Rodney Brooks: Why we will rely on robots

195,099 views ใƒป 2013-06-28

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Zeeva Livshitz ืžื‘ืงืจ: Ido Dekkers
00:13
Well, Arthur C. Clarke,
0
13010
1276
ื˜ื•ื‘, ืืจืชื•ืจ ืก. ืงืœืืจืง,
00:14
a famous science fiction writer from the 1950s,
1
14310
3171
ืกื•ืคืจ ืžื“"ื‘ ืžืคื•ืจืกื ื‘ืฉื ื•ืช ื”50 ืฉืœ ื”ืžืื” ื”20,
00:17
said that, "We overestimate technology in the short term,
2
17505
3998
ืืžืจ, ืฉ"ืื ื—ื ื• ืžื™ื™ื—ืกื™ื ื—ืฉื™ื‘ื•ืช ืจื‘ื” ืžื“ื™ ืœื˜ื›ื ื•ืœื•ื’ื™ื” ืœื˜ื•ื•ื— ื”ืงืฆืจ,
00:21
and we underestimate it in the long term."
3
21527
2776
ื•ืžื™ื™ื—ืกื™ื ื—ืฉื™ื‘ื•ืช ืžื•ืขื˜ื” ืžื“ื™, ืœื–ื• ืฉืœ ื”ื˜ื•ื•ื— ื”ืืจื•ืš".
00:24
And I think that's some of the fear that we see
4
24327
2393
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื—ืœืง ืžื”ืคื—ื“ ืฉืื ื• ืจื•ืื™ื
00:26
about jobs disappearing from artificial intelligence and robots.
5
26744
4558
ืžืฉืจื•ืช ืฉื ืขืœืžื•ืช ืขืงื‘ ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืžืœืื›ื•ืชื™ืช ื•ืจื•ื‘ื•ื˜ื™ื.
00:31
That we're overestimating the technology in the short term.
6
31326
2810
ืฉืื ื—ื ื• ืžืขืจื™ื›ื™ื ื™ืชืจ ืขืœ ื”ืžื™ื“ื” ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืœื˜ื•ื•ื— ืงืฆืจ.
ืื‘ืœ ืื ื™ ื“ื•ืื’ ืื ื ื•ื›ืœ ืœื”ืฉื™ื’ ืืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉืื ื• ื–ืงื•ืงื™ื ืœื˜ื•ื•ื— ื”ืืจื•ืš.
00:34
But I am worried whether we're going to get the technology we need in the long term.
7
34160
5187
00:39
Because the demographics are really going to leave us with lots of jobs that need doing
8
39371
5690
ืžืฉื•ื ืฉื”ื“ืžื•ื’ืจืคื™ื” ื‘ืืžืช ืชืฉืื™ืจ ืื•ืชื ื• ืขื ื”ืจื‘ื” ืชืคืงื™ื“ื™ื ืฉืฆืจื™ืš ืœืขืฉื•ืชื
00:45
and that we, our society, is going to have to be built on the shoulders of steel of robots in the future.
9
45085
5351
ื•ืฉืื ื•, ื”ื—ื‘ืจื” ืฉืœื ื• ื ืฆื˜ืจืš ืœื”ื˜ื™ืœ ืขืœ ื›ืชืคื™ ืคืœื“ื” ืฉืœ ืจื•ื‘ื•ื˜ื™ื ื‘ืขืชื™ื“.
00:50
So I'm scared we won't have enough robots.
10
50460
2802
ืื– ืื ื™ ื—ื•ืฉืฉ ืฉืœื ื™ื”ื™ื• ืœื ื• ืžืกืคื™ืง ืจื•ื‘ื•ื˜ื™ื.
00:53
But fear of losing jobs to technology has been around for a long time.
11
53286
4615
ืื‘ืœ ืคื—ื“ ืžืื‘ื“ืŸ ืžืฉืจื•ืช ืœื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื™ื” ื‘ืกื‘ื™ื‘ื” ื›ื‘ืจ ืžื–ื” ื–ืžืŸ ืจื‘.
00:57
Back in 1957, there was a Spencer Tracy, Katharine Hepburn movie.
12
57925
3928
ื‘-1957 ื”ื™ื” ืกืจื˜ ืฉืœ ืกืคื ืกืจ ื˜ืจื™ื™ืกื™, ื•ืงืชืจื™ืŸ ื”ืคื‘ื•ืจืŸ.
01:01
So you know how it ended up,
13
61877
1424
ืื– ืืชื ื™ื•ื“ืขื™ื ืื™ืš ื”ื•ื ื ื’ืžืจ
01:03
Spencer Tracy brought a computer, a mainframe computer of 1957, in
14
63325
4062
ืกืคื ืกืจ ื˜ืจื™ื™ืกื™ ืงื ื” ืžื—ืฉื‘, ืžื—ืฉื‘ ืžืจื›ื–ื™ ืžืฉื ืช 1957
01:07
to help the librarians.
15
67411
1876
ื›ื“ื™ ืœืขื–ื•ืจ ืœืกืคืจื ื™ื.
01:09
The librarians in the company would do things like answer for the executives,
16
69311
3667
ื”ืกืคืจื ื™ื ื‘ื—ื‘ืจื” ื™ืขืฉื• ื“ื‘ืจื™ื ื›ืžื• ืœื”ืฉื™ื‘ ืขื‘ื•ืจ ื”ืžื ื”ืœื™ื,
"ืžื”ื ื”ืฉืžื•ืช ืฉืœ ืื™ืœื™ ื”ืฆืคื•ืŸ ืฉืœ ืกื ื˜ื”?"
01:13
"What are the names of Santa's reindeer?"
17
73002
3599
01:16
And they would look that up.
18
76625
1334
ื•ื”ื ื™ื—ืคืฉื• ืืช ื–ื”.
01:17
And this mainframe computer was going to help them with that job.
19
77983
2409
ื•ื”ืžื—ืฉื‘ ื”ืžืจื›ื–ื™ ื”ื–ื” ื”ื™ื” ื”ื•ืœืš ืœืขื–ื•ืจ ืœื”ื ืขื ื”ืขื‘ื•ื“ื” ื”ื–ื•.
01:20
Well of course a mainframe computer in 1957 wasn't much use for that job.
20
80416
3886
ื›ืžื•ื‘ืŸ ืฉืžื—ืฉื‘ ืžืจื›ื–ื™ ื‘ืฉื ืช 1957 ืœื ื”ื™ื” ืžืื“ ืฉื™ืžื•ืฉื™ ืขื‘ื•ืจ ืžืฉื™ืžื” ื–ื•.
01:24
The librarians were afraid their jobs were going to disappear.
