Eric Berlow and Sean Gourley: Mapping ideas worth spreading

71,018 views ・ 2013-09-18

TED


Dubbelklik asseblief op die Engelse onderskrifte hieronder om die video te speel.

Translator: Ingrid Lezar Reviewer: Elri Marais
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
Eric Berlow: Ek's ’n ekoloog en Sean is ’n fisikus
00:15
and we both study complex networks.
1
15623
2108
en ons bestudeer komplekse netwerke.
00:17
And we met a couple years ago when we discovered
2
17731
1835
Toe ons ontmoet het, het ons ontdek
00:19
that we had both given a short TED Talk
3
19566
2000
dat ons albei al ’n kort TED Talk
00:21
about the ecology of war,
4
21566
2303
oor die ekologie van oorlog gegee het.
00:23
and we realized that we were connected
5
23869
1447
Die idees wat ons gemeen het,
00:25
by the ideas we shared before we ever met.
6
25316
2818
het ons verbind, voor ons mekaar geken het.
Toe dink ons: Daar is duisende praatjies,
00:28
And then we thought, you know, there are thousands
7
28134
1556
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
veral TEDx Talks,
00:31
that are popping up all over the world.
9
31804
2211
wat oral oor die wêreld opduik.
Hoe is hulle gekoppel
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
en hoe lyk die globale gesprek?
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
Sean sal vertel hoe ons dit aangepak het.
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
Sean Gourley: Presies. So ons het 24 000 TEDx Talks
00:43
from around the world, 147 different countries,
14
43525
3046
oor die hele wêreld gevat, 147 lande,
00:46
and we took these talks and we wanted to find
15
46571
2123
en ons was op soek na
die onderliggende wiskundige strukture
00:48
the mathematical structures that underly
16
48694
2040
00:50
the ideas behind them.
17
50734
1722
van die idees agter die praatjies.
00:52
And we wanted to do that so we could see how
18
52456
1370
Ons wou sien hoe
00:53
they connected with each other.
19
53826
2053
die praatjies gekoppel is.
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
Natuurlik, om so iets te doen,
00:57
you need a lot of data.
21
57555
956
benodig jy baie data.
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
Die data is ’n wonderlike ding genaamd YouTube,
01:02
and we can go down and basically pull
23
62197
1768
waarvanaf ons basies
01:03
all the open information from YouTube,
24
63965
2267
al die oop informasie kan trek:
01:06
all the comments, all the views, who's watching it,
25
66232
2349
Wie kyk, hoeveel van hulle kyk,
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
waar kyk hulle, wat sê hulle in die kommentare.
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
Maar ons kan ook met spraak-tot-teks vertaling
01:14
we can pull the entire transcript,
28
74652
2128
die hele transkrip kry --
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
selfs vir mense soos ek met snaakse aksente.
01:19
So we can take their transcript
30
79460
2106
So ons vat hulle transkrip
01:21
and actually do some pretty cool things.
31
81566
2098
en doen ’n paar kief dinge.
01:23
We can take natural language processing algorithms
32
83664
2160
Ons kan natuurliketaal- verwerkingsalgoritmes neem
01:25
to kind of read through with a computer, line by line,
33
85824
2629
en met ’n rekenaar, reël vir rëel, lees
01:28
extracting key concepts from this.
34
88453
2359
om sleutelkonsepte uit te haal.
01:30
And we take those key concepts and they sort of form
35
90812
2525
Die sleutelkonsepte vorm dan soortvan
01:33
this mathematical structure of an idea.
36
93337
3565
die wiskundige struktuur van ’n idee.
01:36
And we call that the meme-ome.
37
96902
1757
Ons noem dit die meemoom.
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
Die meemoom is eenvoudig
01:40
is the mathematics that underlies an idea,
39
100810
2426
die wiskunde onderliggend aan ’n idee,
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
waarmee ons interessante ontleding doen,
wat ek nou met julle wil deel.
