ุชุณุชู…ุฑ.
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
: ุนู„ู‰ ุงู„ุฅุทู„ุงู‚. ู„ุฐู„ูƒ ุฃู†ุง ุชุนุงู…ู„ุช ุณุฑูŠุนุง ู…ุน ู‡ุฐุง ุงู„ุดุฃู†ุŒ
03:25
but he's going to slow me down.
88
205387
1475
ูˆู„ูƒู†ู‡ ู‚ุงู„ ุฃู†ู‡ ุณูˆู ูŠู‚ูˆู… ุจุฅุจุทุงุฆูŠ
03:26
We've got education connected to storytelling
89
206862
2034
ู„ู‚ุฏ ุญุตู„ู†ุง ุนู„ู‰ ุงู„ุชุนู„ูŠู… ู…ุชุตู„ุงู‹ ุจู‚ุต ุงู„ุญูƒุงูŠุงุช
03:28
triangulated next to social media.
90
208896
1643
ู…ุณุชู†ุจุทุฉ ู…ุน ูˆุณุงุฆู„ ุงู„ุฅุนู„ุงู… ุงู„ุงุฌุชู…ุงุนูŠุฉ.
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
ุญุตู„ุชุŒ ุจุงู„ุทุจุนุŒ ุนู„ู‰ ุงู„ุฏู…ุงุบ ุงู„ุจุดุฑูŠ ุจุฌูˆุงุฑ ุงู„ุฑุนุงูŠุฉ ุงู„ุตุญูŠุฉุŒ
03:33
which you might expect,
92
213014
1386
ุงู„ุชูŠ ู‚ุฏ ุชุชูˆู‚ุนุŒ
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
ูˆู„ูƒู† ูƒู…ุง ุญุตู„ุช ุนู„ู‰ ุฃู„ุนุงุจ ุงู„ููŠุฏูŠูˆุŒ ูˆู‡ูˆ ู†ูˆุน ู…ู† ุงู„ู…ุฌุงูˆุฑุฉ
03:36
as those two spaces interface with each other.
94
216795
2740
ุนู†ุฏู…ุง ุชู„ุชู‚ูŠ ุชู„ูƒ ุงู„ู…ุณุงุญุชูŠู†.
03:39
But I want to take you into one cluster
95
219535
1535
ูˆู„ูƒู† ุฃุฑูŠุฏ ุฃู† ุชุฃุฎุฐู‡ู…ุง ููŠ ูƒุชู„ุฉ ูˆุงุญุฏุฉ
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
ุงู†ู‡ุง ู…ุณุฃู„ุฉ ุจุงู„ุบุฉ ุงู„ุฃู‡ู…ูŠุฉ ุจุงู„ู†ุณุจุฉ ู„ูŠุŒ ูˆู‡ุฐุง ู‡ูˆ ุงู„ุจูŠุฆุฉ.
03:43
And I want to kind of zoom in on that
97
223938
1493
ูˆุฃุฑูŠุฏ ุฃู† ุงุชูˆุณุน ููŠ ุฐู„ูƒ
03:45
and see if we can get a little more resolution.
98
225431
2363
ูˆู†ุฑู‰ ุฅุฐุง ูƒุงู† ูŠู…ูƒู†ู†ุง ุงู„ุญุตูˆู„ ุนู„ู‰ ู‚ุฑุงุฑ ุฃูƒุซุฑ ู‚ู„ูŠู„ุงู‹.
03:47
So as we go in here, what we start to see,
99
227794
2347
ูˆู„ุฐู„ูƒ ูƒู…ุง ู†ุฑู‰ ู…ู† ู‡ู†ุงุŒ ู†ุจุฏุฃ ููŠ ุฑุคูŠุฉุŒ
03:50
apply the physics engine again,
100
230141
1504
ุชุทุจูŠู‚ ู…ุญุฑูƒ ุงู„ููŠุฒูŠุงุก ู…ุฑุฉ ุฃุฎุฑู‰ุŒ
03:51
we see what's one conversation
101
231645
1676
ูˆู†ุญู† ู†ุฑู‰ ู…ุง ู‡ูˆ ู…ุญุงุฏุซุฉ ูˆุงุญุฏุฉ
03:53
is actually composed of many smaller ones.
