The mission to create a searchable database of Earth's surface | Will Marshall

103,383 views ใƒป 2018-08-13

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืชืจื’ื•ื: Ruvi Biezuner ืขืจื™ื›ื”: Ido Dekkers
00:12
Four years ago, here at TED,
0
12761
2215
ืœืคื ื™ ืืจื‘ืข ืฉื ื™ื, ื›ืืŸ ื‘-TED,
00:15
I announced Planet's Mission 1:
1
15000
2336
ื”ื›ืจื–ืชื™ ืขืœ ื”ืžืฉื™ืžื” ื”ืจืืฉื•ื ื” ืฉืœ "ืคืœืื ื˜":
00:17
to launch a fleet of satellites
2
17360
1856
ืœื”ืฉื™ืง ืฆื™ ืœื•ื•ื™ื ื™ื
00:19
that would image the entire Earth, every day,
3
19240
2280
ืฉื™ืฆืœื ืืช ื›ืœ ื”ืขื•ืœื, ื›ืœ ื™ื•ื,
00:22
and to democratize access to it.
4
22560
1640
ื•ืœืืคืฉืจ ื’ื™ืฉื” ืคืชื•ื—ื” ืœื›ื•ืœื.
00:25
The problem we were trying to solve was simple.
5
25520
2216
ื”ื‘ืขื™ื” ืฉื ื™ืกื™ื ื• ืœืคืชื•ืจ ื”ื™ื™ืชื” ืคืฉื•ื˜ื”.
00:27
Satellite imagery you find online is old, typically years old,
6
27760
3096
ืชืžื•ื ื•ืช ืœื•ื•ื™ืŸ ืžื”ืื™ื ื˜ืจื ื˜ ื”ืŸ ืžื™ื•ืฉื ื•ืช, ืœืจื•ื‘ ื‘ื ื•ืช ืžืกืคืจ ืฉื ื™ื,
00:30
yet human activity was happening on days and weeks and months,
7
30880
3936
ืื•ืœื ืคืขื™ืœื•ืช ืื ื•ืฉื™ืช ืžืชืจื—ืฉืช ื‘ืคืจืงื™ ื–ืžืŸ ืฉืœ ื™ืžื™ื, ืฉื‘ื•ืขื•ืช, ื—ื•ื“ืฉื™ื,
00:34
and you can't fix what you can't see.
8
34840
2256
ื•ืื™ ืืคืฉืจ ืœืชืงืŸ ืืช ืžื” ืฉืœื ืจื•ืื™ื.
00:37
We wanted to give people the tools to see that change and take action.
9
37120
3776
ืจืฆื™ื ื• ืœืชืช ืœืื ืฉื™ื ื›ืœื™ื ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™, ื•ืœืคืขื•ืœ.
00:40
The beautiful Blue Marble image, taken by the Apollo 17 astronauts in 1972
10
40920
4936
ืชืžื•ื ืช ื”ื’ื•ืœื” ื”ื›ื—ื•ืœื” ื”ื™ืคื” ืฉืฆื•ืœืžื” ืขืœ ื™ื“ื™ ืืกื˜ืจื•ื ืื•ื˜ื™ื ืžืืคื•ืœื• 17 ื‘-1972
00:45
had helped humanity become aware that we're on a fragile planet.
11
45880
3280
ืขื–ืจื” ืœื”ืขืœื•ืช ืืช ืžื•ื“ืขื•ืช ื”ืื ื•ืฉื•ืช ืœื›ืžื” ืฉื‘ื™ืจ ื›ื“ื•ืจ ื”ืืจืฅ
00:49
And we wanted to take it to the next level,
12
49600
2056
ื•ืื ื—ื ื• ืจืฆื™ื ื• ืœืงื—ืช ืืช ื–ื” ืœืฉืœื‘ ื”ื‘ื,
00:51
to give people the tools to take action, to take care of it.