21
84326
3126
ื”ืกืคืจื ื™ื ืคื—ื“ื• ืฉืขื‘ื•ื“ืชื ืขื•ืžื“ืช ืœื”ื™ืขืœื.
01:27
But that's not what happened in fact.
22
87476
1762
ืื‘ืœ ื–ื” ืœื ืžื” ืฉืงืจื”, ืœืžืขืฉื”.
01:29
The number of jobs for librarians increased for a long time after 1957.
23
89262
5094
ืžืกืคืจ ื”ืžืฉืจื•ืช ืœืกืคืจื ื™ื ื’ื“ืœ ื‘ืžืฉืš ื–ืžืŸ ืจื‘ ืœืื—ืจ 1957.
01:34
It wasn't until the Internet came into play,
24
94380
3090
ื–ื” ืœื ื”ื™ื” ืขื“ ืฉื”ืื™ื ื˜ืจื ื˜ ื ื›ื ืก ืœืžืฉื—ืง,
01:37
the web came into play and search engines came into play
25
97494
2667
ื”ืื™ื ื˜ืจื ื˜ ื ื›ื ืก ืœืžืฉื—ืง, ื•ืžื ื•ืขื™ ื”ื—ื™ืคื•ืฉ ื ื›ื ืกื• ืœืžืฉื—ืง
01:40
that the need for librarians went down.
26
100185
2467
ืฉื”ืฆื•ืจืš ื‘ืกืคืจื ื™ื ื™ืจื“.
01:42
And I think everyone from 1957 totally underestimated
27
102676
4183
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื›ื•ืœื ืžืฉื ืช 1957 ืœื’ืžืจื™ ื”ืžืขื™ื˜ื• ื‘ืขืจืš
01:46
the level of technology we would all carry around in our hands and in our pockets today.
28
106883
4736
ืจืžืช ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื›ื•ืœื ื• ื ื™ืฉื ื‘ื™ื“ื™ื ื• ื•ื‘ื›ื™ืกื™ื ื• ื”ื™ื•ื.
01:51
And we can just ask: "What are the names of Santa's reindeer?" and be told instantly --
29
111643
5693
ื•ืื ื—ื ื• ื™ื›ื•ืœื™ื ืคืฉื•ื˜ ืœืฉืื•ืœ: "ืžื” ื”ื ืฉืžื•ืช ืฉืœ ืื™ืœื™ ื”ืฆืคื•ืŸ ืฉืœ ืกื ื˜ื”?" ื•ืœื”ื™ืขื ื•ืช ื‘ืื•ืคืŸ ืžื™ื™ื“ื™...
01:57
or anything else we want to ask.
30
117360
1727
. ืื• ืžืฉื”ื• ืื—ืจ. ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืฉืื•ืœ.
01:59
By the way, the wages for librarians went up faster
31
119111
5575
ืื’ื‘, ืฉื›ืจื ืฉืœ ื”ืกืคืจื ื™ื ืขืœื” ืžื”ืจ ื™ื•ืชืจ
02:04
than the wages for other jobs in the U.S. over that same time period,
32
124710
3286
ืžืืฉืจ ื”ืฉื›ืจ ืขื‘ื•ืจ ืžืฉืจื•ืช ืื—ืจื•ืช ื‘ืืจื” ื‘ ื‘ืื•ืชื” ื”ืชืงื•ืคื”,
ื›ื™ ืกืคืจื ื™ื ื”ืคื›ื• ืœืฉื•ืชืคื™ื ืฉืœ ืžื—ืฉื‘ื™ื.
02:08
because librarians became partners of computers.
33
128020
3233
02:11
Computers became tools, and they got more tools that they could use
34
131277
2859
ื”ืžื—ืฉื‘ื™ื ื”ืคื›ื• ื›ืœื™ื, ื•ื”ื ืงื™ื‘ืœื• ื™ื•ืชืจ ื›ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื”ื
02:14
and become more effective during that time.
35
134160
2268
ื•ื ื”ื™ื• ื™ืขื™ืœื™ื ื™ื•ืชืจ ื‘ืื•ืชื” ืชืงื•ืคื”.
02:16
Same thing happened in offices.
36
136452
1768
ืื•ืชื• ื“ื‘ืจ ืงืจื” ื‘ืžืฉืจื“ื™ื.
02:18
Back in the old days, people used spreadsheets.
37
138244
2274
ื‘ื™ืžื™ื ื”ื”ื, ืื ืฉื™ื ื”ืฉืชืžืฉื• ื‘ื’ืœื™ื•ื ื•ืช ืืœืงื˜ืจื•ื ื™ื™ื.
02:20
Spreadsheets were spread sheets of paper,
38
140542
2310
ื”ื’ืœื™ื•ื ื•ืช ื”ืืœืงื˜ืจื•ื ื™ื™ื ื”ื™ื• ื’ื™ืœื™ื•ื ื•ืช ืคืจื•ืฉื™ื ืฉืœ ื ื™ื™ืจ,
02:22
and they calculated by hand.
39
142876
2126
ื•ื”ื ื—ื™ืฉื‘ื• ื™ื“ื ื™ืช.
02:25
But here was an interesting thing that came along.
40
145026
2381
ืื‘ืœ ื›ืืŸ ืงืจื” ื“ื‘ืจ ืžืขื ื™ื™ืŸ.
02:27
With the revolution around 1980 of P.C.'s,
41
147431
2228
ืขื ืžื”ืคื›ืช ื”ืคื™.ืกื™ ื‘ืกื‘ื™ื‘ื•ืช 1980,
02:29
the spreadsheet programs were tuned for office workers,
42
149683
4718
ืชื•ื›ื ื™ื•ืช ื”ื’ื™ืœื™ื•ืŸ ื”ืืœืงื˜ืจื•ื ื™ ื”ื™ื• ืžืชื•ืืžื•ืช ืœืขื•ื‘ื“ื™ ืžืฉืจื“,
02:34
not to replace office workers,
43
154425
1628
ืœื ืœื”ื—ืœื™ืฃ ืืช ืขื•ื‘ื“ื™ ื”ืžืฉืจื“,
02:36
but it respected office workers as being capable of being programmers.
44
156077
4642
ืื‘ืœ ื–ื” ื›ื™ื‘ื“ ืืช ืขื•ื‘ื“ื™ ื”ืžืฉืจื“ ื›ืื™ืœื• ื”ื™ื• ืžืกื•ื’ืœื™ื ืœื”ื™ื•ืช ืžืชื›ื ืชื™ื.
02:40
So office workers became programmers of spreadsheets.
45
160743
3104
ืื– ืขื•ื‘ื“ื™ ื”ืžืฉืจื“ ื”ืคื›ื• ืœืžืชื›ื ืชื™ื ืฉืœ ื’ืœื™ื•ื ื•ืช ืืœืงื˜ืจื•ื ื™ื™ื.