102
233321
2560
ู‡ูŠ ููŠ ุงู„ูˆุงู‚ุน ุชุชุฃู„ู ู…ู† ุงู„ุนุฏูŠุฏ ู…ู† ุงู„ุงุญุงุฏูŠุซ ุงู„ุฃุตุบุฑ ุญุฌู…ุง.
03:55
The structure starts to emerge
103
235881
1929
ุงู„ู‡ูŠูƒู„ ูŠุจุฏุฃ ููŠ ุงู„ุธู‡ูˆุฑ
03:57
where we see a kind of fractal behavior
104
237810
2070
ุญูŠุซ ุฃู†ู†ุง ู†ุฑู‰ ู†ูˆุนุง ู…ู† ุงู„ุณู„ูˆูƒ ุงู„ู†ู…ุทูŠ ุงู„ู…ุชูƒุฑุฑ
03:59
of the words and the language that we use
105
239880
1619
ู„ู„ูƒู„ู…ุงุช ูˆุงู„ู„ุบุฉ ุงู„ุชูŠ ู†ุณุชุฎุฏู…ู‡ุง
04:01
to describe the things that are important to us
106
241499
1702
ู„ูˆุตู ุงู„ุฃุดูŠุงุก ุงู„ู…ู‡ู…ุฉ ุจุงู„ู†ุณุจุฉ ู„ู†ุง
04:03
all around this world.
107
243201
1433
ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ู‡ุฐุง ุงู„ุนุงู„ู….
04:04
So you've got food economy and local food at the top,
108
244634
2332
ุญูŠุซ ูƒู†ุช ู‚ุฏ ุญุตู„ุช ุนู„ู‰ ุงู‚ุชุตุงุฏ ุงู„ุฃุบุฐูŠุฉ ูˆุงู„ุฃุบุฐูŠุฉ ุงู„ู…ุญู„ูŠุฉ ููŠ ุงู„ุฌุฒุก ุงู„ุนู„ูˆูŠุŒ
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
ูƒู†ุช ู‚ุฏ ุญุตู„ุช ุนู„ู‰ ุบุงุฒุงุช ุงู„ุจูŠูˆุช ุงู„ุฎุถุฑุงุกุŒ ูˆุงู„ู†ูุงูŠุงุช ุงู„ู†ูˆูˆูŠุฉ ูˆุงู„ุดู…ุณูŠุฉ.
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
ู…ุง ุชุญุตู„ ุนู„ูŠู‡ ู…ู† ู…ุฌู…ูˆุนุฉ ุงู„ุฃุญุงุฏูŠุซ ุงู„ุฃุตุบุฑุŒ
04:12
each connected to each other through the ideas
111
252316
2301
ูƒู„ ู…ู†ู‡ู…ุง ู…ุชุตู„ุฉ ุจุจุนุถู‡ุง ุงู„ุจุนุถ ู…ู† ุฎู„ุงู„ ุงู„ุฃููƒุงุฑ
04:14
and the language they share,
112
254617
1301
ูˆุงู„ู„ุบุฉ ุงู„ุชูŠ ูŠุชู‚ุงุณู…ูˆู†ู‡ุงุŒ
04:15
creating a broader concept of the environment.
113
255918
2450
ุฎู„ู‚ ู…ูู‡ูˆู… ุฃูˆุณุน ู„ู„ุจูŠุฆุฉ.
04:18
And of course, from here, we can go
114
258368
1532
ูˆุทุจุนุงุŒ ู…ู† ู‡ู†ุงุŒ ูŠู…ูƒู†ู†ุง ุฃู† ู†ู†ุทู„ู‚
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
ูƒุจุฑ ูˆุงู†ุธุฑุŒ ุฃูŠุถุงุŒ ู…ุง ุงู„ุฐูŠ ูŠุจุญุซ ุนู†ู‡ ุงู„ุดุจุงุจุŸ
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
ุฃู†ู‡ู… ูŠุจุญุซูˆู† ููŠ ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ุทุงู‚ุฉ ูˆุงู„ุงู†ุตู‡ุงุฑ ุงู„ู†ูˆูˆูŠ.