01:45
which I want to share with you now.
41
105168
1981
So elke idee het sy eie meemoom
01:47
So each idea has its own meme-ome,
42
107149
2190
01:49
and each idea is unique with that,
43
109339
1951
en elke idee is uniek daarin,
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
maar idees leen natuurlik by mekaar,
01:53
they kind of steal sometimes,
45
113778
1184
hulle steel soms ’n bietjie
01:54
and they certainly build on each other,
46
114962
1827
en hulle bou beslis op mekaar.
01:56
and we can go through mathematically
47
116789
1616
Ons kan wiskundig ondersoek instel
01:58
and take the meme-ome from one talk
48
118405
1840
deur die meemoom van een praatjie
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
te vergelyk met dié van elke ander praatjie.
02:02
and if there's a similarity between the two of them,
50
122699
1973
As daar ooreenkomste tussen twee is,
02:04
we can create a link and represent that as a graph,
51
124672
3250
kan ons ’n skakel skep en dit as ’n grafiek voorstel,
02:07
just like Eric and I are connected.
52
127922
2394
net soos ek en Eric verbonde is.
02:10
So that's theory, that's great.
53
130316
1394
So dis die teorie, lieflik.
02:11
Let's see how it works in actual practice.
54
131710
2526
Kom ons kyk hoe die toepassing werk.
02:14
So what we've got here now is the global footprint
55
134236
2788
Hier is die globale voetspoor
van al die TEDx Talks oor die laaste vier jaar
02:17
of all the TEDx Talks over the last four years
56
137024
2293
02:19
exploding out around the world
57
139317
1550
soos hulle oral ontplof,
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
van New York al die pad tot in ou Nieu-Seeland in die hoek.
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
Hier het ons die top 25 persent ontleed
en begin sien waar die verbindings voorkom,
02:28
and we started to see where the connections occurred,
60
148031
2534
02:30
where they connected with each other.
61
150565
1537
waar hulle met mekaar skakel.
Cameron Russell oor beeld en skoonheid,
02:32
Cameron Russell talking about image and beauty
62
152102
1874
02:33
connected over into Europe.
63
153976
1575
oorkant in Europa gekoppel.
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
’n Groter gesprek oor Israel en Palestina,
02:37
radiating outwards from the Middle East.
65
157963
2255
wat vanuit die Midde-Ooste uitstraal.
02:40
And we've got something a little broader
66
160218
1298
Iets breër, soos groot data,
02:41
like big data with a truly global footprint
67
161516
2156
het ’n waarlik globale voetspoor --
02:43
reminiscent of a conversation
68
163672
2179
dit laat mens dink aan ’n gesprek
02:45
that is happening everywhere.
69
165851
2016
wat oral plaasvind.
02:47
So from this, we kind of run up against the limits
70
167867
2173
Hier tref ons egter reeds die perke
van wat geografiese projeksie kan doen,
02:50
of what we can actually do with a geographic projection,
71
170040
2530
02:52
but luckily, computer technology allows us to go out
72
172570
2052
maar gelukkig kan ons met rekenaars
02:54
into multidimensional space.
73
174622
1546
in ’n meerdimensionele ruimte werk.
Ons bring die netwerkprojeksie in
02:56
So we can take in our network projection
74
176168
1875
en pas ’n fisiese model se berekeninge toe:
02:58
and apply a physics engine to this,
75
178043
1750
02:59
and the similar talks kind of smash together,
76
179793
1885
Soortgelyke praatjies bondel op
03:01
and the different ones fly apart,
77
181678
2004
en verskillendes skiet uitmekaar
03:03
and what we're left with is something quite beautiful.
78
183682
2072
en op die ou end het ons iets mooi.
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
EB: Ek wil net uitwys dat elke nodus ’n praatjie is.
