The mission to create a searchable database of Earth's surface | Will Marshall

103,381 views ・ 2018-08-13

TED


Please double-click on the English subtitles below to play the video.

Prevodilac: Ivana Korom Lektor: Aleksandar Korom
00:12
Four years ago, here at TED,
0
12761
2215
Pre četiri godine, ovde na TED-u,
00:15
I announced Planet's Mission 1:
1
15000
2336
najavio sam Planetinu Misiju 1:
00:17
to launch a fleet of satellites
2
17360
1856
da lansiramo flotu satelita
00:19
that would image the entire Earth, every day,
3
19240
2280
koja će snimati celu Zemlju, svakog dana,
00:22
and to democratize access to it.
4
22560
1640
i da pristup tome demokratizujemo.
00:25
The problem we were trying to solve was simple.
5
25520
2216
Problem koji smo pokušavali da rešimo bio je jednostavan.
00:27
Satellite imagery you find online is old, typically years old,
6
27760
3096
Satelitski snimci koje nalazite na netu su stari, godinama stari,
00:30
yet human activity was happening on days and weeks and months,
7
30880
3936
a ljudska aktivnost se dešava danima, nedeljama, mesecima,
00:34
and you can't fix what you can't see.
8
34840
2256
a ne možete popraviti ono što ne vidite.
00:37
We wanted to give people the tools to see that change and take action.
9
37120
3776
Želeli smo da ljudima damo alate da vide tu promenu i preduzmu nešto.
00:40
The beautiful Blue Marble image, taken by the Apollo 17 astronauts in 1972
10
40920
4936
Predivna slika Plave planete koju su uslikali astronauti Apola 17, 1972.
00:45
had helped humanity become aware that we're on a fragile planet.
11
45880
3280
pomogla je čovečanstvu da postane svesno da se nalazimo na krhkoj planeti.
00:49
And we wanted to take it to the next level,
12
49600
2056
A mi smo želeli to da prenesemo na sledeći nivo,
00:51
to give people the tools to take action, to take care of it.
13
51680
3456
da damo ljudima alate da preduzmu nešto, da vode računa o njoj.
00:55
Well, after many Apollo projects of our own,
14
55160
4056
Pa, posle mnogih sopstvenih Apolo projekata,
00:59
launching the largest fleet of satellites in human history,
15
59240
2960
lansiranja nаjveće flote satelita u ljudskoj istoriji,
01:03
we have reached our target.
16
63600
1520
dostigli smo svoj cilj.
01:06
Today, Planet images the entire Earth, every single day.
17
66080
3656
Danas, Planeta snima celu Zemlju svakog dana.
01:09
Mission accomplished.
18
69760
1216
Misija ostvarena.
01:11
(Applause)
19
71000
2536
(Aplauz)
01:13
Thank you.
20
73560
1200
Hvala.
01:15
It's taken 21 rocket launches --
21
75600
3976
Bilo je potrebno 21 lansiranje raketa -
01:19
this animation makes it look really simple -- it was not.
22
79600
4160
na ovoj animaciji deluje jednostavno, ali nije bilo.
01:25
And we now have over 200 satellites in orbit,
23
85040
3456
Sada u orbiti imamo preko 200 satelita,
01:28
downlinking their data to 31 ground stations we built around the planet.
24
88520
3936
koji šalju svoje podatke na 31 stanicu koju smo sagradili na zemlji.
01:32
In total, we get 1.5 million 29-megapixel images of the Earth down each day.
25
92480
6296
Ukupno, dobijamo 1,5 milion slika Zemlje, od 29 megapiksela, svaki dan.
01:38
And on any one location of the Earth's surface,
26
98800
2416
I sada imamo više od 500 slika
01:41
we now have on average more than 500 images.
27
101240
3496
bilo koje tačke Zemljine površine.
01:44
A deep stack of data, documenting immense change.
28
104760
3880
Ogromna gomila podataka, koja beleži velike promene.
01:49
And lots of people are using this imagery.
29
109320
2536
Mnogo ljudi koristi ove slike.
01:51
Agricultural companies are using it to improve farmers' crop yields.
30
111880
5136
Poljoprivredne kompanije ih koriste da poboljšaju prinose njiva.
01:57
Consumer-mapping companies are using it to improve the maps you find online.
31
117040
4176
Kompanije koje prave mape koriste ih da poboljšaju mape koje nalazite na netu.
02:01
Governments are using it for border security
32
121240
2096
Vlade ih koriste za pogranično obezbeđenje
02:03
or helping with disaster response after floods and fires and earthquakes.
33
123360
3680
ili da pomažu u odgovorima na nepogode posle poplava, požara ili zemljotresa.
02:08
And lots of NGOs are using it.
34
128320
1536
I mnoge nevladine organizacije ih koriste.
02:09
So, for tracking and stopping deforestation.
35
129880
3416
Za praćenje i zaustavljanje seče šuma.
02:13
Or helping to find the refugees fleeing Myanmar.
36
133320
3536
Ili za pomoć pri pronalaženju izbeglica koje beže iz Mjanmara.