04:25
This is their kind of resonance
117
265779
1674
ูˆู‡ุฐุง ู‡ูˆ ุงู„ู†ูˆุน ุงู„ุตุฏู‰
04:27
for the conversation around the environment.
118
267453
2406
ู„ู„ุญุฏูŠุซ ุญูˆู„ ุงู„ุจูŠุฆุฉ.
04:29
If we split along gender lines,
119
269859
1899
ุฅุฐุง ูุฑู‚ู†ุง ุจูŠู† ุงู„ุฌู†ุณูŠู†ุŒ
04:31
we can see females resonating heavily
120
271758
1987
ูŠู…ูƒู†ู†ุง ุฃู† ู†ุฑู‰ ู„ู„ุฅู†ุงุซ ุตุฏู‰ ุจุดูƒู„ ูƒุจูŠุฑ
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
ู…ุน ุงู‚ุชุตุงุฏ ุงู„ุฃุบุฐูŠุฉุŒ ูˆู„ูƒู† ู‡ู†ุงูƒ ุฃูŠุถุง ููŠ ุงู„ุฃู…ู„ ูˆุงู„ุชูุงุคู„.
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
ูˆุญุชู‰ ู„ุง ูŠูƒูˆู† ู‡ู†ุงูƒ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ุฃุดูŠุงุก ุงู„ู…ุซูŠุฑุฉ ูŠู…ูƒู† ุฃู† ู†ูุนู„ู‡ ู‡ู†ุงุŒ
04:39
and I'll throw to Eric for the next part.
123
279872
1762
ูˆุณูˆู ู†ู†ุชู‚ู„ ู„ุงุฑูŠูƒ ู„ู„ุฌุฒุก ุงู„ู‚ุงุฏู….
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
ุงูŠุฑูŠูƒ: ู†ุนู…ุŒ ูŠุนู†ูŠ ูู‚ุท ุฃู† ุฃุดูŠุฑ ุฅู„ู‰ ู‡ู†ุงุŒ
04:43
you cannot get this kind of perspective
125
283236
1538
ู„ุง ูŠู…ูƒู†ูƒ ุงู„ุญุตูˆู„ ุนู„ู‰ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ู…ู†ุธูˆุฑ
04:44
from a simple tag search on YouTube.
126
284774
3360
ู…ู† ุนู„ุงู…ุฉ ุจุณูŠุทุฉ ู„ุจุญุซ ุนู„ู‰ ู…ูˆู‚ุน ูŠูˆุชูŠูˆุจ.
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
ุฏุนูˆู†ุง ุงู„ุขู† ู†ุนูˆุฏ ุฅู„ู‰ ุงู„ู…ุญุงุฏุซุฉ ุงู„ุนุงู„ู…ูŠุฉ ุจุฃูƒู…ู„ู‡ุง
04:52
out of environment, and look at all the talks together.
128
292322
2534
ู„ู„ุฎุฑูˆุฌ ู…ู† ุงู„ุจูŠุฆุฉุŒ ูˆุฅู„ู‚ุงุก ู†ุธุฑุฉ ุนู„ู‰ ุฌู…ูŠุน ุงู„ู…ุญุงุฏุซุงุช ู…ุนุง.
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
ุงู„ุขู† ููŠ ูƒุซูŠุฑ ู…ู† ุงู„ุฃุญูŠุงู†ุŒ ุนู†ุฏู…ุง ู†ุญู† ู†ูˆุงุฌู‡ ู‡ุฐุง ุงู„ูƒู… ู…ู† ุงู„ู…ุญุชูˆู‰ุŒ
04:57
we do a couple of things to simplify it.
130
297783
2431
ูˆู†ุญู† ู†ูุนู„ ุจุถุนุฉ ุฃุดูŠุงุก ู„ู†ุจุณุทู‡ุง
05:00
We might just say, well,
131
300214
1314
ูˆู†ุญู† ู‚ุฏ ู†ู‚ูˆู„ ูู‚ุทุŒ ุญุณู†ุงุŒ
05:01
what are the most popular talks out there?