03:08
they're linked if they share similar ideas,
80
188711
2589
Hulle is gekoppel as hulle soortgelyke idees gemeen het
03:11
and that comes from a machine reading
81
191300
2084
en dis op ’n masjienlesing
03:13
of entire talk transcripts,
82
193384
2067
van volledige praatjie-afskrifte gebaseer.
03:15
and then all these topics that pop out,
83
195451
2231
Al die onderwerpe wat dan opkom,
03:17
they're not from tags and keywords.
84
197682
1790
kom nie van merkers of sleutelwoorde af nie.
03:19
They come from the network structure
85
199472
1725
Dis op ’n netwerkstruktuur
03:21
of interconnected ideas. Keep going.
86
201197
2168
van onderling verbonde idees gebaseer. Gaan voort.
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
SG: Absoluut. Ek was bietjie vinnig,
03:25
but he's going to slow me down.
88
205387
1475
maar hy sal my in toom hou.
03:26
We've got education connected to storytelling
89
206862
2034
Ons het opvoeding gebonde aan vertelkuns,
03:28
triangulated next to social media.
90
208896
1643
langs sosiale media getrianguleer.
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
Die menslike brein is reg langs gesondheidsorg,
soos mens sou vermoed,
03:33
which you might expect,
92
213014
1386
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
maar daar's ook videospeletjies, half aangrensend,
03:36
as those two spaces interface with each other.
94
216795
2740
soos die twee ruimtes met mekaar koppel.
03:39
But I want to take you into one cluster
95
219535
1535
Ek wil julle in een tros invat
wat vir my besonders belangrik is: die omgewing.
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
03:43
And I want to kind of zoom in on that
97
223938
1493
Ek wil daar inzoem
03:45
and see if we can get a little more resolution.
98
225431
2363
sodat ons nog resolusie kan kry.
03:47
So as we go in here, what we start to see,
99
227794
2347
Ons begin sien,
weer met die fisiese model se berekeninge toegepas,
03:50
apply the physics engine again,
100
230141
1504
03:51
we see what's one conversation
101
231645
1676
dat een gesprek
03:53
is actually composed of many smaller ones.
102
233321
2560
deur baie kleiner gesprekke opgemaak word.
03:55
The structure starts to emerge
103
235881
1929
Die struktuur kom te voorskyn:
03:57
where we see a kind of fractal behavior
104
237810
2070
Ons sien ’n soort fraktaalgedrag
03:59
of the words and the language that we use
105
239880
1619
van die woorde wat ons gebruik
04:01
to describe the things that are important to us
106
241499
1702
om dít wat vir ons belangrik is te beskryf,
04:03
all around this world.
107
243201
1433
oor die hele wêreld.
04:04
So you've got food economy and local food at the top,
108
244634
2332
So jy't voedselekonomie en plaaslike kos bo,
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
kweekhuisgas, sonkrag en kernafval.
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
Mens kry ’n reeks kleiner gesprekke,
04:12
each connected to each other through the ideas
111
252316
2301
verbonde aan mekaar deur die idees
04:14
and the language they share,
112
254617
1301
en die taal wat hulle gemeen het,
04:15
creating a broader concept of the environment.
113
255918
2450
wat sodoende ’n breër begrip van die omgewing skep.
04:18
And of course, from here, we can go
114
258368
1532
Nou kan ons natuurlik
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
inzoem en vra: Waarna kyk jong mense?
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
Energietegnologie en kernfusie.
04:25
This is their kind of resonance
117
265779
1674
Dit spreek tot hulle
04:27
for the conversation around the environment.
118
267453
2406
binne die gesprek rondom die omgewing.
04:29
If we split along gender lines,
119
269859
1899
As ons volgens geslag opdeel,
04:31
we can see females resonating heavily
120
271758
1987
kan ons sien wat tot vroue spreek:
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
voedselekonomie, maar ook hoop en optimisme.
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
Daar's baie opwindende dinge om hier te doen
04:39
and I'll throw to Eric for the next part.
123
279872
1762
en nou oor aan Eric.
