Eric Berlow and Sean Gourley: Mapping ideas worth spreading

71,074 views ・ 2013-09-18

TED


请双击下面的英文字幕来播放视频。

翻译人员: Li Li 校对人员: Lorraine Teng
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
Eric Berlow: 我是一个生态学家,而Sean是个物理学家,
00:15
and we both study complex networks.
1
15623
2108
我们都在研究一些复杂的网络系统。
00:17
And we met a couple years ago when we discovered
2
17731
1835
几年前我们见了次面
00:19
that we had both given a short TED Talk
3
19566
2000
发现我们都曾在TED
00:21
about the ecology of war,
4
21566
2303
做过关于战争生态学的演讲,
00:23
and we realized that we were connected
5
23869
1447
然后发现,即便没见过彼此,
00:25
by the ideas we shared before we ever met.
6
25316
2818
我们也因那些共同的想法联系在一起了。
00:28
And then we thought, you know, there are thousands
7
28134
1556
我们觉得,你们也知道,TED有成千上万个演讲,
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
其中TEDx的演讲特别多,
00:31
that are popping up all over the world.
9
31804
2211
已经遍布世界各地了。
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
他们是如何联系在一起的,
这种跨越国界的对话会是怎样的?
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
下面就由Sean为大家讲一下我们所做的事。
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
Sean Gourley: 没错,我们从世界各地147个国家
00:43
from around the world, 147 different countries,
14
43525
3046
挑选了24,000个TEDx演讲。
00:46
and we took these talks and we wanted to find
15
46571
2123
在这些演讲中,我们想要找到
00:48
the mathematical structures that underly
16
48694
2040
一种数学结构
00:50
the ideas behind them.
17
50734
1722
来揭示视频背后的思想。
00:52
And we wanted to do that so we could see how
18
52456
1370
我们想通过这样做来找出
00:53
they connected with each other.
19
53826
2053
这些演讲是如何联系在一起的。
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
当然,如果想要完成这个目标
00:57
you need a lot of data.
21
57555
956
得需要很多数据。
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
这些数据就是来自伟大的YouTube,
01:02
and we can go down and basically pull
23
62197
1768
我们能深入到YouTube,把它
01:03
all the open information from YouTube,
24
63965
2267
所有公开的信息都找出来,
01:06
all the comments, all the views, who's watching it,
25
66232
2349
包括评论、点击率、浏览者信息
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
浏览的地点、评论的具体内容。
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
但我们也能直接地,通过演讲内容翻译成文本的方式,
01:14
we can pull the entire transcript,
28
74652
2128
能获取整个字幕文本。
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
这方法对像我一样有搞笑口音的人也是行得通的。
01:19
So we can take their transcript
30
79460
2106
然后我们拿着这些文本
01:21
and actually do some pretty cool things.
31
81566
2098
做一些很酷的事情。
01:23
We can take natural language processing algorithms
32
83664
2160
我们让电脑用自然语言处理算法
01:25
to kind of read through with a computer, line by line,
33
85824
2629
去逐行地阅读文本,
01:28
extracting key concepts from this.
34
88453
2359
从中提取关键思想。
01:30
And we take those key concepts and they sort of form
35
90812
2525
这些关键思想后会形成
01:33
this mathematical structure of an idea.
36
93337
3565
该样的思想数学结构。
01:36
And we call that the meme-ome.
37
96902
1757
我们称之为“文化基因集合”。
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
所谓文化基因集合,其实很简单,
01:40
is the mathematics that underlies an idea,
39
100810
2426
就是一种解释思想的数学,
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
在此之上我们能做一些很有趣的分析,
01:45
which I want to share with you now.
41
105168
1981
现在就和大家分享一下这些分析。
01:47
So each idea has its own meme-ome,
42
107149
2190
每种思想都有它独自的文化基因集合,
01:49
and each idea is unique with that,
43
109339
1951
每个文化基因集合也不尽相同,
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
当然,思想嘛,总是大同小异的,
01:53
they kind of steal sometimes,
45
113778
1184
有时也会相互借鉴,
01:54
and they certainly build on each other,
46
114962
1827
当然也会有所发展,
01:56
and we can go through mathematically
47
116789
1616
我们能从数学层面去检查
01:58
and take the meme-ome from one talk
48
118405
1840
然后从演讲里提取文化基因集合,
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
然后和其他视频的文化基因集合做比较,
02:02
and if there's a similarity between the two of them,
50
122699
1973
如果这两者中有相似之处,
02:04
we can create a link and represent that as a graph,
51
124672
3250
我们就能建立一种联系,用图表来表示,
02:07
just like Eric and I are connected.