13
51680
3456
ืœืชืช ืœืื ืฉื™ื ืืช ื”ื›ืœื™ื ืœืคืขื•ืœ, ืœื“ืื•ื’ ืœืขื•ืœื.
00:55
Well, after many Apollo projects of our own,
14
55160
4056
ื•ื‘ื›ืŸ, ืื—ืจื™ ื”ืจื‘ื” "ืคืจื•ื™ื™ืงื˜ื™ ืืคื•ืœื•" ืžืฉืœ ืขืฆืžื ื•,
00:59
launching the largest fleet of satellites in human history,
15
59240
2960
ื‘ื”ืฉืงื” ืฉืœ ืฆื™ ื”ืœื•ื•ื™ื ื™ื ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื‘ื”ื™ืกื˜ื•ืจื™ื”,
01:03
we have reached our target.
16
63600
1520
ื”ื’ืขื ื• ืœื™ืขื“ ืฉืœื ื•.
01:06
Today, Planet images the entire Earth, every single day.
17
66080
3656
ื”ื™ื•ื, "ืคืœืื ื˜" ืžืฆืœื ืืช ื”ืขื•ืœื ื›ื•ืœื•, ื›ืœ ื™ื•ื.
01:09
Mission accomplished.
18
69760
1216
ื”ืžืฉื™ืžื” ื‘ื•ืฆืขื”.
01:11
(Applause)
19
71000
2536
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
01:13
Thank you.
20
73560
1200
ืชื•ื“ื”
01:15
It's taken 21 rocket launches --
21
75600
3976
ื–ื” ื“ืจืฉ 21 ืฉื™ื’ื•ืจื™ ื˜ื™ืœื™ื
01:19
this animation makes it look really simple -- it was not.
22
79600
4160
ื”ืื ื™ืžืฆื™ื” ื”ื–ื• ื’ื•ืจืžืช ืœื–ื” ืœื”ื™ืจืื•ืช ืžืื“ ืคืฉื•ื˜ -- ื–ื” ืœื ื”ื™ื”
01:25
And we now have over 200 satellites in orbit,
23
85040
3456
ื•ื›ืขืช ื™ืฉ ืœื ื• ืžืขืœ 200 ืœื•ื•ื™ื™ื ื™ื ื—ื’ื™ื
01:28
downlinking their data to 31 ground stations we built around the planet.
24
88520
3936
ื”ืžื•ืจื™ื“ื™ื ืืช ื”ื ืชื•ื ื™ื ืœ-31 ืชื—ื ื•ืช ืงืจืงืข ืฉื‘ื ื™ื ื• ืžืกื‘ื™ื‘ ืœืขื•ืœื.
01:32
In total, we get 1.5 million 29-megapixel images of the Earth down each day.
25
92480
6296
ื‘ืกืš ื”ื›ืœ, ืื ื—ื ื• ืžืงื‘ืœื™ื 1.5 ืžื™ืœื™ื•ืŸ ืชืžื•ื ื•ืช ืฉืžืฉืงืœืŸ 29 ืžื’ื”-ืคื™ืงืกืœ ื›ืœ ื™ื•ื.
01:38
And on any one location of the Earth's surface,
26
98800
2416
ื•ืœื›ืœ ืžืงื•ื ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ,
01:41
we now have on average more than 500 images.
27
101240
3496
ื™ืฉ ืœื ื• ื›ืขืช 500 ืชืžื•ื ื•ืช ื‘ืžืžื•ืฆืข.
01:44
A deep stack of data, documenting immense change.
28
104760
3880
ืžืื’ืจ ื ืชื•ื ื™ื ืขื ืง, ืฉืžืชืขื“ ืฉื™ื ื•ื™ ืžืกื™ื‘ื™.
01:49
And lots of people are using this imagery.
29
109320
2536
ื•ื”ืจื‘ื” ืื ืฉื™ื ืžืฉืชืžืฉื™ื ื‘ืชืžื•ื ื•ืช.