132
301528
2829
ู…ุง ู‡ูŠ ุงูƒุซุฑ ุงู„ู…ุญุงุฏุซุงุช ุดุนุจูŠุฉ ู‡ู†ุงูƒุŸ
05:04
And a few rise to the surface.
133
304357
1397
ุงุชุถุญ ู„ู†ุง ุนุฏุฏ ู‚ู„ูŠู„ ู…ู†ู‡ู… ุฅู„ู‰ ุงู„ุณุทุญ.
05:05
There's a talk about gratitude.
134
305754
1828
ู‡ู†ุงูƒ ุญุฏูŠุซ ุนู† ุงู„ุงู…ุชู†ุงู†.
05:07
There's another one about personal health and nutrition.
135
307582
3344
ู‡ู†ุงูƒ ูˆุงุญุฏ ุขุฎุฑ ุนู† ุงู„ุตุญุฉ ุงู„ุดุฎุตูŠุฉ ูˆุงู„ุชุบุฐูŠุฉ.
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
ูˆุทุจุนุงุŒ ู‡ู†ุงูƒ ูŠุฌุจ ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ ุญุฏูŠุซ ุนู† ุงู„ุฅุจุงุญูŠุฉุŒ ุงู„ูŠุณ ูƒุฐู„ูƒุŸ
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
ูˆู„ุฐู„ูƒ ูŠู…ูƒู† ุฃู† ู†ู‚ูˆู„ุŒ ุญุณู†ุงุŒ ู…ูˆุถูˆุน ุงู„ุงู…ุชู†ุงู†ุŒ ู‡ุฐุง ุชู… ููŠ ุงู„ุนุงู… ุงู„ู…ุงุถูŠ.
05:17
What's trending now? What's the popular talk now?
138
317089
2522
ู…ุง ู‡ูˆ ุงู„ุงุชุฌุงู‡ ุงู„ุขู†ุŸ ู…ุง ู‡ูˆ ุงู„ุญุฏูŠุซ ุงู„ุงูƒุซุฑ ุดุนุจูŠุฉ ุงู„ุขู†ุŸ
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
ูˆูŠู…ูƒู†ู†ุง ุฃู† ู†ุฑู‰ ุฃู† ุงู„ู…ูˆุงุถูŠุน ุงู„ุฌุฏูŠุฏุฉ ุงู„ู†ุงุดุฆุฉ ุงู„ุชูŠ ุนู„ูŠู‡ุง ุทู„ุจ ูƒุซูŠุฑ
05:22
is about digital privacy.
140
322932
2666
ู‡ูˆ ุญูˆู„ ุงู„ุฎุตูˆุตูŠุฉ ุงู„ุฑู‚ู…ูŠุฉ.
05:25
So this is great. It simplifies things.
141
325598
1693
ู‡ุฐุง ุดูŠุก ุนุธูŠู…. ุฃู†ู‡ ูŠุจุณุท ุงู„ุฃู…ูˆุฑ.
05:27
But there's so much creative content
142
327291
1827
ูˆู„ูƒู† ู‡ู†ุงูƒ ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ู…ูˆุงุฏ ุงู„ุฅุจุฏุงุนูŠุฉ
05:29
that's just buried at the bottom.
143
329118
1921
ุฅู†ู‡ุง ู…ุฏููˆู†ู‡ ููŠ ุงู„ุฌุฒุก ุงู„ุณูู„ูŠ.
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
ูˆุฃู†ุง ุฃูƒุฑู‡ ุฐู„ูƒ. ูƒูŠู ูŠู…ูƒู†ู†ุง ู†ุจุฑุฒ ู‡ุฐู‡ ุงู„ุฃุดูŠุงุก ุฅู„ู‰ ุงู„ุณุทุญ
05:34
that's maybe really creative and interesting?
145
334357
2458
ูˆู‡ุฐู‡ ุฑุจู…ุง ู…ุจุชูƒุฑุฉ ูˆู…ุซูŠุฑุฉ ู„ู„ุงู‡ุชู…ุงู… ุญู‚ุงู‹ุŸ
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
ุญุณู†ุงุŒ ูŠู…ูƒู†ู†ุง ุฃู† ู†ุนูˆุฏ ุฅู„ู‰ ู‡ูŠูƒู„ ุดุจูƒุฉ ุงู„ุฃููƒุงุฑ
05:39
to do that.