52
127922
2394
就像Eric和我的联系。
02:10
So that's theory, that's great.
53
130316
1394
理论上就这样,挺好的。
02:11
Let's see how it works in actual practice.
54
131710
2526
那让我们看看在实际中它是如何运作的。
02:14
So what we've got here now is the global footprint
55
134236
2788
我们现在看到的就是一个全球分布图
02:17
of all the TEDx Talks over the last four years
56
137024
2293
代表过去四年
02:19
exploding out around the world
57
139317
1550
全球所有的TEDx演讲出现的轨迹,
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
从纽约一直到在地球板块角落小小的古老的新西兰。
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
然后我们分析了前25%的演讲,
02:28
and we started to see where the connections occurred,
60
148031
2534
开始意识到联系是在哪里产生的了以及
02:30
where they connected with each other.
61
150565
1537
他们是在哪里相互联系的。
02:32
Cameron Russell talking about image and beauty
62
152102
1874
Cameron Russell讲了欧洲各地相互联系的图像和美。
02:33
connected over into Europe.
63
153976
1575
Cameron Russell讲了欧洲各地相互联系的图像和美。
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
关于以色列和巴勒斯坦联系的交流更多,
02:37
radiating outwards from the Middle East.
65
157963
2255
是从中东开始的。
02:40
And we've got something a little broader
66
160218
1298
我们也有一些全球范围内的比较广泛的对话,
02:41
like big data with a truly global footprint
67
161516
2156
就像一种遍布全球的大数据,反映了某特定话题。
02:43
reminiscent of a conversation
68
163672
2179
就像一种遍布全球的大数据,反映了某特定话题。
02:45
that is happening everywhere.
69
165851
2016
就像一种遍布全球的大数据,反映了某特定话题。
02:47
So from this, we kind of run up against the limits
70
167867
2173
所以从这里,我们似乎碰上了瓶颈,
02:50
of what we can actually do with a geographic projection,
71
170040
2530
这些地理投影到底能做什么,
02:52
but luckily, computer technology allows us to go out
72
172570
2052
幸运的是,电脑技术能让我们跳出常规框架
02:54
into multidimensional space.
73
174622
1546
进入多维空间。
02:56
So we can take in our network projection
74
176168
1875
因此,我们能利用我们的网状投影
02:58
and apply a physics engine to this,
75
178043
1750
使用物理引擎
02:59
and the similar talks kind of smash together,
76
179793
1885
将类似的演讲一起做离心运动,
03:01
and the different ones fly apart,
77
181678
2004
不同的则会飞离,
03:03
and what we're left with is something quite beautiful.
78
183682
2072
剩下的就是很美的东西。
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
EB:我只想说明一下,每个节点就是一个演讲,
03:08
they're linked if they share similar ideas,
80
188711
2589
如果他们内容类似,就会连在一起
03:11
and that comes from a machine reading
81
191300
2084
这一些都由一个机器去读取
03:13
of entire talk transcripts,
82
193384
2067
所有演讲的字幕文本,
03:15
and then all these topics that pop out,
83
195451
2231
所有这些弹出来的标题,
03:17
they're not from tags and keywords.
84
197682
1790
他们不是取自标签或者关键字。
03:19
They come from the network structure
85
199472
1725
他们是取自相互联系思想的网络结构。你继续
03:21
of interconnected ideas. Keep going.
86
201197
2168
他们是取自相互联系思想的网络结构。你继续
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
SG:好的。我其实说得有点快了,
03:25
but he's going to slow me down.
88
205387
1475
他只是想我讲慢一点。
03:26
We've got education connected to storytelling
89
206862
2034
现在我们看到“教育”是和“'讲故事”
03:28
triangulated next to social media.
90
208896
1643
还有“社交媒体”形成的三角架构。
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
还有,当然,“人类大脑”紧挨着“医疗保健”,
03:33
which you might expect,
92
213014
1386
这估计在预料中,
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
但同时还有“电子游戏”似乎在和
03:36
as those two spaces interface with each other.