01:51
Agricultural companies are using it to improve farmers' crop yields.
30
111880
5136
ื—ื‘ืจื•ืช ื—ืงืœืื•ืช ืžืฉืชืžืฉื•ืช ื‘ื”ืŸ ื›ื“ื™ ืœืฉืคืจ ืืช ื™ื‘ื•ืœื™ ื”ื—ืงืœืื™ื.
01:57
Consumer-mapping companies are using it to improve the maps you find online.
31
117040
4176
ื—ื‘ืจื•ืช ืœืžื™ืคื•ื™ ืžืฉืชืžืฉื•ืช ื‘ืชืžื•ื ื•ืช ืขืœ ืžื ืช ืœืฉืคืจ ืืช ื”ืžืคื•ืช ืฉืืคืฉืจ ืœืžืฆื•ื ื‘ืจืฉืช.
02:01
Governments are using it for border security
32
121240
2096
ืžืžืฉืœื•ืช ืžืฉืชืžืฉื•ืช ื‘ื”ืŸ ืœื”ื’ื ืช ื’ื‘ื•ืœื•ืช
02:03
or helping with disaster response after floods and fires and earthquakes.
33
123360
3680
ืื• ื›ื“ื™ ืœื”ื’ื™ื‘ ืขื ืกื™ื•ืข ืื—ืจื™ ืฉื™ื˜ืคื•ื ื•ืช, ืฉืจื™ืคื•ืช ื•ืจืขื™ื“ื•ืช ืื“ืžื”.
02:08
And lots of NGOs are using it.
34
128320
1536
ื•ื”ืจื‘ื” ืขืžื•ืชื•ืช ืžืฉืชืžืฉื•ืช ื‘ืชืžื•ื ื•ืช.
02:09
So, for tracking and stopping deforestation.
35
129880
3416
ืœืžืฉืœ, ืœื˜ื•ื‘ืช ืื™ืชื•ืจ ื•ื”ืคืกืงืช ื›ืจื™ืชืช ื™ืขืจื•ืช
02:13
Or helping to find the refugees fleeing Myanmar.
36
133320
3536
ืื• ื›ื“ื™ ืœืืชืจ ืืช ื”ืคืœื™ื˜ื™ื ืฉื‘ื•ืจื—ื™ื ืžืžื™ืื ืžืจ.
02:16
Or to track all the activities in the ongoing crisis in Syria,
37
136880
4376
ืื• ื›ื“ื™ ืœืืชืจ ืืช ื›ืœ ื”ืคืขื™ืœื•ืช ื‘ืžืฉื‘ืจ ื”ืžืชืžืฉืš ื‘ืกื•ืจื™ื”,
02:21
holding all sides accountable.
38
141280
1680
ืฉืžืจืื•ืช ืฉื›ืœ ื”ืฆื“ื“ื™ื ืื—ืจืื™ื™ื.
02:24
And today, I'm pleased to announce Planet stories.
39
144640
3456
ื•ื”ื™ื•ื, ืื ื™ ืฉืžื— ืœื”ื›ืจื™ื– ืขืœ ืคืœืื ื˜ ืกื˜ื•ืจื™'ื–.
02:28
Anyone can go online to planet.com
40
148120
2296
ื›ืœ ืื—ื“ ื™ื›ื•ืœ ืœื”ืชื—ื‘ืจ ืœ-planet.com
02:30
open an account and see all of our imagery online.
41
150440
3240
ืœืคืชื•ื— ื—ืฉื‘ื•ืŸ ื•ืœืจืื•ืช ืืช ื›ืœ ื”ืชืžื•ื ื•ืช ื‘ืจืฉืช.
02:34
It's a bit like Google Earth, except it's up-to-date imagery,
42
154480
3096
ื–ื” ืงืฆืช ื›ืžื• google earth, ืืœื ืฉื”ืชืžื•ื ื•ืช ืžืขื•ื“ื›ื ื•ืช ืœื”ื™ื•ื,
02:37
and you can see back through time.