02:43
It increased their capabilities.
46
163871
2067
ื–ื” ื”ื’ื“ื™ืœ ืืช ื”ื™ื›ื•ืœื•ืช ืฉืœื”ื.
02:45
They no longer had to do the mundane computations,
47
165962
2555
ื”ื ืœื ื”ื™ื• ืฆืจื™ื›ื™ื ื™ื•ืชืจ ืœื—ืฉื‘ ื—ื™ืฉื•ื‘ื™ื ืจื’ื™ืœื™ื
02:48
but they could do something much more.
48
168541
2911
ืื‘ืœ ื”ื ื™ื›ืœื• ืœืขืฉื•ืช ื”ืจื‘ื” ื™ื•ืชืจ.
02:51
Now today, we're starting to see robots in our lives.
49
171476
3234
ืขื›ืฉื™ื•, ื›ื™ื•ื, ืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืจืื•ืช ืจื•ื‘ื•ื˜ื™ื ื‘ื—ื™ื™ื ื•.
02:54
On the left there is the PackBot from iRobot.
50
174734
2285
ืžืฉืžืืœ ื™ืฉื ื• ื”"ืคืืง-ื‘ื•ื˜" ืฉืœ iRobot.
02:57
When soldiers came across roadside bombs in Iraq and Afghanistan,
51
177043
3408
ื›ืฉื—ื™ื™ืœื™ื ื ืชืงืœื• ื‘ืžื˜ืขื ื™ ื—ื‘ืœื” ื‘ืขื™ืจืืง ื•ื‘ืืคื’ื ื™ืกื˜ืŸ,
03:00
instead of putting on a bomb suit and going out and poking with a stick,
52
180475
4125
ื‘ืžืงื•ื ืœืœื‘ื•ืฉ ื—ืœื™ืคืช ืžื’ืŸ ื•ืœืฆืืช ื•ืœืชืงื•ืข ืžืงืœ,
03:04
as they used to do up until about 2002,
53
184624
2295
ื›ืคื™ ืฉืขืฉื• ืขื“ 2002 ื‘ืขืจืš,
03:06
they now send the robot out.
54
186943
1384
ื”ื ืขื›ืฉื™ื• ืฉื•ืœื—ื™ื ืืช ื”ืจื•ื‘ื•ื˜.
03:08
So the robot takes over the dangerous jobs.
55
188351
2119
ืื– ื”ืจื•ื‘ื•ื˜ ื ื•ื˜ืœ ืคื™ืงื•ื“ ื‘ืžืฉื™ืžื•ืช ืžืกื•ื›ื ื•ืช.
03:10
On the right are some TUGs from a company called Aethon in Pittsburgh.
56
190494
4494
ืžืฆื“ ื”ื™ืžื™ืŸ ื ืžืฆืื™ื ื›ืžื” ื’ื•ืจืจื™ื ืžื—ื‘ืจื” ื‘ืฉื ืืื˜ื•ืŸ ื‘ืคื™ื˜ืกื‘ื•ืจื’.
03:15
These are in hundreds of hospitals across the U.S.
57
195012
2381
ืืœื” ื ืžืฆืื™ื ื‘ืžืื•ืช ื‘ืชื™ ื—ื•ืœื™ื ื‘ืจื—ื‘ื™ ืืจื”"ื‘
03:17
And they take the dirty sheets down to the laundry.
58
197417
2608
ื•ื”ื ืœื•ืงื—ื™ื ืืช ื”ืกื“ื™ื ื™ื ื”ืžืœื•ื›ืœื›ื™ื ืœืžื›ื‘ืกื”.
03:20
They take the dirty dishes back to the kitchen.
59
200049
1852
ื•ื”ื ืœื•ืงื—ื™ื ืืช ื”ื›ืœื™ื ื”ืžืœื•ื›ืœื›ื™ื ื—ื–ืจื” ืœืžื˜ื‘ื—.
03:21
They bring the medicines up from the pharmacy.
60
201925
2191
ื•ื”ื ืžืขืœื™ื ืืช ื”ืชืจื•ืคื•ืช ืžื‘ื™ืช ื”ืžืจืงื—ืช.
03:24
And it frees up the nurses and the nurse's aides
61
204140
2791
ื•ื–ื” ืžืฉื—ืจืจ ืืช ื”ืื—ื™ื•ืช ื•ืืช ืขื•ื–ืจื™ื”ืŸ.
03:26
from doing that mundane work of just mechanically pushing stuff around
62
206955
3641
ืžืœืขืฉื•ืช ืขื‘ื•ื“ื” ืคืฉื•ื˜ื” ืฉืœ ื“ื—ื™ืคืช ื“ื‘ืจื™ื ื‘ืื•ืคืŸ ืžื›ื ื™
03:30
to spend more time with patients.
63
210620
2049
ื›ื“ื™ ืœื‘ืœื•ืช ื™ื•ืชืจ ื–ืžืŸ ืขื ืžื˜ื•ืคืœื™ื.
03:32
In fact, robots have become sort of ubiquitous in our lives in many ways.
64
212693
4675
ืœืžืขืฉื”, ืจื•ื‘ื•ื˜ื™ื ื ื•ื›ื—ื™ื ื›ืขืช, ื‘ื›ืœ ืžืงื•ื ื‘ื—ื™ื™ื ื• ื‘ื“ืจื›ื™ื ืจื‘ื•ืช.
03:37
But I think when it comes to factory robots, people are sort of afraid,
65
217392
5244
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื›ืฉืžื“ื•ื‘ืจ ื‘ืจื•ื‘ื•ื˜ื™ื ืชืขืฉื™ื™ืชื™ื™ื, ืื ืฉื™ื ืžืคื—ื“ื™ื,
03:42
because factory robots are dangerous to be around.
66
222660
4083
ื›ื™ ืžืกื•ื›ืŸ ืฉื™ื”ื™ื• ื‘ืกื‘ื™ื‘ื” ืจื•ื‘ื•ื˜ื™ื ืชืขืฉื™ื™ืชื™ื™ื.
03:46
In order to program them, you have to understand six-dimensional vectors and quaternions.
67
226767
4801
ื›ื“ื™ ืœืชื›ื ืช ืื•ืชื ื”ื™ื˜ื‘, ืขืœื™ืš ืœื”ื‘ื™ืŸ ื•ืงื˜ื•ืจื™ื ืฉืœ 6 ืžืžื“ื™ื ื•ืงื•ื•ื˜ืจื ื™ื•ื ื™ื.
03:51
And ordinary people can't interact with them.