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
EB: Ja, ek wys net hier uit:
04:43
you cannot get this kind of perspective
125
283236
1538
Mens kan hierdie tipe perspektief
04:44
from a simple tag search on YouTube.
126
284774
3360
nie deur ’n enkele merkersoektog op YouTube kry nie.
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
Kom ons zoem uit tot die hele globale gesprek
04:52
out of environment, and look at all the talks together.
128
292322
2534
en kyk na al die praatjies saam.
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
Dikwels, wanneer ons so baie inhoud het,
04:57
we do a couple of things to simplify it.
130
297783
2431
vereenvoudig ons dit.
05:00
We might just say, well,
131
300214
1314
Ons vra dalk:
05:01
what are the most popular talks out there?
132
301528
2829
Watter praatjies is die gewildste?
05:04
And a few rise to the surface.
133
304357
1397
’n Paar kom op.
05:05
There's a talk about gratitude.
134
305754
1828
Daar's een oor dankbaarheid.
05:07
There's another one about personal health and nutrition.
135
307582
3344
Daar's nog een oor persoonlike gesondheid en voeding.
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
En daar móét een oor porno wees, of hoe?
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
Dan sê ons dalk, wel, dankbaarheid was laas jaar.
Watse praatjie is nóú "in"?
05:17
What's trending now? What's the popular talk now?
138
317089
2522
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
En ons sien die nuwe opkomende "in"-onderwerp
05:22
is about digital privacy.
140
322932
2666
is oor digitale privaatheid.
05:25
So this is great. It simplifies things.
141
325598
1693
Lieflik. Dis eenvoudiger.
05:27
But there's so much creative content
142
327291
1827
Maar daar's só baie kreatiewe inhoud
05:29
that's just buried at the bottom.
143
329118
1921
wat nog onder begrawe lê.
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
Ek verpes dit. Hoe borrel ons daai goed boontoe,
05:34
that's maybe really creative and interesting?
145
334357
2458
die moontlik kreatiewe en interessante dinge?
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
Ons kan terugkeer na die netwerkstruktuur van idees toe
05:39
to do that.
147
339746
1430
om dit te doen.
Onthou, dis daai netwerkstruktuur
05:41
Remember, it's that network structure
148
341176
2114
05:43
that is creating these emergent topics,
149
343290
2268
wat hierdie opkomende temas skep,
05:45
and let's say we could take two of them,
150
345558
1515
so ons kan twee vat,
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
soos stede en genetika, en vra:
Is daar kreatiewe oorbrugging van dié twee uiteenlopende dissiplines?
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
Sulke kreatiewe hervermenging is, in wese,
05:54
is one of the hallmarks of innovation.
154
354964
1840
een van die kenmerke van innovasie.
05:56
Well here's one by Jessica Green
155
356804
1606
Hier's een deur Jessica Green
05:58
about the microbial ecology of buildings.
156
358410
2379
oor die mikrobiese ekologie van geboue.
06:00
It's literally defining a new field.
157
360789
2010
Dit omskryf letterlik ’n nuwe vakgebied.
06:02
And we could go back to those topics and say, well,
158
362799
2103
Ons kan terugkeer na daai temas toe en vra:
06:04
what talks are central to those conversations?
159
364902
2768
Watter praatjies is sentraal tot daai gesprekke?
06:07
In the cities cluster, one of the most central
160
367670
1690
In die stede-tros is een van die mees sentrales
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
deur Mitch Joachim oor ekologiese stede
06:13
and in the genetics cluster,
162
373312
1720
en in die genetika-tros
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
is ’n praatjie oor sintetiese biologie deur Craig Venter.
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
Hierdie praatjies verbind baie ander binne-in hulle dissipline.
06:21
We could go the other direction and say, well,
165
381578
1843
In die ander rigting kan ons vra:
06:23
what are talks that are broadly synthesizing
166
383421
2272
Watter praatjies is ’n breë samevatting
06:25
a lot of different kinds of fields.