43
157600
2680
ื•ืืคืฉืจ ืœืจืื•ืช ืื—ื•ืจื” ื‘ื–ืžืŸ.
02:41
You can compare any two days
44
161040
1696
ื ื™ืชืŸ ืœื”ืฉื•ื•ืช ื›ืœ ืฉื ื™ ื™ืžื™ื
02:42
and see the dramatic changes that happen around our planet.
45
162760
2880
ื•ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™ื™ื ื”ื“ืจืžื˜ื™ื™ื ืฉืงื•ืจื™ื ืžืกื‘ื™ื‘ ืœืขื•ืœื.
02:46
Or you can create a time lapse through the 500 images that we have
46
166560
3400
ืื• ืฉืชื•ื›ืœื• ืœื™ืฆื•ืจ TIME LAPSE ื‘ืืžืฆืขื•ืช 500 ื”ืชืžื•ื ื•ืช ืฉื™ืฉ ืœื ื•
02:50
and see that change dramatically over time.
47
170600
2560
ื•ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™ ื”ื“ืจืžื˜ื™ ืœืื•ืจืš ื–ืžืŸ.
02:54
And you can share these over social media.
48
174000
2720
ื•ื ื™ืชืŸ ืœื—ืœื•ืง ืืช ื›ืœ ืืœื• ื‘ืจืฉืชื•ืช ื—ื‘ืจืชื™ื•ืช.
02:57
It's pretty cool.
49
177520
1216
ื–ื” ื“ื™ ืžื’ื ื™ื‘.
02:58
(Applause)
50
178760
1216
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
03:00
Thank you.
51
180000
1200
ืชื•ื“ื”.
03:02
We initially created this tool for news journalists,
52
182440
2456
ื‘ืžืงื•ืจ ื™ืฆืจื ื• ืืช ื”ื›ืœื™ ื”ื–ื” ืขื‘ื•ืจ ืขื™ืชื•ื ืื™ื,
03:04
who wanted to get unbiased information about world events.
53
184920
2736
ืฉืจืฆื• ืœืงื‘ืœ ืžื™ื“ืข ื ื˜ื•ืœ ืžืฉื•ื ืคื ื™ื ืื•ื“ื•ืช ื”ืžืชืจื—ืฉ ื‘ืขื•ืœื.
03:07
But now we've opened it up for anyone to use,
54
187680
2216
ืื‘ืœ ืขื›ืฉื™ื• ืคืชื—ื ื• ืืช ื”ืžืื’ืจ ืœื›ื•ืœื,
03:09
for nonprofit or personal uses.
55
189920
2000
ืขื‘ื•ืจ ืฉื™ืžื•ืฉ ืœืœื ืžื˜ืจื•ืช ืจื•ื•ื— ืื• ืขื‘ื•ืจ ืฉื™ืžื•ืฉ ืื™ืฉื™.
03:12
And we hope it will give people the tools to find and see the changes on the planet
56
192600
4416
ื•ืื ื—ื ื• ืžืงื•ื•ื™ื ืฉื–ื” ื™ื™ืชืŸ ืœืื ืฉื™ื ืืช ื”ื›ืœื™ื ืœืžืฆื•ื ื•ืœืจืื•ืช ืืช ื”ืฉื™ื ื•ื™ื™ื ื‘ื›ื“ื•ืจ ื”ืืจืฅ
03:17
and take action.
57
197040
1200
ื•ืœืคืขื•ืœ ื‘ื ื•ืฉื.
03:18
OK, so humanity now has this database of information about the planet,
58
198920
4256
ืื•ืงื™ื™, ืื– ืœืื ื•ืฉื•ืช ื™ืฉ ืขื›ืฉื™ื• ืืช ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื–ื” ืื•ื“ื•ืช ื”ืขื•ืœื
03:23
changing over time.
59
203200
1216
ืฉืžืฉืชื ื” ืขื ื”ื–ืžืŸ.