68
231592
3126
ื•ืื ืฉื™ื ืจื’ื™ืœื™ื ืœื ื™ื›ื•ืœื™ื ืœืคืขื•ืœ ืื™ืชื ื”ื“ื“ื™ืช.
03:54
And I think it's the sort of technology that's gone wrong.
69
234742
2762
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืกื•ื’ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื”ืฉืชื‘ืฉ.
03:57
It's displaced the worker from the technology.
70
237528
3442
ืฉื“ื—ืง ืืช ื”ืขื•ื‘ื“ ืžื”ื˜ื›ื ื•ืœื•ื’ื™ื”.
04:00
And I think we really have to look at technologies
71
240994
3075
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื‘ืืžืช ืฆืจื™ื›ื™ื ืœื”ืกืชื›ืœ ืขืœ ื˜ื›ื ื•ืœื•ื’ื™ื•ืช
04:04
that ordinary workers can interact with.
72
244093
2078
ืฉืขื•ื‘ื“ื™ื ืจื’ื™ืœื™ื ื™ื›ื•ืœื™ื ืœืงื™ื™ื ืื™ืชื” ืื™ื ื˜ืจืืงืฆื™ื”.
04:06
And so I want to tell you today about Baxter, which we've been talking about.
73
246195
3667
ื•ืœื›ืŸ ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื ื”ื™ื•ื ืขืœ ื‘ืงืกื˜ืจ, ืฉื“ื™ื‘ืจื ื• ืขืœื™ื•.
04:09
And Baxter, I see, as a way -- a first wave of robot
74
249886
4210
ื•ื‘ืงืกื˜ืจ, ืื ื™ ืจื•ืื”, ื›ื“ืจืš - ื’ืœ ืจืืฉื•ืŸ ืฉืœ ืจื•ื‘ื•ื˜
04:14
that ordinary people can interact with in an industrial setting.
75
254120
4266
ืฉืื ืฉื™ื ืจื’ื™ืœื™ื ื™ื›ื•ืœื™ื ืœืงื™ื™ื ืืชื• ืื™ื ื˜ืจืืงืฆื™ื” ื‘ืกื‘ื™ื‘ื” ืชืขืฉื™ื™ืชื™ืช.
04:18
So Baxter is up here.
76
258410
1509
ืื– ื‘ืงืกื˜ืจ ื”ื•ื ื›ืืŸ ืœืžืขืœื”.
04:19
This is Chris Harbert from Rethink Robotics.
77
259943
2792
. ื–ื” ื›ืจื™ืก ื”ืจื‘ืจื˜ ืž "ืœื—ืฉื•ื‘ ืžื—ื“ืฉ ืขืœ ืจื•ื‘ื•ื˜ื™ืงื”."
04:22
We've got a conveyor there.
78
262759
1512
. ื™ืฉ ืœื ื• ืฉื ืžืกื•ืข.
04:24
And if the lighting isn't too extreme --
79
264295
2827
ื•ืื ื”ืชืื•ืจื” ืื™ื ื” ืžื•ืคืจื–ืช.
04:27
Ah, ah! There it is. It's picked up the object off the conveyor.
80
267146
4022
. ืื”, ืื”! ื”ื ื” ื–ื”. ื”ื•ื ื”ืจื™ื ื”ืื•ื‘ื™ื™ืงื˜ ืžื”ืžืกื•ืข.
04:31
It's going to come bring it over here and put it down.
81
271192
2825
ื”ื•ื ื”ื•ืœืš ืงื“ื™ืžื”. ืžื‘ื™ื ืืช ื–ื” ืœืคื”, ื•ืžื ื™ื— ืืช ื–ื”.
04:34
And then it'll go back, reach for another object.
82
274041
3276
ื•ืื– ื”ื•ื ื™ืœืš ื—ื–ืจื”, ืœืงื—ืช ืื•ื‘ื™ื™ืงื˜ ืื—ืจ.
04:37
The interesting thing is Baxter has some basic common sense.
83
277341
3824
ื”ื“ื‘ืจ ื”ืžืขื ื™ื™ืŸ ื”ื•ื ืฉืœื‘ืงืกื˜ืจ ื™ืฉ ืžื™ื“ื” ื›ืœืฉื”ื™ ืฉืœ ื”ื’ื™ื•ืŸ ื‘ืกื™ืกื™.
04:41
By the way, what's going on with the eyes?
84
281189
2197
ืื’ื‘, ืžื” ืงื•ืจื” ืขื ื”ืขื™ื ื™ื™ื
04:43
The eyes are on the screen there.
85
283410
1572
ื”ืขื™ื ื™ื™ื ื”ืŸ ืขืœ ื”ืžืกืš ืฉื.
ื”ืขื™ื ื™ื™ื ืžื‘ื™ื˜ื•ืช ืงื“ื™ืžื” ืœืžืงื•ื ืฉืืœื™ื• ื”ืจื•ื‘ื•ื˜ ื”ื•ืœืš ืœืขื‘ื•ืจ.
04:45
The eyes look ahead where the robot's going to move.
86
285006
2629
04:47
So a person that's interacting with the robot
87
287659
2143
ืื– ืื“ื ืฉื ืžืฆื ื‘ืื™ื ื˜ืจืืงืฆื™ื” ืขื ื”ืจื•ื‘ื•ื˜
04:49
understands where it's going to reach and isn't surprised by its motions.
88
289826
3542
ืžื‘ื™ืŸ ืœืืŸ ื”ื•ื ื”ื•ืœืš ืœื”ื’ื™ืข ื•ืื™ื ื• ืžื•ืคืชืข ืžื”ืชื ื•ืขื•ืช ืฉืœื•.
04:53
Here Chris took the object out of its hand,
89
293392
2494
ื›ืืŸ ื›ืจื™ืก ืœืงื— ืืช ื”ืื•ื‘ื™ื™ืงื˜ ืžื™ื“ื•
04:55
and Baxter didn't go and try to put it down;
90
295910
2208
ื•ื‘ืงืกื˜ืจ ืœื ื”ืœืš ื•ื ื™ืกื” ืœื”ื ื™ื— ืื•ืชื•;
04:58
it went back and realized it had to get another one.
91
298142
2328
ื”ื•ื ื”ืœืš ื—ื–ืจื” ื•ืื ื™ ื•ื”ื‘ื™ืŸ ืฉื”ื•ื ืฆืจื™ืš ืœืงื—ืช ืขื•ื“ ืื—ื“.
05:00
It's got a little bit of basic common sense, goes and picks the objects.
92
300494
3143
ื™ืฉ ื‘ื–ื” ืงืฆืช ื”ื’ื™ื•ืŸ ื‘ืกื™ืกื™, ื”ื•ืœืš ื•ื‘ื•ื—ืจ ืืช ื”ืื•ื‘ื™ื™ืงื˜ื™ื.