147
339746
1430
ู„ู„ู‚ูŠุงู… ุจุฐู„ูƒ.
05:41
Remember, it's that network structure
148
341176
2114
ุชุฐูƒุฑุŒ ู‡ูˆ ุฃู† ู‡ูŠูƒู„ ุงู„ุดุจูƒุฉ
05:43
that is creating these emergent topics,
149
343290
2268
ุงู„ุฐูŠ ูŠู†ุดุฆ ู‡ุฐู‡ ุงู„ู…ูˆุงุถูŠุน ุงู„ู†ุงุดุฆุฉุŒ
05:45
and let's say we could take two of them,
150
345558
1515
ูˆุฏุนูˆู†ุง ู†ู‚ูˆู„ ุฃู†ู†ุง ูŠู…ูƒู† ุฃู† ู†ุฃุฎุฐ ุงุซู†ูŠู† ู…ู†ู‡ู…ุŒ
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
ู…ุซู„ ุงู„ู…ุฏู† ูˆุนู„ู… ุงู„ูˆุฑุงุซุฉุŒ ูˆู†ู‚ูˆู„ุŒ ุญุณู†ุงุŒ ู‡ู„ ู‡ู†ุงูƒ ุฃูŠ ู…ุญุงุฏุซุงุช
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
.ุชุณุฏ ุงู„ุซุบุฑุฉ ุจูŠู† ู‡ุฐู‡ ุงู„ุชุฎุตุตุงุช ุจุทุฑูŠู‚ุฉ ุงุจุฏุงุนูŠุฉ
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
ูˆ ู„ู‡ุฐุง-ุฃุณุงุณุงุŒ ู‡ุฐุง ุงู„ู†ูˆุน ู…ู† ุงู„ุฅุจุฏุงุน ููŠ ุงู„ุฌู…ุน
05:54
is one of the hallmarks of innovation.
154
354964
1840
ูˆุงุญุฏุฉ ู…ู† ุงู„ุณู…ุงุช ุงู„ู…ู…ูŠุฒุฉ ู„ู„ุงุจุชูƒุงุฑ.
05:56
Well here's one by Jessica Green
155
356804
1606
ู‡ู†ุง ูˆุงุญุฏ ู…ู† ุฌูŠุณูŠูƒุง ุฌุฑูŠู†
05:58
about the microbial ecology of buildings.
156
358410
2379
ุญูˆู„ ุจูŠุฆุฉ ุงู„ู…ูŠูƒุฑูˆุจุงุช ู„ู„ู…ุจุงู†ูŠ.
06:00
It's literally defining a new field.
157
360789
2010
ู‡ูˆ ุญุฑููŠุง ุชุนุฑูŠู ูˆุชุฎุตุต ุฌุฏูŠุฏ.
06:02
And we could go back to those topics and say, well,
158
362799
2103
ูˆูŠู…ูƒู† ุฃู† ู†ุนูˆุฏ ุฅู„ู‰ ุชู„ูƒ ุงู„ู…ูˆุงุถูŠุน ูˆู†ู‚ูˆู„ ุญุณู†ุงุŒ
06:04
what talks are central to those conversations?
159
364902
2768
ู…ุง ู‡ูŠ ุงู„ู…ุญุงุฏุซุงุช ุงู„ู…ุชู…ุฑูƒุฒู‡ ุญูˆู„ ุชู„ูƒ ุงู„ู…ุญุงุฏุซุงุชุŸ
06:07
In the cities cluster, one of the most central
160
367670
1690
ููŠ ุงู„ู…ุฏู† ุงู„ู…ุชูƒุชู„ุฉุŒ ูˆุงุญุฏุฉ ู…ู† ุงู„ุฃูƒุซุฑ ู…ุฑูƒุฒูŠุฉ
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
ูƒุงู† ู‡ู†ุงูƒ ูˆุงุญุฏ ู…ู† ู…ูŠุชุด ูŠูˆุงูƒูŠู… ุญูˆู„ ุงู„ู…ุฏู† ุงู„ุจูŠุฆูŠุฉุŒ
06:13
and in the genetics cluster,
162
373312
1720
ูˆููŠ ุชูƒุชู„ุงุช ุนู„ู… ุงู„ูˆุฑุงุซุฉุŒ
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
ูˆู„ุฏูŠู†ุง ุญุฏูŠุซ ุนู† ุงู„ุจูŠูˆู„ูˆุฌูŠุง ุงู„ุชุฑูƒูŠุจูŠุฉ ู…ู† ูƒุฑูŠุบ ููŠู†ุชุฑ.