03:24
What's our next mission, what's Mission 2?
60
204440
2056
ืžื” ื”ืžืฉื™ืžื” ื”ื‘ืื”, ืžืฉื™ืžื” 2?
03:26
In short, it's space plus AI.
61
206520
2440
ื‘ืงื™ืฆื•ืจ, ื–ื” ื—ืœืœ + ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
03:29
What we're doing with artificial intelligence
62
209720
2176
ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื ืขื ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช
03:31
is finding the objects in all the satellite images.
63
211920
3096
ื–ื” ืžื•ืฆืื™ื ืืช ื”ืื•ื‘ื™ื™ืงื˜ื™ื ื‘ื›ืœ ืชืžื•ื ื•ืช ื”ืœื•ื•ื™ืŸ.
03:35
The same AI tools that are used to find cats in videos online
64
215040
4536
ืื•ืชื• ื”ื›ืœื™ ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืฉืžืฉืžืฉ ืœืžืฆื™ืืช ื—ืชื•ืœื™ื ื‘ืกืจื˜ื•ื ื™ ืจืฉืช
03:39
can also be used to find information on our pictures.
65
219600
3896
ื™ื›ื•ืœ ืœืฉืžืฉ ืœืžืฆื™ืืช ืื™ื ืคื•ืจืžืฆื™ื” ื‘ืชืžื•ื ื•ืช ืฉืœื ื•.
03:43
So, imagine if you can say, this is a ship, this is a tree,
66
223520
3336
ืื–, ื“ืžื™ื™ื ื• ืฉื™ื›ื•ืœืชื ืœื•ืžืจ, ื–ื•ื”ื™ ืกืคื™ื ื”, ื–ื”ื• ืขืฅ,
03:46
this is a car, this is a road, this is a building, this is a truck.
67
226880
4376
ื–ื•ื”ื™ ืžื›ื•ื ื™ืช, ื–ื•ื”ื™ ื“ืจืš, ื–ื”ื• ื‘ื ื™ื™ืŸ, ื–ื•ื”ื™ ืžืฉืื™ืช.
03:51
And if you could do that for all of the millions of images
68
231280
2736
ื•ืื ื™ื›ื•ืœืชื ืœืขืฉื•ืช ืืช ื–ื” ืขื‘ื•ืจ ื›ืœ ืžื™ืœื™ื•ื ื™ ื”ืชืžื•ื ื•ืช
03:54
coming down per day,
69
234040
1256
ืฉืžื•ืจื“ื•ืช ื›ืœ ื™ื•ื.
03:55
then you basically create a database
70
235320
1736
ืื– ืœืžืขืฉื” ื™ืฆืจื ื• ืžืื’ืจ ืžื™ื“ืข
03:57
of all the sizable objects on the planet, every day.
71
237080
2656
ืฉืœ ื›ืœ ื”ืื•ื‘ื™ื™ืงื˜ื™ื ื‘ื’ื•ื“ืœ ื ืชืคืก ื‘ืขื•ืœื, ื›ืœ ื™ื•ื.
03:59
And that database is searchable.
72
239760
1560
ื•ื–ื” ืžืื’ืจ ื ืชื•ื ื™ื ืฉื ื™ืชืŸ ืœื—ืคืฉ ื‘ื•.
04:02
So that's exactly what we're doing.
73
242520
2096
ืื– ื–ื” ื‘ื“ื™ื•ืง ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื.
04:04
Here's a prototype, working on our API.
74
244640
2256
ื”ื ื” ืื‘ื˜ื™ืคื•ืก, ืฉืขื•ื‘ื“ ืขื ื”ืžืžืฉืง ืฉืœื ื•.
04:06
This is Beijing.
75
246920
1456
ื–ื•ื”ื™ ื‘ื™ื™ื’'ื™ื ื’.
04:08
So, imagine if we wanted to count the planes in the airport.