05:03
And Baxter's safe to interact with.
93
303661
1769
ื•ื‘ืงืกื˜ืจ ืžืงื™ื™ื ืืชื• ืื™ื ื˜ืจืืงืฆื™ื” ื‘ื‘ื™ื˜ื—ื”.
05:05
You wouldn't want to do this with a current industrial robot.
94
305454
2905
ืœื ืชืจืฆื• ืœืขืฉื•ืช ืืช ื–ื” ืขื ืจื•ื‘ื•ื˜ ืชืขืฉื™ื™ืชื™ ืžืฆื•ื™.
05:08
But with Baxter it doesn't hurt.
95
308383
2004
ืื‘ืœ ืขื ื‘ืงืกื˜ืจ. ื–ื” ืœื ื›ื•ืื‘.
05:10
It feels the force, understands that Chris is there
96
310411
3874
ื”ื•ื ืžืจื’ื™ืฉ ืืช ื”ื›ื•ื—, ืžื‘ื™ืŸ ืฉื›ืจื™ืก ื ืžืฆื ืฉื
05:14
and doesn't push through him and hurt him.
97
314309
2828
ื•ืœื ื“ื•ื—ืฃ ื“ืจื›ื• ื•ืคื•ื’ืข ื‘ื•.
05:17
But I think the most interesting thing about Baxter is the user interface.
98
317161
3524
ืื‘ืœ ืื ื™ ื—ื•ืฉื‘ ืฉื”ื“ื‘ืจ ื”ื›ื™ ืžืขื ื™ื™ืŸ ื‘ื‘ืงืกื˜ืจ ื”ื•ื ืžืžืฉืง ื”ืžืฉืชืžืฉ.
05:20
And so Chris is going to come and grab the other arm now.
99
320709
3069
ืื– ื›ืจื™ืก ื”ื•ืœืš ืœื‘ื•ื ื•ืœืงื—ืช ืืช ื”ื–ืจื•ืข ื”ืฉื ื™ื” ืขื›ืฉื™ื•.
05:23
And when he grabs an arm, it goes into zero-force gravity-compensated mode
100
323802
5390
ื•ื›ืืฉืจ ื”ื•ื ืชื•ืคืก ื–ืจื•ืข, ื–ื” ืžื’ื™ืข ืœืžืฆื‘ ืืคืก ื›ื•ื— ืขื ืคื™ืฆื•ื™ ืฉืœ ื›ื‘ื™ื“ื”
05:29
and graphics come up on the screen.
101
329216
2052
ื•ื’ืจืคื™ืงื” ืžื•ืคื™ืขื” ืขืœ ื”ืžืกืš.
05:31
You can see some icons on the left of the screen there for what was about its right arm.
102
331292
4510
ืืชื” ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ืžื” ืกืžืœื™ื ื‘ืฆื“ ืฉืžืืœ ืฉืœ ื”ืžืกืš ืขืœ ืžื” ืฉื”ื™ื” ืขื ื”ื–ืจื•ืข ื”ื™ืžื ื™ืช ืฉืœื•.
05:35
He's going to put something in its hand, he's going to bring it over here,
103
335826
3524
. ื”ื•ื ื”ื•ืœืš ืœืฉื™ื ืžืฉื”ื• ื‘ื™ื“ ืฉืœื•, ื”ื•ื ื”ื•ืœืš ืœื”ื‘ื™ื ืืช ื–ื” ืœื›ืืŸ,
ืœื•ื—ืฅ ืขืœ ื”ืœื—ืฆืŸ ื•ืžืฉื—ืจืจ ืืช ื”ื“ื‘ืจ ื”ื–ื” ื‘ื™ื“.
05:39
press a button and let go of that thing in the hand.
104
339374
4244
05:43
And the robot figures out, ah, he must mean I want to put stuff down.
105
343642
4544
ื•ื”ืจื•ื‘ื•ื˜ ืžื‘ื™ืŸ, ืื”, ื”ื•ื ื›ื ืจืื” ืžืชื›ื•ื•ืŸ ืฉืื ื™ ืจื•ืฆื” ืœื”ื ื™ื— ื“ื‘ืจื™ื.
05:48
It puts a little icon there.
106
348210
1676
ื–ื” ืžืฆื™ื‘ ืกืžืœ ืงื˜ืŸ ืฉื.
05:49
He comes over here, and he gets the fingers to grasp together,
107
349910
5887
ื”ื•ื ื‘ื ืœื›ืืŸ, ื•ื”ื•ื ืœื•ืคืช ืืช ื”ืืฆื‘ืขื•ืช ื™ื—ื“,
05:55
and the robot infers, ah, you want an object for me to pick up.
108
355821
3898
ื•ื”ืจื•ื‘ื•ื˜ ืžืกื™ืง, ืื”, ืืชื” ืจื•ืฆื” ืฉืืจื™ื ื‘ืฉื‘ื™ืœืš ืื•ื‘ื™ื™ืงื˜.
05:59
That puts the green icon there.
109
359743
1775
ื–ื” ืžืฆื™ื‘ ืืช ื”ืกืžืœ ื”ื™ืจื•ืง ืฉื.
06:01
He's going to map out an area of where the robot should pick up the object from.
110
361542
4971
ื”ื•ื ื”ื•ืœืš ืœืžืคื•ืช ืื–ื•ืจ ืฉื‘ื• ื”ืจื•ื‘ื•ื˜ ืฆืจื™ืš ืœื”ืจื™ื ืืช ื”ืื•ื‘ื™ื™ืงื˜.
06:06
It just moves it around, and the robot figures out that was an area search.
111
366537
4766
ื”ื•ื ืจืง ืžื–ื™ื– ืื•ืชื• ืžืกื‘ื™ื‘, ื•ื”ืจื•ื‘ื•ื˜ ืžื‘ื™ืŸ ืฉื”ื™ื” ื—ื™ืคื•ืฉ ื‘ืื–ื•ืจ.
06:11
He didn't have to select that from a menu.
112
371327
2000
ื”ื•ื ืœื ื”ื™ื” ืฆืจื™ืš ืœื‘ื—ื•ืจ ืžื”ืชืคืจื™ื˜.
06:13
And now he's going to go off and train the visual appearance of that object
113
373351
3572
ืขื›ืฉื™ื• ื”ื•ื ื”ื•ืœืš ืœืœื›ืช ื•ืœื”ืชืืžืŸ ื‘ืžืจืื” ื”ื—ื–ื•ืชื™ ืฉืœ ื”ืื•ื‘ื™ื™ืงื˜ ื”ื–ื”
06:16
while we continue talking.
