Eric Berlow and Sean Gourley: Mapping ideas worth spreading

70,988 views ・ 2013-09-18

TED


請雙擊下方英文字幕播放視頻。

譯者: Jonas Lau 審譯者: Kuan Hsien Lee
00:12
Eric Berlow: I'm an ecologist, and Sean's a physicist,
0
12562
3061
艾瑞克.伯勞: 我是生態學家 肖恩是物理學家
00:15
and we both study complex networks.
1
15623
2108
我們都研究複雜的網絡
00:17
And we met a couple years ago when we discovered
2
17731
1835
幾年前認識對方是因為
00:19
that we had both given a short TED Talk
3
19566
2000
我們都在 TED 這個平台上
00:21
about the ecology of war,
4
21566
2303
發表過有關生態大戰的演講
00:23
and we realized that we were connected
5
23869
1447
這才發現我們還沒見面之前
00:25
by the ideas we shared before we ever met.
6
25316
2818
就已經因我們分享的構想而有關係
00:28
And then we thought, you know, there are thousands
7
28134
1556
然後我們就想: 世界上有
00:29
of other talks out there, especially TEDx Talks,
8
29690
2114
這麼多的演講,尤其是 TEDx 的演講
00:31
that are popping up all over the world.
9
31804
2211
在全球各地如雨後春筍般湧現
00:34
How are they connected,
10
34015
923
00:34
and what does that global conversation look like?
11
34938
2010
究竟他們是如何相連
這個全球性對話像似什麼呢?
00:36
So Sean's going to tell you a little bit about how we did that.
12
36948
2810
現在肖恩將會為你們講解我們的做法
00:39
Sean Gourley: Exactly. So we took 24,000 TEDx Talks
13
39758
3767
肖恩.古爾利: 沒錯。我們從全球一百四十七個國家
00:43
from around the world, 147 different countries,
14
43525
3046
選取了二萬四千場 TEDx 演講
00:46
and we took these talks and we wanted to find
15
46571
2123
我們想要找出
00:48
the mathematical structures that underly
16
48694
2040
這些蘊藏在演講背後
00:50
the ideas behind them.
17
50734
1722
藏在構想背後的數學模型結構
00:52
And we wanted to do that so we could see how
18
52456
1370
這樣一來我們可以看出
00:53
they connected with each other.
19
53826
2053
構想與構想之間是如何相連的
00:55
And so, of course, if you're going to do this kind of stuff,
20
55879
1676
當然,如果你要做這樣的分析
00:57
you need a lot of data.
21
57555
956
你需要大量的數據
00:58
So the data that you've got is a great thing called YouTube,
22
58511
3686
而這些數據蘊藏在一個偉大的發明中 -- 叫做 YouTube
01:02
and we can go down and basically pull
23
62197
1768
我們就是上 Youtube
01:03
all the open information from YouTube,
24
63965
2267
下載所有公開的信息
01:06
all the comments, all the views, who's watching it,
25
66232
2349
全部的評論、點擊率、誰看過這個影片
01:08
where are they watching it, what are they saying in the comments.
26
68581
2779
他們在哪裏看這個影片,他們在評論中說了甚麼
01:11
But we can also pull up, using speech-to-text translation,
27
71360
3292
我們還可以用語音翻譯
01:14
we can pull the entire transcript,
28
74652
2128
把整篇講稿呈現出來
01:16
and that works even for people with kind of funny accents like myself.
29
76780
2680
這招對於我這些有奇異口音的人也管用
01:19
So we can take their transcript
30
79460
2106
得到了他們的講稿以後
01:21
and actually do some pretty cool things.
31
81566
2098
我們就能做出各樣有趣的事
01:23
We can take natural language processing algorithms
32
83664
2160
我們以自然語言運算法
01:25
to kind of read through with a computer, line by line,
33
85824
2629
用電腦,逐行逐行的去讀取講稿
01:28
extracting key concepts from this.
34
88453
2359
再從中抽取講稿中的要旨
01:30
And we take those key concepts and they sort of form
35
90812
2525
我們以這些要旨構成
01:33
this mathematical structure of an idea.
36
93337
3565
這個包含不同構想的數學模型
01:36
And we call that the meme-ome.