76
248400
2856
ืื–, ื“ืžื™ื™ื ื• ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืกืคื•ืจ ืืช ื”ืžื˜ื•ืกื™ื ื‘ืฉื“ื” ื”ืชืขื•ืคื”.
04:11
We select the airport,
77
251280
1856
ืื ื—ื ื• ื‘ื•ื—ืจื™ื ืืช ืฉื“ื” ื”ืชืขื•ืคื”,
04:13
and it finds the planes in today's image,
78
253160
2376
ื•ื”ืžืขืจื›ืช ืžื•ืฆืืช ืืช ื”ืžื˜ื•ืกื™ื ื‘ืชืžื•ื ื” ืฉืœ ื”ื™ื•ื,
04:15
and finds the planes in the whole stack of images before it,
79
255560
3256
ื•ืžื•ืฆืืช ืืช ื”ืžื˜ื•ืกื™ื ื‘ื›ืœ ืžืื’ืจ ื”ืชืžื•ื ื•ืช ื”ืงื•ื“ืžื•ืช,
04:18
and then outputs this graph of all the planes in Beijing airport over time.
80
258840
4896
ื•ืื– ืžื™ื™ืฆืจืช ืืช ื”ื’ืจืฃ ื”ื–ื” ืฉืœ ื›ืœ ื”ืžื˜ื•ืกื™ื ื‘ื‘ื™ื’'ื™ื ื’ ืœืื•ืจืš ื–ืžืŸ.
04:23
Of course, you could do this for all the airports around the world.
81
263760
3576
ื›ืžื•ื‘ืŸ, ื™ื›ื•ืœื ื• ืœืขืฉื•ืช ืืช ื–ื” ืขื‘ื•ืจ ื›ืœ ืฉื“ื” ืชืขื•ืคื” ื‘ืขื•ืœื.
04:27
And let's look here in the port of Vancouver.
82
267360
2936
ื‘ื•ืื• ื ืกืชื›ืœ ื›ืืŸ, ื‘ื ืžืœ ืฉืœ ื•ื•ื ืงื•ื‘ืจ.
04:30
So, we would do the same, but this time we would look for vessels.
83
270320
3536
ื ืขืฉื” ืืช ืื•ืชื• ื”ื“ื‘ืจ, ืจืง ืฉื”ืคืขื ื ื—ืคืฉ ื›ืœื™ ืฉื™ื˜.
04:33
So, we zoom in on Vancouver, we select the area,
84
273880
4136
ืื– ืื ื—ื ื• ืžืชืžืงื“ื™ื ื‘ื•ื•ื ืงื•ื‘ืจ, ื‘ื•ื—ืจื™ื ืืช ื”ืื–ื•ืจ,
04:38
and we search for ships.
85
278040
2056
ื•ืžื—ืคืฉื™ื ืกืคื™ื ื•ืช.
04:40
And it outputs where all the ships are.
86
280120
1858
ื•ื–ื” ืžืจืื” ืœื ื• ืื™ืคื” ื›ืœ ื”ืกืคื™ื ื•ืช ื ืžืฆืื•ืช.
04:42
Now, imagine how useful this would be to people in coast guards
87
282002
3214
ื›ืขืช ื“ืžื™ื™ื ื• ื›ืžื” ืฉื™ืžื•ืฉื™ ื–ื” ืขื‘ื•ืจ ืžืฉืžืจ ื”ื—ื•ืคื™ื
04:45
who are trying to track and stop illegal fishing.
88
285240
2736
ืฉืžื ืกื™ื ืœืืชืจ ื•ืœืขืฆื•ืจ ื“ื™ื’ ืœื ื—ื•ืงื™.
04:48
See, legal fishing vessels
89
288000
2056
ืืชื ืจื•ืื™ื, ืกืคื™ื ื•ืช ื“ื™ื’ ื—ื•ืงื™ื•ืช
04:50
transmit their locations using AIS beacons.