114
376947
1544
ื‘ืขื•ื“ ืื ื• ืžืžืฉื™ื›ื™ื ืœื“ื‘ืจ.
06:18
So as we continue here,
115
378515
1749
ืื–, ื‘ืขื•ื“ื ื• ืžืžืฉื™ื›ื™ื ื›ืืŸ,
06:20
I want to tell you about what this is like in factories.
116
380288
2147
ืื ื™ ืจื•ืฆื” ืœืกืคืจ ืœื›ื. ืื™ืš ื–ื” ื ืจืื” ื‘ืžืคืขืœื™ื.
06:22
These robots we're shipping every day.
117
382459
1460
ื”ืจื•ื‘ื•ื˜ื™ื ื”ืืœื” ืฉืื ื—ื ื• ืฉื•ืœื—ื™ื ื›ืœ ื™ื•ื.
06:23
They go to factories around the country.
118
383943
1905
ื”ื•ืœื›ื™ื ืœืžืคืขืœื™ื ื‘ืจื—ื‘ื™ ื”ืžื“ื™ื ื”.
06:25
This is Mildred.
119
385872
779
. ื–ื•ื”ื™ ืžื™ืœื“ืจื“.
06:26
Mildred's a factory worker in Connecticut.
120
386675
2000
ืžื™ืœื“ืจื“ ืขื•ื‘ื“ืช ื‘ืžืคืขืœ ื‘ืงื•ื ื˜ื™ืงื˜.
06:28
She's worked on the line for over 20 years.
121
388699
2355
ื”ื™ื ืขื‘ื“ื” ืขืœ ื”ืงื• ื‘ืžืฉืš ืœืžืขืœื” ืž- 20 ืฉื ื”.
ืฉืขื” ืื—ืช ืœืื—ืจ ืฉืจืืชื” ืืช ื”ืจื•ื‘ื•ื˜ ื”ืชืขืฉื™ื™ืชื™ ื”ืจืืฉื•ืŸ ืฉืœื”
06:31
One hour after she saw her first industrial robot,
122
391078
2861
06:33
she had programmed it to do some tasks in the factory.
123
393963
3036
ื”ื™ื ืชื›ื ืชื” ืื•ืชื• ืœื‘ืฆืข ืžืฉื™ืžื•ืช ืžืกื•ื™ืžื•ืช ื‘ืžืคืขืœ.
06:37
She decided she really liked robots.
124
397023
2407
ื”ื™ื ื”ื—ืœื™ื˜ื” ืฉื”ื™ื ื‘ืืžืช ืื•ื”ื‘ืช ืจื•ื‘ื•ื˜ื™ื.
06:39
And it was doing the simple repetitive tasks that she had had to do beforehand.
125
399454
4646
ื•ื”ื•ื ื”ื™ื” ืขื•ืฉื” ืืช ื”ืžืฉื™ืžื•ืช ืฉื—ื•ื–ืจื•ืช ืขืœ ืขืฆืžืŸ ืฉื”ื™ื ื”ื™ืชื” ืฆืจื™ื›ื” ืœืขืฉื•ืช ืงื•ื“ื ืœื›ืŸ.
06:44
Now she's got the robot doing it.
126
404124
1814
ืขื›ืฉื™ื• ื™ืฉ ืœื” ืจื•ื‘ื•ื˜ ืฉืขื•ืฉื” ืืช ื–ื”.
06:45
When we first went out to talk to people in factories
127
405962
2540
ื›ืืฉืจ ื™ืฆืื ื• ืœืจืืฉื•ื ื” ืœื“ื‘ืจ ืขื ืื ืฉื™ื ื‘ืžืคืขืœื™ื
06:48
about how we could get robots to interact with them better,
128
408526
2810
ืขืœ ืžืฆื™ืืช ื”ื“ืจืš ืฉื‘ื” ื”ืจื•ื‘ื•ื˜ื™ื ื™ื™ืงื™ื™ืžื• ืื™ืชื ืื™ื ื˜ืจืืงืฆื™ื” ื˜ื•ื‘ื” ื™ื•ืชืจ,
06:51
one of the questions we asked them was,
129
411360
1858
ืื—ืช ื”ืฉืืœื•ืช ืฉืฉืืœื ื• ืื•ืชื ื”ื™ืชื”,
"ื”ืื ืืชื ืจื•ืฆื™ื ืฉื”ื™ืœื“ื™ื ืฉืœื›ื ื™ืขื‘ื“ื• ื‘ื‘ื™ืช ื—ืจื•ืฉืช?"
06:53
"Do you want your children to work in a factory?"
130
413242
2421
06:55
The universal answer was "No, I want a better job than that for my children."
131
415687
4032
ื”ืชืฉื•ื‘ื” ื”ืื•ื ื™ื‘ืจืกืœื™ืช ื”ื™ืชื” "ืœื, ืื ื™ ืจื•ืฆื” ืขื‘ื•ื“ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืžืืฉืจ ื–ื• ืขื‘ื•ืจ ื”ื™ืœื“ื™ื ืฉืœื™".
06:59
And as a result of that, Mildred is very typical
132
419743
3353
ื•ื›ืชื•ืฆืื” ืžื›ืš, ืžื™ืœื“ืจื“ ื”ื™ื ืžืื•ื“ ืื•ืคื™ื™ื ื™ืช
07:03
of today's factory workers in the U.S.
133
423120
1831
ืœืขื•ื‘ื“ื™ ื”ืžืคืขืœ ื›ื™ื•ื ื‘ืืจื”"ื‘.
07:04
They're older, and they're getting older and older.
134
424975
2429
ื”ื ืžื‘ื•ื’ืจื™ื ื™ื•ืชืจ, ื•ื”ื ืžื–ื“ืงื ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ.
07:07
There aren't many young people coming into factory work.
135
427428
2667
ืื™ืŸ ื”ืจื‘ื” ืื ืฉื™ื ืฆืขื™ืจื™ื ืฉื‘ืื™ื ืœืขื‘ื•ื“ื” ื‘ืžืคืขืœ.
ื•ื›ืฉื”ืžืฉื™ืžื•ืช ืฉืœื”ื ื”ื•ืคื›ื•ืช ืœื™ื•ืชืจ ืžื›ื‘ื™ื“ื•ืช ืขื‘ื•ืจื,
07:10
And as their tasks become more onerous on them,
136
430119
2898
07:13
we need to give them tools that they can collaborate with,
137
433041
3069
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืชืช ืœื”ื ื›ืœื™ื ืฉืื™ืชื ื”ื ื™ื›ื•ืœื™ื ืœืฉืชืฃ ืคืขื•ืœื”,
07:16
so that they can be part of the solution,
138
436134
1953
ื›ืš ืฉื”ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ื—ืœืง ืžื”ืคืชืจื•ืŸ.