37
96902
1757
我們稱之為 meme-ome (想法基因)
01:38
And the meme-ome, you know, quite simply,
38
98659
2151
簡單來說,想法基因
01:40
is the mathematics that underlies an idea,
39
100810
2426
就是藏在構想背後的數學
01:43
and we can do some pretty interesting analysis with it,
40
103236
1932
我們可以做一些相當有趣的分析
01:45
which I want to share with you now.
41
105168
1981
現在我想跟你們分享一下
01:47
So each idea has its own meme-ome,
42
107149
2190
每一個想法都有它的「想法基因」
01:49
and each idea is unique with that,
43
109339
1951
而每一個想法都是獨一無二的
01:51
but of course, ideas, they borrow from each other,
44
111290
2488
不過當然,有些想法是從別的地方借用過來的
01:53
they kind of steal sometimes,
45
113778
1184
有些時候是偷來的
01:54
and they certainly build on each other,
46
114962
1827
所以它們會建立在其他的想法之上
01:56
and we can go through mathematically
47
116789
1616
我們可以以數學方法
01:58
and take the meme-ome from one talk
48
118405
1840
從一個演講選取它的「想法基因」
02:00
and compare it to the meme-ome from every other talk,
49
120245
2454
再用它來跟其他演講的想法基因做比對
02:02
and if there's a similarity between the two of them,
50
122699
1973
看看兩者之間是否有相似的地方
02:04
we can create a link and represent that as a graph,
51
124672
3250
我們可以建立一個連繫,並以圖象顯示出來
02:07
just like Eric and I are connected.
52
127922
2394
這就像艾瑞克跟我一樣連接起來
02:10
So that's theory, that's great.
53
130316
1394
這就是我們的理論,看似不錯吧
02:11
Let's see how it works in actual practice.
54
131710
2526
現在我們看看它實際運作吧
02:14
So what we've got here now is the global footprint
55
134236
2788
我們這裏有過去四年間
02:17
of all the TEDx Talks over the last four years
56
137024
2293
TEDx 演講在全球的足跡
02:19
exploding out around the world
57
139317
1550
它遍佈全世界
02:20
from New York all the way down to little old New Zealand in the corner.
58
140867
3329
從紐約一直到在另一角落中小小的紐西蘭
02:24
And what we did on this is we analyzed the top 25 percent of these,
59
144196
3835
我們所做的是分析當中的四分之一
02:28
and we started to see where the connections occurred,
60
148031
2534
之後我們就開始發現它們當中的連繫
02:30
where they connected with each other.
61
150565
1537
以及它們從哪一個地方連接起來
02:32
Cameron Russell talking about image and beauty
62
152102
1874
卡梅倫.羅素講述影像與美學
02:33
connected over into Europe.
63
153976
1575
把我們帶到歐洲
02:35
We've got a bigger conversation about Israel and Palestine
64
155551
2412
有關以色列及巴勒斯坦的演講其範圍更廣了些
02:37
radiating outwards from the Middle East.
65
157963
2255
從中東一直延伸開去
02:40
And we've got something a little broader
66
160218
1298
我們還有一個比較廣議題
02:41
like big data with a truly global footprint
67
161516
2156
像是世界各地都在討論的巨量資料(大數據)
02:43
reminiscent of a conversation
68
163672
2179
讓人想起
02:45
that is happening everywhere.
69
165851
2016
到處都在發生的對話
02:47
So from this, we kind of run up against the limits
70
167867
2173
從這裏,我們就好像遇見了一個
02:50
of what we can actually do with a geographic projection,
71
170040
2530
平面的地域投影給我們設的限制
02:52
but luckily, computer technology allows us to go out
72
172570
2052
慶幸地,電腦科技容許我們
02:54
into multidimensional space.
73
174622
1546
走進多維空間
02:56
So we can take in our network projection
74
176168
1875
所以我們可以理解我們的網路投射
02:58
and apply a physics engine to this,
75
178043
1750
透過物理引擎的運用
02:59
and the similar talks kind of smash together,
76
179793
1885
而相似的演講相似碰撞在一起
03:01
and the different ones fly apart,
77
181678
2004
不同的演講則會遠離
03:03
and what we're left with is something quite beautiful.