90
290080
2936
ืžืฉื“ืจื•ืช ืืช ืžื™ืงื•ืžืŸ ื‘ืืžืฆืขื•ืช ืžืฉื“ืจื™ AIS
04:53
But we frequently find ships that are not doing that.
91
293040
3616
ืื‘ืœ ืื ื—ื ื• ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืžื•ืฆืื™ื ืกืคื™ื ื•ืช ืฉืœื ืขื•ืฉื•ืช ื–ืืช.
04:56
The pictures don't lie.
92
296680
1776
ื”ืชืžื•ื ื•ืช ืœื ืžืฉืงืจื•ืช.
04:58
And so, coast guards could use that
93
298480
1696
ื•ื›ืš ืžืฉืžืจ ื”ื—ื•ืคื™ื ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ื–ื”
05:00
and go and find those illegal fishing vessels.
94
300200
2176
ื•ืœืืชืจ ืืช ืื•ืชืŸ ืกืคื™ื ื•ืช ื“ื™ื’ ืœื ื—ื•ืงื™ื•ืช.
05:02
And soon we'll add not just ships and planes
95
302400
2176
ื‘ืงืจื•ื‘ ื ื•ืกื™ืฃ ืœื ืจืง ืžื˜ื•ืกื™ื ื•ืกืคื™ื ื•ืช
05:04
but all the other objects,
96
304600
1296
ืืœื ื’ื ื›ืœ ืื•ื‘ื™ื™ืงื˜ ืื—ืจ,
05:05
and we can output data feeds
97
305920
1896
ื•ื ื•ื›ืœ ืœื”ื–ืจื™ื ืืช ื”ืžื™ื“ืข
05:07
of those locations of all these objects over time
98
307840
2536
ืื•ื“ื•ืช ืžื™ืงื•ืžื ืฉืœ ื›ืœ ื”ืื•ื‘ื™ื™ืงื˜ื™ื ื”ืืœื” ืœืื•ืจืš ื–ืžืŸ
05:10
that can be integrated digitally from people's work flows.
99
310400
3056
ืขืœ ืžื ืช ืœืฉืœื‘ื• ื“ื™ื’ื™ื˜ืœื™ืช ื‘ืชื”ืœื™ื›ื™ื ืงื™ื™ืžื™ื.
05:13
In time, we could get more sophisticated browsers
100
313480
3056
ืขื ื”ื–ืžืŸ, ื ื•ื›ืœ ืœื”ืฉื™ื’ ืชื•ื›ื ื•ืช ืžืชื•ื—ื›ืžื•ืช ื™ื•ืชืจ
05:16
that people pull in from different sources.
101
316560
2336
ื‘ื”ืŸ ื ื•ื›ืœ ืœืงื‘ืœ ืžื™ื“ืข ืžืžืงื•ืจื•ืช ืฉื•ื ื™ื.
05:18
But ultimately, I can imagine us abstracting out the imagery entirely
102
318920
4696
ืืš ืื•ืœื˜ื™ืžื˜ื™ื‘ื™ืช, ืื ื™ ืžื“ืžื™ื™ืŸ ืื•ืชื ื• ืžืคืขื ื—ื™ื ืืช ื›ืœืœ ื”ืชืžื•ื ื”
05:23
and just having a queryable interface to the Earth.
103
323640
2416
ื•ื›ืš ื™ื”ื™ื” ืœื ื• ืžืžืฉืง ืœื‘ื™ืฆื•ืข ืฉืื™ืœืชื•ืช ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ.
05:26
Imagine if we could just ask,
104
326080
1416
ื“ืžื™ื™ื ื• ืื ื™ื›ื•ืœื ื• ืœืฉืื•ืœ,
05:27
"Hey, how many houses are there in Pakistan?
105
327520
2536
"ื”ื™ื™, ื›ืžื” ื‘ืชื™ื ื™ืฉ ื‘ืคืงื™ืกื˜ืŸ?