ื›ืš ืฉื”ื ื™ื•ื›ืœื• ืœื”ืžืฉื™ืš ืœืขื‘ื•ื“ ื•ืื ื—ื ื• ื ื•ื›ืœ ืœื”ืžืฉื™ืš ื•ืœื™ื™ืฆืจ ื‘ืืจื”"ื‘.
07:18
so that they can continue to work and we can continue to produce in the U.S.
139
438111
4660
07:22
And so our vision is that Mildred who's the line worker
140
442795
4041
ื”ื—ื–ื•ืŸ ืฉืœื ื• ื”ื•ื ืฉืžื™ืœื“ืจื“ ืฉื”ื™ื ืคื•ืขืœืช ืงื• ื™ื™ืฆื•ืจ
07:26
becomes Mildred the robot trainer.
141
446860
2893
ืชื”ืคื•ืš ืœืžื™ืœื“ืจื“ ืžืืžื ืช ื”ืจื•ื‘ื•ื˜ื™ื.
07:29
She lifts her game,
142
449777
1121
ื”ื™ื ืžืจื•ืžืžืช ืืช ื”ืคืขื™ืœื•ืช ืฉืœื”,
07:30
like the office workers of the 1980s lifted their game of what they could do.
143
450922
4563
ื›ืžื• ืขื•ื‘ื“ื™ ื”ืžืฉืจื“ ืฉืœ ืฉื ื•ืช ื”ืฉืžื•ื ื™ื ืฉืจื•ืžืžื• ืืช ื”ืคืขื™ืœื•ืช ืฉืœื”ื ื•ืืช ืžื” ืฉื”ื ื”ื™ื• ืžืกื•ื’ืœื™ื ืœืขืฉื•ืช.
07:35
We're not giving them tools that they have to go and study for years and years in order to use.
144
455509
4524
ืื ื—ื ื• ืœื ื ื•ืชื ื™ื ืœื”ื ื›ืœื™ื ืฉื“ื•ืจืฉื™ื ืžื”ื ืœื”ื ืœืœื›ืช ื•ืœืœืžื•ื“ ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืžืฉืš ืฉื ื™ื ืจื‘ื•ืช .
ื”ื ื›ืœื™ื ืฉืื•ืชื ื”ื ื™ื›ื•ืœื™ื ืœืœืžื•ื“ ืœื”ืคืขื™ืœ ื‘ืชื•ืš ื›ืžื” ื“ืงื•ืช.
07:40
They're tools that they can just learn how to operate in a few minutes.
145
460057
3420
07:43
There's two great forces that are both volitional but inevitable.
146
463501
4301
ื™ืฉ ืฉื ื™ ื›ื•ื—ื•ืช ื’ื“ื•ืœื™ื ืฉื”ื ื‘ื” ื‘ืขืช ืจืฆื•ื ื™ื™ื ืืš ื‘ืœืชื™ ื ืžื ืขื™ื.
07:47
That's climate change and demographics.
147
467826
2353
ื–ื” ืฉื™ื ื•ื™ ื”ืืงืœื™ื ื•ื”ื“ืžื•ื’ืจืคื™ื”.
07:50
Demographics is really going to change our world.
148
470203
2643
ื”ื“ืžื•ื’ืจืคื™ื” ืขื•ืžื“ืช ืœืฉื ื•ืช ืืช ื”ืขื•ืœื ืฉืœื ื•.
07:52
This is the percentage of adults who are working age.
149
472870
3938
ื–ื”ื• ืื—ื•ื– ื”ืžื‘ื•ื’ืจื™ื ื‘ื’ื™ืœ ื”ืขื‘ื•ื“ื”.
07:56
And it's gone down slightly over the last 40 years.
150
476832
2429
ื•ื–ื” ื™ืจื“ ื‘ืžื™ื“ืช ืžื” ื‘-40 ื”ืฉื ื™ื ื”ืื—ืจื•ื ื•ืช.
ืื‘ืœ ื‘ืžื”ืœืš 40 ื”ืฉื ื™ื ื”ื‘ืื•ืช, ื–ื” ืขื•ืžื“ ืœื”ืฉืชื ื•ืช ื‘ืื•ืคืŸ ื“ืจืžื˜ื™, ืืคื™ืœื• ื‘ืกื™ืŸ.
07:59
But over the next 40 years, it's going to change dramatically, even in China.
151
479285
3856
ืื—ื•ื– ื”ืžื‘ื•ื’ืจื™ื ื‘ื’ื™ืœ ื”ืขื‘ื•ื“ื” ื™ื•ืจื“ ื‘ืื•ืคืŸ ื“ืจืžื˜ื™.
08:03
The percentage of adults who are working age drops dramatically.
152
483165
4813
08:08
And turned up the other way, the people who are retirement age goes up very, very fast,
153
488002
5066
ื•ื”ืคื™ืš ื‘ืฆื“ ื”ืฉื ื™ ืขื•ืœื” ื‘ืžื”ื™ืจื•ืช, ืฉื”ื ื”ืื ืฉื™ื ื‘ื’ื™ืœ ื”ืคืจื™ืฉื”.
08:13
as the baby boomers get to retirement age.
154
493092
4313
ื›ืฉื“ื•ืจ ื”ื‘ื™ื™ื‘ื™ ื‘ื•ื ืžื’ื™ืข ืœื’ื™ืœ ื”ืคืจื™ืฉื”.
08:17
That means there will be more people with fewer social security dollars
155
497429
3524
ื–ื” ืื•ืžืจ ืฉื™ื”ื™ื• ื™ื•ืชืจ ืื ืฉื™ื ืขื ืคื—ื•ืช ื“ื•ืœืจื™ื ืžื‘ื™ื˜ื•ื— ืœืื•ืžื™
08:20
competing for services.
156
500977
2609
ืฉืžืชื—ืจื™ื ืขื‘ื•ืจ ืฉื™ืจื•ืชื™ื.
08:23
But more than that, as we get older we get more frail
157
503610
4027
ืื‘ืœ ื™ื•ืชืจ ืžื–ื”, ื›ื›ืœ ืฉืื ื—ื ื• ืžื–ื“ืงื ื™ื ืื ื—ื ื• ื ืขืฉื™ื ื™ื•ืชืจ ืฉื‘ืจื™ืจื™ื™ื
08:27
and we can't do all the tasks we used to do.
158
507661
2225
ื•ืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื›ืœ ื”ืžืฉื™ืžื•ืช ืฉื ื”ื’ื ื• ืœืขืฉื•ืช.