94
216795
2740
这两个联系在一起的又有一定的重叠。
03:39
But I want to take you into one cluster
95
219535
1535
但我想让你们看一个群
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
这对我尤其重要,那就是“环境”。
03:43
And I want to kind of zoom in on that
97
223938
1493
我们放大一点
03:45
and see if we can get a little more resolution.
98
225431
2363
看看能不能清晰一点。
03:47
So as we go in here, what we start to see,
99
227794
2347
放大之后,我们将看到的
03:50
apply the physics engine again,
100
230141
1504
再次代入物理引擎,
03:51
we see what's one conversation
101
231645
1676
就可以看到一个话题
03:53
is actually composed of many smaller ones.
102
233321
2560
其实由很多小话题组成的。
03:55
The structure starts to emerge
103
235881
1929
这个结构开始显现出
03:57
where we see a kind of fractal behavior
104
237810
2070
一些我们所用遣词造句
03:59
of the words and the language that we use
105
239880
1619
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:01
to describe the things that are important to us
106
241499
1702
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:03
all around this world.
107
243201
1433
的分形行为的地方以及在全球人们用来形容重要事物的语言。
04:04
So you've got food economy and local food at the top,
108
244634
2332
所以“食品经济”和“当地食品”在顶端,
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
“温室气体”,“太阳能和核能浪费”也在前列。
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
你能看到一系列小的话题,
04:12
each connected to each other through the ideas
111
252316
2301
每个都因他们的思想和语言
04:14
and the language they share,
112
254617
1301
而联系在一起,
04:15
creating a broader concept of the environment.
113
255918
2450
从而创造了一个更大的关于环境的概念。
04:18
And of course, from here, we can go
114
258368
1532
当然,从这里
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
我们通过放大能看到年轻人在看什么。
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
他们聚焦在能源技术和核聚变。
04:25
This is their kind of resonance
117
265779
1674
这是他们对环境话题
04:27
for the conversation around the environment.
118
267453
2406
产生的一种共鸣。
04:29
If we split along gender lines,
119
269859
1899
如果我们按性别来分类的话,
04:31
we can see females resonating heavily
120
271758
1987
能看到女性的共鸣
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
更与食品经济有关,是充满希望和乐观的。
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
当然还有很多有趣的发现,
04:39
and I'll throw to Eric for the next part.
123
279872
1762
我就交给Eric来讲下一部分。
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
EB:恩,我就想指出,
04:43
you cannot get this kind of perspective
125
283236
1538
你是没法从YouTube那个简单的搜索栏里
04:44
from a simple tag search on YouTube.
126
284774
3360
得到这种回馈的。
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
现在我们跳出环境话题,重新回到全球的对话,
04:52
out of environment, and look at all the talks together.
128
292322
2534
来看下所有的这些演讲。
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
当面对如此数量的内容时,我们经常
04:57
we do a couple of things to simplify it.
130
297783
2431
通过其他手段去简化它。
05:00
We might just say, well,
131
300214
1314
我们可能会说,
05:01
what are the most popular talks out there?
132
301528
2829
那里面最受欢迎的演讲有哪些,
05:04
And a few rise to the surface.
133
304357
1397
然后就有一些浮现出来。
05:05
There's a talk about gratitude.
134
305754
1828
其中一个是关于感恩的。
05:07
There's another one about personal health and nutrition.
135
307582
3344
有个是关于个人健康与营养的。
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
当然,肯定会有一个是关于色情的,对吧?
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
所以我们就能说,感恩,是去年的主题。
05:17
What's trending now? What's the popular talk now?
138
317089
2522
现在的趋势是什么?现在流行的演讲是什么?
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
这样我们就能看到数字隐私成为新生的热门话题。
05:22
is about digital privacy.
140
322932
2666
这样我们就能看到数字隐私成为新生的热门话题。
05:25
So this is great. It simplifies things.
141
325598
1693
这很棒,它简化了一切。
05:27
But there's so much creative content
142
327291
1827
但这样就有很多新鲜的内容
05:29
that's just buried at the bottom.
143
329118
1921
被淹没在底部了。
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
我不喜欢这样。我们要怎样才能让这些
05:34
that's maybe really creative and interesting?
145
334357
2458
可能真的有新意有趣的话题回到顶层呢?
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
其实我们可以回到思想的网络结构上
05:39
to do that.