78
183682
2072
我們最後得出這樣漂亮的結果
03:05
EB: So I want to just point out here that every node is a talk,
79
185754
2957
艾瑞克: 我想指出這裏每一點都代表一場演講
03:08
they're linked if they share similar ideas,
80
188711
2589
如果它個有相似的構想,它們就會連起來
03:11
and that comes from a machine reading
81
191300
2084
這是一個機器讀取
03:13
of entire talk transcripts,
82
193384
2067
所有演講稿
03:15
and then all these topics that pop out,
83
195451
2231
然後抽取當中的主旨所得出的結果
03:17
they're not from tags and keywords.
84
197682
1790
它們並非來自標籤及關鍵詞
03:19
They come from the network structure
85
199472
1725
它們實際上是來自互相關連的構想
03:21
of interconnected ideas. Keep going.
86
201197
2168
所組成的網絡結構。你繼續吧
03:23
SG: Absolutely. So I got a little quick on that,
87
203365
2022
肖恩: 絕對是。我比說的有點太快了
03:25
but he's going to slow me down.
88
205387
1475
但他會降低我的節奏
03:26
We've got education connected to storytelling
89
206862
2034
我們可以將教育、故事敍述
03:28
triangulated next to social media.
90
208896
1643
與社交媒體連成一個三角形
03:30
You've got, of course, the human brain right next to healthcare,
91
210539
2475
你可以得出: 人腦就在醫療的旁邊
03:33
which you might expect,
92
213014
1386
這或許也是你預期之內的
03:34
but also you've got video games, which is sort of adjacent,
93
214400
2395
但你也會得出電玩遊戲... 很接近地
03:36
as those two spaces interface with each other.
94
216795
2740
它們兩者之間有所互動
03:39
But I want to take you into one cluster
95
219535
1535
不過我希望帶你們到一組主題
03:41
that's particularly important to me, and that's the environment.
96
221070
2868
這對我來說是一個特別的群組,這是「環境」
03:43
And I want to kind of zoom in on that
97
223938
1493
而我又想再放大這個部分
03:45
and see if we can get a little more resolution.
98
225431
2363
看看我們可否再多提高一點它的解像度
03:47
So as we go in here, what we start to see,
99
227794
2347
當我們進入這個群組時,我們可以看到
03:50
apply the physics engine again,
100
230141
1504
再一次運用我們的物理引擎
03:51
we see what's one conversation
101
231645
1676
我們可以看到一場演講
03:53
is actually composed of many smaller ones.
102
233321
2560
實際上是由很多較小規模的對話交幟而成
03:55
The structure starts to emerge
103
235881
1929
這個組織開始顯露出來了
03:57
where we see a kind of fractal behavior
104
237810
2070
我們可以看到一些
03:59
of the words and the language that we use
105
239880
1619
一些我們用來形容在我們周圍、
04:01
to describe the things that are important to us
106
241499
1702
對我們很重要的詞語及語言
04:03
all around this world.
107
243201
1433
有不規則的行為
04:04
So you've got food economy and local food at the top,
108
244634
2332
你可以看到食物經濟學及本土食物在最頂層
04:06
you've got greenhouse gases, solar and nuclear waste.
109
246966
2719
你也可以看到溫室氣體、太陽能、核廢料
04:09
What you're getting is a range of smaller conversations,
110
249685
2631
你可以得到的是一系列較小規模的對話
04:12
each connected to each other through the ideas
111
252316
2301
每一個都以它的構思
04:14
and the language they share,
112
254617
1301
和它們的共通語言與其他對話連在一起
04:15
creating a broader concept of the environment.
113
255918
2450
最後構成一個有關於環境,但更寛更廣的想法
04:18
And of course, from here, we can go
114
258368
1532
當然,從這裏,我們可以
04:19
and zoom in and see, well, what are young people looking at?
115
259900
3534
繼續放大及看看,究竟年輕人在看甚麼呢?
04:23
And they're looking at energy technology and nuclear fusion.
116
263434
2345
原來他們在看有關能源科技及核聚變的資訊
04:25
This is their kind of resonance
117
265779
1674
這是他們對有關環境的對話
04:27
for the conversation around the environment.
118
267453
2406
所產生出的共鳴
04:29
If we split along gender lines,
119
269859
1899
如果我們以性別劃分
04:31
we can see females resonating heavily
120
271758
1987
我們可以看到女性對於食物經濟學、以及
04:33
with food economy, but also out there in hope and optimism.
121
273745
3645
「希望與樂觀」有較大的共鳴
04:37
And so there's a lot of exciting stuff we can do here,
122
277390
2482
這裏有很多令人興奮的東西可以做
04:39
and I'll throw to Eric for the next part.