02:16
Or to track all the activities in the ongoing crisis in Syria,
37
136880
4376
Ili da prate sve aktivnosti u tekućoj krizi u Siriji,
02:21
holding all sides accountable.
38
141280
1680
i da sve strane drže odgovornim.
02:24
And today, I'm pleased to announce Planet stories.
39
144640
3456
A danas, imam zadovoljstvo da najavim Planetine priče.
02:28
Anyone can go online to planet.com
40
148120
2296
Svako može da ode na planet.com,
02:30
open an account and see all of our imagery online.
41
150440
3240
napravi nalog i vidi sve naše slike onlajn.
02:34
It's a bit like Google Earth, except it's up-to-date imagery,
42
154480
3096
Liči na Google Earth, osim što su slike ažurirane
02:37
and you can see back through time.
43
157600
2680
i možete da se vraćate kroz vreme.
02:41
You can compare any two days
44
161040
1696
Možete da uporedite bilo koja dva dana
02:42
and see the dramatic changes that happen around our planet.
45
162760
2880
i vidite dramatične promene koje se dešavaju širom planete.
02:46
Or you can create a time lapse through the 500 images that we have
46
166560
3400
Ili možete da napravite video sa 500 slika koje imamo
02:50
and see that change dramatically over time.
47
170600
2560
i vidite dramatičnu promenu kroz vreme.
02:54
And you can share these over social media.
48
174000
2720
A možete i da ih podelite putem društvenih medija.
02:57
It's pretty cool.
49
177520
1216
Prilično je kul.
02:58
(Applause)
50
178760
1216
(Aplauz)
03:00
Thank you.
51
180000
1200
Hvala.
03:02
We initially created this tool for news journalists,
52
182440
2456
Prvobitno smo ovo napravili za novinare,
03:04
who wanted to get unbiased information about world events.
53
184920
2736
koji su želeli da imaju nepristrasne informacije o svetskim događajima.
03:07
But now we've opened it up for anyone to use,
54
187680
2216
Ali sad smo ih otvorili za sve,
03:09
for nonprofit or personal uses.
55
189920
2000
za neprofitno i za lično korišćenje.
03:12
And we hope it will give people the tools to find and see the changes on the planet
56
192600
4416
I nadamo se da će dati ljudima alate da pronađu i vide promene na zemlji
03:17
and take action.
57
197040
1200
i preduzmu nešto.
03:18
OK, so humanity now has this database of information about the planet,
58
198920
4256
OK, sada čovečanstvo ima ovu bazu informacija o planeti
03:23
changing over time.
59
203200
1216
koja se menja kroz vreme.
03:24
What's our next mission, what's Mission 2?
60
204440
2056
Šta je naša sledeća misija, Misija 2?
03:26
In short, it's space plus AI.
61
206520
2440
Ukratko, to je svemir + veštačka inteligencija.
03:29
What we're doing with artificial intelligence
62
209720
2176
Sa veštačkom inteligencijom
03:31
is finding the objects in all the satellite images.
63
211920
3096
pronalazimo predmete u svim satelitskim slikama.
03:35
The same AI tools that are used to find cats in videos online
64
215040
4536
Isti alati veštačke inteligencije koji se koriste da nađu mačke u snimcima,
03:39
can also be used to find information on our pictures.
65
219600
3896
mogu da se koriste da pronađu informacije na našim slikama.
03:43
So, imagine if you can say, this is a ship, this is a tree,
66
223520
3336
Dakle, zamislite da možete da kažete ovo je brod, ovo je drvo,
03:46
this is a car, this is a road, this is a building, this is a truck.
67
226880
4376
ovo je auto, ovo je put, ovo je zgrada, ovo je kamion.
03:51
And if you could do that for all of the millions of images
68
231280
2736
I da možete to da uradite za sve milione slika
03:54
coming down per day,
69
234040
1256
koje se učitavaju dnevno,
03:55
then you basically create a database
70
235320
1736
onda u stvari stvarate bazu podataka
03:57
of all the sizable objects on the planet, every day.
71
237080
2656
svih predmeta na zemlji, svakog dana.
03:59
And that database is searchable.
72
239760
1560
I ta baza je pretraživa.
04:02
So that's exactly what we're doing.
73
242520
2096
To je upravo ono što radimo.
04:04
Here's a prototype, working on our API.
74
244640
2256
Evo prototipa, koji radi s našim API-em.
04:06
This is Beijing.
75
246920
1456
Ovo je Peking.
04:08
So, imagine if we wanted to count the planes in the airport.
76
248400
2856
Dakle, zamislite da želimo da prebrojimo avione na aerodromu.
04:11
We select the airport,
77
251280
1856
Odaberemo aerodrom,
04:13
and it finds the planes in today's image,
78
253160
2376
i pronalazimo avione na današnjoj slici,
04:15
and finds the planes in the whole stack of images before it,
79
255560
3256
i pronalazimo avione na čitavoj gomili slika pre toga,
04:18
and then outputs this graph of all the planes in Beijing airport over time.