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุฏุซุงุช ุงู„ุชูŠ ุชู‚ูˆู… ุจุฑุจุท ุงู„ุนุฏูŠุฏ ู…ู† ุงู„ู…ุญุงุฏุซุงุช ุฏุงุฎู„ ุชุฎุตุตุงุชู‡ู….
06:21
We could go the other direction and say, well,
165
381578
1843
ูŠู…ูƒู† ุฃู† ู†ุฐู‡ุจ ุงุชุฌุงู‡ ุงู„ุฃุฎุฑู‰ ูˆุฃู‚ูˆู„ุŒ ุญุณู†ุงุŒ
06:23
what are talks that are broadly synthesizing
166
383421
2272
ู…ุง ู‡ูŠ ุงู„ู…ุญุงุฏุซุงุช ุงู„ุชูŠ ุชู… ุชุญู„ูŠู„ู‡ุง ุนู„ู‰ ู†ุทุงู‚ ูˆุงุณุน
06:25
a lot of different kinds of fields.
167
385693
1448
ู‡ู†ุงูƒ ุฃู†ูˆุงุน ู…ุฎุชู„ูุฉ ู…ู† ุงู„ุญู‚ูˆู„.
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
ุงุณุชุฎุฏู…ู†ุง ู‚ุฏุฑุง ู…ู† ุงู„ุชู†ูˆุน ุงู„ุจูŠุฆูŠ ู„ู„ุญุตูˆู„ ุนู„ู‰ ู‡ุฐุง.
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
ู…ุซู„ุŒ ุญุฏูŠุซ ู…ู† ุณุชูŠูู† ุจูŠู†ูƒุฑ ููŠ ุชุงุฑูŠุฎ ุงู„ุนู†ูุŒ
06:32
very synthetic.
170
392410
1180
ุงุตุทู†ุงุนูŠุฉ ุฌุฏุงู‹.
06:33
And then, of course, there are talks that are so unique
171
393590
2078
ูˆุจุนุฏ ุฐู„ูƒุŒ ุจุทุจูŠุนุฉ ุงู„ุญุงู„ุŒ ู‡ู†ุงูƒ ู…ุญุงุฏุซุงุช ูุฑูŠุฏุฉ ู…ู† ู†ูˆุนู‡ุง
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
ุฃู†ู‡ู… ููŠ ุงุนู„ู‰ ุทุจู‚ุงุช ุงู„ุบู„ุงู ุงู„ุฌูˆูŠ ุŒ ููŠ ู…ูƒุงู† ุฎุงุต ุจู‡ู…ุŒ
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
ูˆู†ุญู† ู†ุฏุนูˆ ุฐู„ูƒ ุจู…ุคุดุฑ ูƒูˆู„ูŠู† ูู„ุงู†ุงุบุงู†
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
ูˆุฅุฐุง ูƒู†ุช ู„ุง ุชุนุฑู ูƒูˆู„ูŠู†ุŒ ุงู†ู‡ุง ูู†ุงู†ุฉุŒ
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
ูˆุณุฃู„ุชู‡ุงุŒ "ุญุณู†ุงุŒ ูƒูŠู ุชุจุฏูˆ
06:45
in the stratosphere of our idea space?"
176
405849
1672
ููŠ ุงู„ุทุจู‚ุงุช ุงู„ุนู„ูŠุง ู„ุฏูŠู†ุง ููŠ ูุถุงุก ุงู„ุฃููƒุงุฑุŸ "
06:47
And apparently it smells like bacon.