147
339746
1430
来实现这一点。
05:41
Remember, it's that network structure
148
341176
2114
记住,是这个网络结构
05:43
that is creating these emergent topics,
149
343290
2268
让这些话题显现出来,
05:45
and let's say we could take two of them,
150
345558
1515
我们不妨拿出其中的两个
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
像“城市”和“遗传”,然后看看
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
是否有其他演讲能有创意地把这两个不同的科目联系起来。
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
而这——基本上,这种创新性的混合
05:54
is one of the hallmarks of innovation.
154
354964
1840
就是革新的标记之一。
05:56
Well here's one by Jessica Green
155
356804
1606
这儿有一个Jessica Green
05:58
about the microbial ecology of buildings.
156
358410
2379
关于建筑的微生物生态学的演讲。
06:00
It's literally defining a new field.
157
360789
2010
它事实上是在定义一个新的领域。
06:02
And we could go back to those topics and say, well,
158
362799
2103
然后我们再回到这两个话题上,
06:04
what talks are central to those conversations?
159
364902
2768
想象在这里,有哪些是比较核心的?
06:07
In the cities cluster, one of the most central
160
367670
1690
在“城市”的那堆里,其中一个最核心的
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
就是Mitch Joachim的生态城市,
06:13
and in the genetics cluster,
162
373312
1720
而在“遗传”的那堆里
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
有Craig Venter的一个关于合成生物学的演讲。
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
还有很多演讲以他们的内容与其他许多演讲联系在一起的。
06:21
We could go the other direction and say, well,
165
381578
1843
我们还可以从另一个方向入手,比方说
06:23
what are talks that are broadly synthesizing
166
383421
2272
有哪些演讲,是广泛地
06:25
a lot of different kinds of fields.
167
385693
1448
综合了很多不同领域的。
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
我们利用一种生态多样性的方法得到这个答案。
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
例如,Steven Pinker的一个演讲是关于暴力的历史,
06:32
very synthetic.
170
392410
1180
非常综合。
06:33
And then, of course, there are talks that are so unique
171
393590
2078
当然,还有一些演讲是非常独特的,
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
已经到了一定境界,不是常人能理解的,
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
我们称之为Colleen Flanagan指数。
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
如果你不知道Colleen没关系,她是个艺术家,
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
所以我问她,“我们空间概念的最高层
06:45
in the stratosphere of our idea space?"
176
405849
1672
是什么样的?”
06:47
And apparently it smells like bacon.
177
407521
3255
显然那地方闻着像培根。
06:50
I wouldn't know.
178
410776
1791
我也不知道。
06:52
So we're using these network motifs
179
412567
2248
所以我们用这些网络图形
06:54
to find talks that are unique,
180
414815
1186
来寻找那些独特的演讲,
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
那些创造性地综合了很多领域的演讲,
06:58
ones that are central to their topic,
182
418711
1659
那些中心明确的演讲,
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
还有那些创新地把不相干的领域联系起来的演讲。
07:03
Okay? We never would have found those with our obsession
184
423744
2102
对吧?一味地看趋势的话
07:05
with what's trending now.
185
425846
2313
我们是没法找到这些演讲的。
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
所有的这一切来自复杂性架构
07:11
or the patterns of how things are connected.
187
431045
2960
或是事物联系的模式。
07:14
SG: So that's exactly right.
188
434005
1625
SG:非常有道理。
07:15
We've got ourselves in a world
189
435630
2479
我们处在一个非复杂的世界,
07:18
that's massively complex,
190
438109
2044
我们处在一个非常复杂的世界,
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
我们一直试图用算法简化它
07:23
so we can navigate through it.
192
443020
1786
以便去驾驭它。
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
而这些算法就算有时有用,
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
也是非常有限的,而我们能做得更好,
07:30
because we can realize that their complexity is not random.
195
450620
2566
因为我们能意识到这种复杂性不是偶然。
07:33
It has mathematical structure,
196
453186
1954
它有数学架构,
07:35
and we can use that mathematical structure
197
455140
1803
而我们能用这个数学架构去深入研究
07:36
to go and explore things like the world of ideas
198
456943
2214
例如这个世界上的所有思想,
07:39
to see what's being said, to see what's not being said,
199
459157
3000
去看看人们都讨论些什么,还有什么没讨论过的,
07:42
and to be a little bit more human
200
462157
1407
从而使得这些数据显得更人性化
07:43
and, hopefully, a little smarter.
201
463564
1867
更富有智慧。
07:45
Thank you.
202
465431
966
谢谢
07:46
(Applause)
203
466397
4220
(掌声)
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7