123
279872
1762
而我會將以下的部分交給艾瑞克
04:41
EB: Yeah, I mean, just to point out here,
124
281634
1602
艾瑞克: 是的,我認為,在指說明
04:43
you cannot get this kind of perspective
125
283236
1538
你無法得到這些觀點
04:44
from a simple tag search on YouTube.
126
284774
3360
從 YouTube 中簡單的標籤搜尋中
04:48
Let's now zoom back out to the entire global conversation
127
288134
4188
現在回到全球性的對話
04:52
out of environment, and look at all the talks together.
128
292322
2534
將全部的演講一同觀察
04:54
Now often, when we're faced with this amount of content,
129
294856
2927
很多時,當我們面對這樣龐大的內容
04:57
we do a couple of things to simplify it.
130
297783
2431
我們會用一系列的方法去簡化它
05:00
We might just say, well,
131
300214
1314
我們或許會說,譬如
05:01
what are the most popular talks out there?
132
301528
2829
哪一個是最受歡迎的演講呢?
05:04
And a few rise to the surface.
133
304357
1397
有數個演講浮到表面來
05:05
There's a talk about gratitude.
134
305754
1828
這裏有一個演講關於感恩
05:07
There's another one about personal health and nutrition.
135
307582
3344
這裏有另一個演講關於個人健康與營養
05:10
And of course, there's got to be one about porn, right?
136
310926
2929
當然,有另一個演講關於色情行業,對嗎?
05:13
And so then we might say, well, gratitude, that was last year.
137
313855
3234
接着,我們會說,好,感恩,那是去年的演講
05:17
What's trending now? What's the popular talk now?
138
317089
2522
那現在的趨勢是甚麼呢? 哪一個是現在最流行的演講呢?
05:19
And we can see that the new, emerging, top trending topic
139
319611
3321
我們可以看到這個新的、正冒起來的、最流行的題目
05:22
is about digital privacy.
140
322932
2666
是有關於數位隱私
05:25
So this is great. It simplifies things.
141
325598
1693
這是極好的。這簡化了不少事情
05:27
But there's so much creative content
142
327291
1827
但這裏有很多具創意的內容
05:29
that's just buried at the bottom.
143
329118
1921
被埋在最底層
05:31
And I hate that. How do we bubble stuff up to the surface
144
331039
3318
我討厭這種感覺。我們怎樣可以令這些可能是具創意
05:34
that's maybe really creative and interesting?
145
334357
2458
及有趣的東西浮到表面呢?
05:36
Well, we can go back to the network structure of ideas
146
336815
2931
我們可以回到那個包含不同構思的網絡
05:39
to do that.
147
339746
1430
去尋找它們
05:41
Remember, it's that network structure
148
341176
2114
記住,這就是那個製造出不同的、
05:43
that is creating these emergent topics,
149
343290
2268
處於萌芽階段的題目的網絡
05:45
and let's say we could take two of them,
150
345558
1515
不如我們拿當中的兩個題目
05:47
like cities and genetics, and say, well, are there any talks
151
347073
3047
像是城市和基因,再看看有哪些演講
05:50
that creatively bridge these two really different disciplines.
152
350120
2569
很有想像力的把這兩個截然不同的科目連在一起
05:52
And that's -- Essentially, this kind of creative remix
153
352689
2275
這個 -- 實際上,這種具創新性的重組
05:54
is one of the hallmarks of innovation.
154
354964
1840
就是創新的特徵之一
05:56
Well here's one by Jessica Green
155
356804
1606
這裏有一個謝西嘉.格林主講
05:58
about the microbial ecology of buildings.
156
358410
2379
有關建築物裏的微生物生態學的演講
06:00
It's literally defining a new field.
157
360789
2010
她的確是在界定一個新的領域
06:02
And we could go back to those topics and say, well,
158
362799
2103
我們可以回到這些主題,並問問
06:04
what talks are central to those conversations?
159
364902
2768
這些談話間核心的演講是什麼?
06:07
In the cities cluster, one of the most central
160
367670
1690
在城市這個群組裏,一個最中心的演講
06:09
was one by Mitch Joachim about ecological cities,
161
369360
3952
是由米茨.祖詹主講,主題是主張生態保護的城市
06:13
and in the genetics cluster,
162
373312
1720
在基因研究這個群組
06:15
we have a talk about synthetic biology by Craig Venter.