167
385693
1448
van vele verskillende gebiede?
Hier het ons ’n ekologiese- diversiteitsmaat gebruik.
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
Byvoorbeeld, Steven Pinker oor die geskiedenis van geweld:
06:32
very synthetic.
170
392410
1180
baie samevattend.
06:33
And then, of course, there are talks that are so unique
171
393590
2078
Daar is natuurlik praatjies wat só uniek is
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
dat hulle in die stratosfeer dryf, op hulle eie spesiale plek.
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
Ons noem dit die Colleen-Flanagan-indeks. (Gelag)
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
Wie haar nie ken nie: Sy's ’n kunstenaar.
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
Ek't haar gevra: "Hoe ervaar jy
06:45
in the stratosphere of our idea space?"
176
405849
1672
die stratosfeer van jou ideeruimte?"
06:47
And apparently it smells like bacon.
177
407521
3255
Blykbaar ruik dit soos spek. (Gelag)
06:50
I wouldn't know.
178
410776
1791
Ek sou nie weet nie.
06:52
So we're using these network motifs
179
412567
2248
So ons gebruik hierdie netwerkmotiewe
06:54
to find talks that are unique,
180
414815
1186
om praatjies te vind wat uniek is,
of kreatief baie vakgebiede saamvat,
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
06:58
ones that are central to their topic,
182
418711
1659
of sentraal tot hulle tema is,
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
of uiteenlopende gebiede kreatief oorbrug.
07:03
Okay? We never would have found those with our obsession
184
423744
2102
Ons sou hulle nooit met ons obsessie
07:05
with what's trending now.
185
425846
2313
oor wat tans "in" is gekry het nie.
En dis alles op die argitektuur van kompleksiteit gebaseer,
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
07:11
or the patterns of how things are connected.
187
431045
2960
of die patrone van hoe dinge gekoppel is.
07:14
SG: So that's exactly right.
188
434005
1625
SG: Presies.
07:15
We've got ourselves in a world
189
435630
2479
Ons bevind onsself in ’n wêreld
wat uiters kompleks is
07:18
that's massively complex,
190
438109
2044
en ons gebruik algoritmes om dit te filtreer
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
sodat ons daardeur kan navigeer.
07:23
so we can navigate through it.
192
443020
1786
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
En daardie algoritmes is wel behulpsaam,
maar ook geweldig nou, en ons kan beter doen,
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
07:30
because we can realize that their complexity is not random.
195
450620
2566
deur te besef dat hulle kompleksiteit nie willekeurig is nie.
07:33
It has mathematical structure,
196
453186
1954
Dit besit wiskundige struktuur
wat ons kan gebruik
07:35
and we can use that mathematical structure
197
455140
1803
07:36
to go and explore things like the world of ideas
198
456943
2214
om dinge soos die ideewêreld te verken,
om te sien wat gesê of nié gesê word nie
07:39
to see what's being said, to see what's not being said,
199
459157
3000
en om ’n bietjie meer mens
07:42
and to be a little bit more human
200
462157
1407
07:43
and, hopefully, a little smarter.
201
463564
1867
en, hopelik, ’n bietjie slimmer te wees.
07:45
Thank you.
202
465431
966
Dankie.
07:46
(Applause)
203
466397
4220
(Applous)
Oor hierdie webwerf

Hierdie webwerf sal jou bekendstel aan YouTube-video's wat nuttig is om Engels te leer. Jy sal Engelse lesse sien wat deur vooraanstaande onderwysers van regoor die wêreld aangebied word. Dubbelklik op die Engelse onderskrifte wat op elke videobladsy vertoon word om die video van daar af te speel. Die onderskrifte rol in sinchronisasie met die video-afspeel. As jy enige kommentaar of versoeke het, kontak ons asseblief deur hierdie kontakvorm te gebruik.

https://forms.gle/WvT1wiN1qDtmnspy7