05:30
Give me a plot of that versus time."
106
330080
1936
ืชืฆื™ื’ ืœื™ ืืช ื”ื’ืจืฃ ืœืื•ืจืš ื–ืžืŸ."
05:32
"How many trees are there in the Amazon
107
332040
2176
"ื›ืžื” ืขืฆื™ื ื™ืฉ ื‘ืืžืื–ื•ื ืก
05:34
and can you tell me the locations of the trees that have been felled
108
334240
3216
ื•ืชื•ื›ืœ ืœืืžืจ ืœื™ ืืช ื”ืžื™ืงื•ืžื™ื ืฉืœ ื”ืขืฆื™ื ืฉื ื›ืจืชื•
05:37
between this week and last week?"
109
337480
1656
ื‘ื™ืŸ ืฉื‘ื•ืข ืฉืขื‘ืจ ืœืฉื‘ื•ืข ื”ื ื•ื›ื—ื™?"
05:39
Wouldn't that be great?
110
339160
1216
ื–ื” ืœื ื™ื”ื™ื” ืžืขื•ืœื”?
05:40
Well, that's what we're trying to go towards,
111
340400
2136
ื•ื‘ื›ืŸ, ืœืฉื ืื ื—ื ื• ืžื ืกื™ื ืœื”ื’ื™ืข
05:42
and we call it "Queryable Earth."
112
342560
1856
ื•ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื”: "ื›ื“ื•ืจ ื”ืืจืฅ ื‘ืจ ืชื™ืฉืื•ืœ"
05:44
So, Planet's Mission 1 was to image the whole planet every day
113
344440
3896
ืื–, ื”ืžืฉื™ืžื” ื”ืจืืฉื•ื ื” ืฉืœ ืคืœืื ื˜ ื”ื™ืชื” ืœืฆืœื ืืช ื›ืœ ื›ื“ื•ืจ ื”ืืจืฅ ื›ืœ ื™ื•ื
05:48
and make it accessible.
114
348360
2336
ื•ืœื”ื ื’ื™ืฉ ืืช ื”ืžื™ื“ืข.
05:50
Planet's Mission 2 is to index all the objects on the planet over time
115
350720
3816
ื”ืžืฉื™ืžื” ื”ืฉื ื™ื” ืฉืœ ืคืœืื ื˜ ื”ื™ื ืœื™ืฆื•ืจ ืื™ื ื“ืงืก ืฉืœ ื›ืœ ื”ืื•ื‘ื™ื™ืงื˜ื™ื ื‘ื›ื“ื•ืจ ื”ืืจืฅ ืœืื•ืจืš ื–ืžืŸ
05:54
and make it queryable.
116
354560
1240
ื•ืœืืคืฉืจ ื—ื™ืคื•ืฉ ื‘ื•.
05:56
Let me leave you with an analogy.
117
356760
2136
ืืกื™ื™ื ื‘ืื ืืœื•ื’ื™ื”.
05:58
Google indexed what's on the internet and made it searchable.
118
358920
3400
ื’ื•ื’ืœ ื™ืฆืจื• ืื™ื ื“ืงืก ืฉืœ ื”ืžื™ื“ืข ื‘ืื™ื ื˜ืจื ื˜ ื•ืืคืฉืจื• ื—ื™ืคื•ืฉ ืฉืœื•.
06:03
Well, we're indexing what's on the Earth and making it searchable.
119
363080
3256
ื•ื‘ื›ืŸ, ืื ื—ื ื• ื™ื•ืฆืจื™ื ืื™ื ื“ืงืก ืฉืœ ื”ืžื™ื“ืข ืขืœ ื›ื“ื•ืจ ื”ืืจืฅ, ื•ืžืืคืฉืจื™ื ื—ื™ืคื•ืฉ ืฉืœื•.
06:06
Thank you very much.
120
366360
1336
ืชื•ื“ื” ืจื‘ื”.
06:07
(Applause)
121
367720
4520
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7