08:29
If we look at the statistics on the ages of caregivers,
159
509910
3689
ืื ืื ื—ื ื• ืžืกืชื›ืœื™ื ืขืœ ื”ื ืชื•ื ื™ื ื”ืกื˜ื˜ื™ืกื˜ื™ื™ื ืขืœ ื’ื™ืœื ืฉืœ ื”ืžื˜ืคืœื™ื,
08:33
before our eyes those caregivers are getting older and older.
160
513623
4446
ืœื ื’ื“ ืขื™ื ื™ื ื• ื”ืžื˜ืคืœื™ื ื”ืืœื” ืžื–ื“ืงื ื™ื ื™ื•ืชืจ ื•ื™ื•ืชืจ.
08:38
That's happening statistically right now.
161
518093
1975
ื–ื” ืงื•ืจื” ืขื›ืฉื™ื• ืžื‘ื—ื™ื ื” ืกื˜ื˜ื™ืกื˜ื™ืช.
08:40
And as the number of people who are older, above retirement age and getting older, as they increase,
162
520092
5914
ื•ื›ื›ืœ ืฉืžืกืคืจ ื”ืื ืฉื™ื ื”ืžื‘ื•ื’ืจื™ื ื™ื•ืชืจ, ืžืขืœ ื’ื™ืœ ืคืจื™ืฉื”, ื’ื“ืœื™ื ื‘ืžืกืคืจ,
08:46
there will be less people to take care of them.
163
526030
2239
ื™ื”ื™ื• ืคื—ื•ืช ืื ืฉื™ื ื›ื“ื™ ืœื˜ืคืœ ื‘ื”ื.
08:48
And I think we're really going to have to have robots to help us.
164
528293
3096
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื‘ืืžืช ื ืฆื˜ืจืš ืฉื™ื”ื™ื• ืœื ื• ืจื•ื‘ื•ื˜ื™ื ื›ื“ื™ ืœืขื–ื•ืจ ืœื ื•.
ื•ืื ื™ ืœื ืžืชื›ื•ื•ืŸ ืจื•ื‘ื•ื˜ื™ื ื‘ืžื•ื ื—ื™ื ืฉืœ ื—ื‘ืจื™ื.
08:51
And I don't mean robots in terms of companions.
165
531413
2473
08:53
I mean robots doing the things that we normally do for ourselves
166
533910
3258
ืื ื™ ืžืชื›ื•ื•ืŸ ืœืจื•ื‘ื•ื˜ื™ื ืฉืขื•ืฉื™ื ืืช ืžื” ืฉืื ื—ื ื• ื‘ื“ืจืš ื›ืœืœ ืขื•ืฉื™ื ืขื‘ื•ืจ ืขืฆืžื ื•
08:57
but get harder as we get older.
167
537192
1645
ืื‘ืœ ืฉื–ื” ื ื”ื™ื” ืงืฉื” ื™ื•ืชืจ ื›ื›ืœ ืฉืื ื—ื ื• ืžื–ื“ืงื ื™ื.
08:58
Getting the groceries in from the car, up the stairs, into the kitchen.
168
538861
3381
ืœื”ื›ื ื™ืก ื”ื‘ื™ืชื” ืืช ื”ืžืฆืจื›ื™ื ืžื”ืžื›ื•ื ื™ืช, ื‘ืžืขืœื” ื”ืžื“ืจื’ื•ืช, ืœืžื˜ื‘ื—.
ืื• ืืคื™ืœื•, ื›ืฉืื ื—ื ื• ืžื–ื“ืงื ื™ื ื”ืจื‘ื” ื™ื•ืชืจ,
09:02
Or even, as we get very much older,
169
542266
1831
09:04
driving our cars to go visit people.
170
544121
3064
ืœื ื”ื•ื’ ื‘ืžื›ื•ื ื™ื•ืช ื›ื“ื™ ืœื ืกื•ืข ื•ืœื‘ืงืจ ืื ืฉื™ื.
09:07
And I think robotics gives people a chance to have dignity as they get older
171
547209
6343
ื•ืื ื™ ื—ื•ืฉื‘ ืฉืจื•ื‘ื•ื˜ื™ืงื” ื ื•ืชืŸ ืœืื ืฉื™ื ื”ื–ื“ืžื ื•ืช ืœื—ื™ื•ืช ื‘ื›ื‘ื•ื“ ื›ืฉื”ื ืžื–ื“ืงื ื™ื
09:13
by having control of the robotic solution.
172
553576
3525
ืขืœ ื™ื“ื™ ืฉืœื™ื˜ื” ื‘ืคืชืจื•ืŸ ื”ืจื•ื‘ื•ื˜ื™.
09:17
So they don't have to rely on people that are getting scarcer to help them.
173
557125
3572
ื›ืš ืฉื”ื ืœื ืฆืจื™ื›ื™ื ืœืกืžื•ืš ืขืœ ืื ืฉื™ื ืฉื ืขืฉื™ื ื ื“ื™ืจื™ื ืžื›ื“ื™ ืœืขื–ื•ืจ ืœื”ื.
09:20
And so I really think that we're going to be spending more time
174
560721
6657
ืื– ืื ื™ ื‘ืืžืช ื—ื•ืฉื‘ ืฉืื ื—ื ื• ื”ื•ืœื›ื™ื ืœื‘ืœื•ืช ื™ื•ืชืจ ื–ืžืŸ
09:27
with robots like Baxter
175
567402
2277
ืขื ืจื•ื‘ื•ื˜ื™ื ื›ืžื• ื‘ืงืกื˜ืจ
09:29
and working with robots like Baxter in our daily lives. And that we will --
176
569703
6670
ื•ืœืขื‘ื•ื“ ืขื ืจื•ื‘ื•ื˜ื™ื ื›ืžื• ื‘ืงืกื˜ืจ ื‘ื™ื•ืžื™ื•ื ืฉืœื ื•. ื•ืฉื ืขืฉื” ื–ืืช -
09:36
Here, Baxter, it's good.
177
576397
2456
. ื”ื ื”, ื‘ืงืกื˜ืจ, ื–ื” ื˜ื•ื‘.
09:38
And that we will all come to rely on robots over the next 40 years
178
578877
4220
ื•ืื ื—ื ื• ื›ื•ืœื ื• ื ืกืชืžืš ืขืœ ืจื•ื‘ื•ื˜ื™ื ื‘ืžื”ืœืš 40 ื”ืฉื ื™ื ื”ื‘ืื•ืช
09:43
as part of our everyday lives.
179
583121
2142
ื›ื—ืœืง ืžื”ื™ื•ืžื™ื•ื ืฉืœื ื•.
09:45
Thanks very much.
180
585287
1270
ืชื•ื“ื” ืจื‘ื”.
09:46
(Applause)
181
586581
2995
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7