80
258840
4896
a onda dobijamo ovaj grafikon svih aviona na pekinškom aerodromu kroz vreme.
04:23
Of course, you could do this for all the airports around the world.
81
263760
3576
Naravno, ovo možete da uradite za sve aerodrome na svetu.
04:27
And let's look here in the port of Vancouver.
82
267360
2936
Hajde da pogledamo ovde, u luci Vankuvera.
04:30
So, we would do the same, but this time we would look for vessels.
83
270320
3536
Možemo da uradimo isto, ali ovog puta tražimo plovila.
04:33
So, we zoom in on Vancouver, we select the area,
84
273880
4136
Dakle, zumiramo na Vankuver, odaberemo oblast,
04:38
and we search for ships.
85
278040
2056
i tražimo brodove.
04:40
And it outputs where all the ships are.
86
280120
1858
I dobijemo prikaz gde su svi brodovi.
04:42
Now, imagine how useful this would be to people in coast guards
87
282002
3214
Sad, zamislite kako bi ovo bilo korisno ljudima u obalskoj straži
04:45
who are trying to track and stop illegal fishing.
88
285240
2736
koji pokušavaju da pronađu i zaustave ilegalno ribarenje.
04:48
See, legal fishing vessels
89
288000
2056
Vidite, brodovi legalnih ribara
04:50
transmit their locations using AIS beacons.
90
290080
2936
odašilju svoju lokaciju preko AIS odašiljača.
04:53
But we frequently find ships that are not doing that.
91
293040
3616
Ali često nalazimo brodove koji to ne rade.
04:56
The pictures don't lie.
92
296680
1776
Slike ne lažu.
04:58
And so, coast guards could use that
93
298480
1696
Tako bi obalske straže mogle da koriste to
05:00
and go and find those illegal fishing vessels.
94
300200
2176
i pronađu te ilegalne ribarske brodove.
05:02
And soon we'll add not just ships and planes
95
302400
2176
Uskoro ćemo dodati ne samo brodove i avione,
05:04
but all the other objects,
96
304600
1296
nego i druge predmete,
05:05
and we can output data feeds
97
305920
1896
i možemo izbacivati hrpu podataka
05:07
of those locations of all these objects over time
98
307840
2536
o tim lokacijama svih tih predmeta tokom vremena,
05:10
that can be integrated digitally from people's work flows.
99
310400
3056
koji mogu da se digitalno integrišu iz podataka ljudi.
05:13
In time, we could get more sophisticated browsers
100
313480
3056
Vremenom, mogli bismo da dobijemo sofisticiranije pretraživače
05:16
that people pull in from different sources.
101
316560
2336
koje ljudi povlače iz raznih izvora.
05:18
But ultimately, I can imagine us abstracting out the imagery entirely
102
318920
4696
Ali na kraju, mogu da zamislim da potpuno apstrahujemo slike
05:23
and just having a queryable interface to the Earth.
103
323640
2416
i samo imamo pretraživ interfejs Zemlje.
05:26
Imagine if we could just ask,
104
326080
1416
Zamislite da možete da pitate:
05:27
"Hey, how many houses are there in Pakistan?
105
327520
2536
"Koliko kuća ima u Pakistanu?
05:30
Give me a plot of that versus time."
106
330080
1936
Izbaci mi nacrt kroz vreme."
05:32
"How many trees are there in the Amazon
107
332040
2176
"Koliko drveća ima u Amazonu
05:34
and can you tell me the locations of the trees that have been felled
108
334240
3216
i daj mi lokacije drveća koje je oboreno
05:37
between this week and last week?"
109
337480
1656
u poslednjih nedelju dana."
05:39
Wouldn't that be great?
110
339160
1216
Zar to ne bi bilo sjajno?
05:40
Well, that's what we're trying to go towards,
111
340400
2136
Pa, ka tome pokušavamo da idemo,
05:42
and we call it "Queryable Earth."
112
342560
1856
i nazivamo ga "Pretraživa Zemlja".
05:44
So, Planet's Mission 1 was to image the whole planet every day
113
344440
3896
Dakle, Planetina Misija 1 je bila da snimimo celu planetu svaki dan
05:48
and make it accessible.
114
348360
2336
i da slike budu dostupne.
05:50
Planet's Mission 2 is to index all the objects on the planet over time
115
350720
3816
Planetina Misija 2 je da popišemo sve objekte na planeti tokom vremena
05:54
and make it queryable.
116
354560
1240
i da budu pretraživi.
05:56
Let me leave you with an analogy.
117
356760
2136
Ostaviću vas sa jednom analogijom.
05:58
Google indexed what's on the internet and made it searchable.
118
358920
3400
Gugl je indeksirao sve na internetu i omogućio da se pretražuje.
06:03
Well, we're indexing what's on the Earth and making it searchable.
119
363080
3256
Mi popisujemo sve što je na Zemlji i omogućavamo da se pretražuje.
06:06
Thank you very much.
120
366360
1336
Mnogo vam hvala.
06:07
(Applause)
121
367720
4520
(Aplauz)
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7