163
375032
3193
我們有一個克萊格·凡特主講、關於人工生物學的演講
06:18
These are talks that are linking many talks within their discipline.
164
378225
3353
這些演講都連繫着很多在相同範疇的其他演講
06:21
We could go the other direction and say, well,
165
381578
1843
我們可以向另一個方向出發
06:23
what are talks that are broadly synthesizing
166
383421
2272
問問哪些演講是廣泛綜合
06:25
a lot of different kinds of fields.
167
385693
1448
許多不同的領域
06:27
We used a measure of ecological diversity to get this.
168
387141
2533
我們用一個生態學多樣性的量度單位去看看
06:29
Like, a talk by Steven Pinker on the history of violence,
169
389674
2736
一個史迪芬.平克的演講、關於暴力的歷史
06:32
very synthetic.
170
392410
1180
就很有綜合性
06:33
And then, of course, there are talks that are so unique
171
393590
2078
當然,也有些演講是很獨特的
06:35
they're kind of out in the stratosphere, in their own special place,
172
395668
3090
它們就是遠離平流層,在它們自己的一個特別位置
06:38
and we call that the Colleen Flanagan index.
173
398758
2514
我們叫它做「歌蓮.費拿根系數」
06:41
And if you don't know Colleen, she's an artist,
174
401272
3034
如果你不認識歌蓮,她是一個藝術家
06:44
and I asked her, "Well, what's it like out there
175
404306
1543
當我問她: 「唔,在平流層裏
06:45
in the stratosphere of our idea space?"
176
405849
1672
我們的想法看似甚麼呢?」
06:47
And apparently it smells like bacon.
177
407521
3255
顯然地,它的嗅味像一塊煙肉
06:50
I wouldn't know.
178
410776
1791
我不會知道
06:52
So we're using these network motifs
179
412567
2248
所以我們就用這些網絡中心思想
06:54
to find talks that are unique,
180
414815
1186
去尋找獨特的演講
06:56
ones that are creatively synthesizing a lot of different fields,
181
416001
2710
有些是創意地結合不同範疇
06:58
ones that are central to their topic,
182
418711
1659
有些是在它們的領域中具有代表性
07:00
and ones that are really creatively bridging disparate fields.
183
420370
3374
以及有些是相當創意去連繫截然不同範疇的演講
07:03
Okay? We never would have found those with our obsession
184
423744
2102
可以嗎? 即使我們着了魔一樣去找尋現時最流行的演講
07:05
with what's trending now.
185
425846
2313
也未必會找到它們
07:08
And all of this comes from the architecture of complexity,
186
428159
2886
它們隱藏在複雜的結構裏
07:11
or the patterns of how things are connected.
187
431045
2960
或是事物間如何連結的模式
07:14
SG: So that's exactly right.
188
434005
1625
肖恩: 這完全是對的
07:15
We've got ourselves in a world
189
435630
2479
我們就在一個
07:18
that's massively complex,
190
438109
2044
無比複雜的世界中
07:20
and we've been using algorithms to kind of filter it down
191
440153
2867
我們用一系列的運算法去拆解它
07:23
so we can navigate through it.
192
443020
1786
以致我們可以在中間游走
07:24
And those algorithms, whilst being kind of useful,
193
444806
2338
這些運算法,雖然是很有用
07:27
are also very, very narrow, and we can do better than that,
194
447144
3476
但它們仍然是不夠全面的,我們定當能夠做得更好
07:30
because we can realize that their complexity is not random.
195
450620
2566
因為我們發現這些複雜性並不是偶然性的
07:33
It has mathematical structure,
196
453186
1954
它有一個數學結構
07:35
and we can use that mathematical structure
197
455140
1803
我們可以用這個數學結構
07:36
to go and explore things like the world of ideas
198
456943
2214
去探索世界上不同的構思
07:39
to see what's being said, to see what's not being said,
199
459157
3000
去看看別人說過甚麼,甚麼沒有被提出過
07:42
and to be a little bit more human
200
462157
1407
再去做些更人性化的事
07:43
and, hopefully, a little smarter.
201
463564
1867
亦希望變得聰明一些
07:45
Thank you.
202
465431
966
謝謝
07:46
(Applause)
203
466397
4220
(掌聲)
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7