177
407521
3255
ูˆุนู„ู‰ ู…ุง ูŠุจุฏูˆ ุฃู†ู‡ุง ุชู†ุจุนุซ ู…ู†ู‡ ุฑุงุฆุญุฉ ู„ุญู… ุงู„ุฎู†ุฒูŠุฑ ุงู„ู…ู‚ุฏุฏ.
06:50
I wouldn't know.
178
410776
1791
ู„ู… ุฃูƒู† ุฃุนุฑู ุฐู„ูƒ
06:52
So we're using these network motifs
179
412567
2248
ู„ุฐู„ูƒ ู†ุญู† ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุฒุฎุงุฑู ุงู„ุดุจูƒูŠุฉ
06:54
to find talks that are unique,
180
414815
1186
ู„ู„ุนุซูˆุฑ ุนู„ู‰ ุงู„ู…ุญุงุฏุซุงุช ุงู„ูุฑูŠุฏุฉ ู…ู† ู†ูˆุนู‡ุงุŒ
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
ุชู„ูƒ ุงู„ุชูŠ ุชุฌู…ุน ุงู„ูƒุซูŠุฑ ู…ู† ุงู„ุชุฎุตุตุงุช ุงู„ู…ุฎุชู„ูุฉุŒ
06:58
ones that are central to their topic,
182
418711
1659
ุชู„ูƒ ุงู„ุชูŠ ุชุชู…ุญูˆุฑ ุญูˆู„ ู…ูˆุถูˆุนู‡ู…ุŒ
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
ูˆุชู„ูƒ ุงู„ุชูŠ ู‡ูŠ ุญู‚ุงู‹ ุชู‚ูˆู… ุจุชูˆุตูŠู„ ุงู„ุชุฎุตุตุงุช ุงู„ู…ุชุจุงูŠู†ุฉ.
07:03
Okay? We never would have found those with our obsession
184
423744
2102
ุญุณู†ุงุŸ ู†ุจุฏุฃ ู…ุน ู…ู† ู„ุฏูŠู‡ู… ู†ูุณ ู‡ุงุฌุณู†ุง
07:05
with what's trending now.
185
425846
2313
ู…ุน ุงู„ุงุชุฌุงู‡ ุงู„ุญุงู„ูŠ
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
ูˆูƒู„ ู‡ุฐุง ูŠุฃุชูŠ ู…ู† ุงู„ู‡ู†ุฏุณุฉ ุงู„ู…ุนู…ุงุฑูŠุฉ ู„ู…ุนู‚ุฏุงุช ุงู„ุงู…ูˆุฑุŒ
07:11
or the patterns of how things are connected.
187
431045
2960
ุฃูˆ ุฃู†ู…ุงุท ุงู„ุชูŠ ุชุตู ูƒูŠู ุชุฑุชุจุท ุงู„ุฃุดูŠุงุก.
07:14
SG: So that's exactly right.
188
434005
1625
ู‡ุฐุง ุตุญูŠุญ ุชู…ุงู…ุง
07:15
We've got ourselves in a world
189
435630
2479
ู‡ู†ุง ู†ุฌุฏ ุฃู†ูุณู†ุง ููŠ ุนุงู„ู…
07:18
that's massively complex,
190
438109
2044
ู„ู‡ ู†ุทุงู‚ ูˆุงุณุน ูˆู…ุนู‚ุฏุŒ
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
ูˆู„ู‚ุฏ ุชู… ุงุณุชุฎุฏุงู… ุทุฑู‚ ู„ุชุตููŠุชู‡ุง
07:23
so we can navigate through it.
192
443020
1786
ุญุชู‰ ูŠู…ูƒู†ู†ุง ุงู„ุชู†ู‚ู„ ุฎู„ุงู„ู‡ุง
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
ูˆู‡ุฐู‡ ุงู„ุทุฑู‚ุŒ ู†ูˆุนุง ู…ุง ู…ููŠุฏู‡
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
ุฃูŠุถุง ู…ุญุฏูˆุฏุฉ ุงู„ู†ุทุงู‚ ุฌุฏุงู‹ุŒ ูˆูŠู…ูƒู†ู†ุง ุฃู† ู†ูุนู„ ุฃูุถู„ ู…ู† ุฐู„ูƒุŒ
07:30
because we can realize that their complexity is not random.
195
450620
2566
ู„ุฃู†ู†ุง ูŠู…ูƒู† ุฃู† ู†ุฏุฑูƒ ุฃู† ุชุนู‚ูŠุฏุงุชู‡ุง ู„ูŠุณุช ุนุดูˆุงุฆูŠุฉ.
07:33
It has mathematical structure,
196
453186
1954
ู„ู‡ุง ุจู†ูŠุฉ ุฑูŠุงุถูŠุฉุŒ
07:35
and we can use that mathematical structure
197
455140
1803
ูˆูŠู…ูƒู† ุฃู† ู†ุณุชุฎุฏู… ู‡ุฐุง ุงู„ู‡ูŠูƒู„ ุงู„ุฑูŠุงุถูŠ
07:36
to go and explore things like the world of ideas
198
456943
2214
ู„ุงุณุชูƒุดุงู ุฃุดูŠุงุก ู…ุซู„ ุนุงู„ู… ุงู„ุฃููƒุงุฑ
07:39
to see what's being said, to see what's not being said,
199
459157
3000
ู„ู…ุนุฑูุฉ ู…ุง ูŠู‚ุงู„ุŒ ู„ู…ุนุฑูุฉ ู…ุง ู„ุง ูŠู‚ุงู„ุŒ
07:42
and to be a little bit more human
200
462157
1407
ูˆุฃู† ู†ูƒูˆู† ุฃูƒุซุฑ ุฅู†ุณุงู†ูŠุฉ
07:43
and, hopefully, a little smarter.
201
463564
1867
ูˆู†ุฃู…ู„ ุงูŠุถุงุŒ ุฃุฐูƒู‰ ู‚ู„ูŠู„ุงู‹.
07:45
Thank you.
202
465431
966
ุดูƒุฑุง.
07:46
(Applause)
203
466397
4220
(ุชุตููŠู‚)
ุญูˆู„ ู‡ุฐุง ุงู„ู…ูˆู‚ุน

ุณูŠู‚ุฏู… ู„ูƒ ู‡ุฐุง ุงู„ู…ูˆู‚ุน ู…ู‚ุงุทุน ููŠุฏูŠูˆ YouTube ุงู„ู…ููŠุฏุฉ ู„ุชุนู„ู… ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ. ุณุชุฑู‰ ุฏุฑูˆุณ ุงู„ู„ุบุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ุชูŠ ูŠุชู… ุชุฏุฑูŠุณู‡ุง ู…ู† ู‚ุจู„ ู…ุฏุฑุณูŠู† ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ู…ู† ุฌู…ูŠุน ุฃู†ุญุงุก ุงู„ุนุงู„ู…. ุงู†ู‚ุฑ ู†ู‚ุฑู‹ุง ู…ุฒุฏูˆุฌู‹ุง ููˆู‚ ุงู„ุชุฑุฌู…ุฉ ุงู„ุฅู†ุฌู„ูŠุฒูŠุฉ ุงู„ู…ุนุฑูˆุถุฉ ุนู„ู‰ ูƒู„ ุตูุญุฉ ููŠุฏูŠูˆ ู„ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ ู…ู† ู‡ู†ุงูƒ. ูŠุชู… ุชู…ุฑูŠุฑ ุงู„ุชุฑุฌู…ุงุช ุจุงู„ุชุฒุงู…ู† ู…ุน ุชุดุบูŠู„ ุงู„ููŠุฏูŠูˆ. ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ ุฃูŠ ุชุนู„ูŠู‚ุงุช ุฃูˆ ุทู„ุจุงุช ุŒ ูŠุฑุฌู‰ ุงู„ุงุชุตุงู„ ุจู†ุง ุจุงุณุชุฎุฏุงู… ู†ู…ูˆุฐุฌ ุงู„ุงุชุตุงู„ ู‡ุฐุง.

https://forms.gle/WvT1wiN1qDtmnspy7