Dennis Hong: My 7 species of robot

138,643 views ใƒป 2010-04-07

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Danny Dankner ืžื‘ืงืจ: Ido Dekkers
ื•ื‘ื›ืŸ, ื”ืจื•ื‘ื•ื˜ ื”ืจืืฉื•ืŸ ืฉืื“ื‘ืจ ืขืœื™ื• ื ืงืจื ืกื˜ืจื™ื™ื“ืจ.
00:16
So the first robot to talk about is called STriDER.
0
16069
3174
ืคื™ืจื•ืฉ ื”ืฉื ื”ื•ื
00:19
It stands for Self-excited Tripedal Dynamic Experimental Robot.
1
19267
3469
ืจื•ื‘ื•ื˜ ื ืกื™ื•ื ื™ ืชืœืช-ืจื’ืœื™ ื“ื™ื ืžื™ ืžืขื•ืจืจ-ืขืฆืžืื™ืช.
00:22
It's a robot that has three legs, which is inspired by nature.
2
22760
4358
ื–ื”ื• ืจื•ื‘ื•ื˜ ื‘ืขืœ ืฉืœื•ืฉ ืจื’ืœื™ื™ื,
ืฉืคื•ืชื— ื‘ื”ืฉืจืื” ืžื”ื˜ื‘ืข.
00:27
But have you seen anything in nature, an animal that has three legs?
3
27760
3411
ืื‘ืœ ื”ืื ืจืื™ืชื ื‘ื˜ื‘ืข
ื—ื™ื” ื‘ืขืœืช ืฉืœื•ืฉ ืจื’ืœื™ื™ื?
00:31
Probably not. So why do I call this a biologically inspired robot?
4
31195
3870
ื›ื ืจืื” ืฉืœื. ืื–, ืœืžื” ืื ื™ ืงื•ืจื ืœื–ื”
ืจื•ื‘ื•ื˜ ืฉืคื•ืชื— ื‘ื”ืฉืจืื” ืžื”ื˜ื‘ืข? ืื™ืš ื–ื” ืขื•ื‘ื“?
00:35
How would it work?
5
35089
1162
ืื‘ืœ ืœืคื ื™ ื›ืŸ, ื‘ื•ืื• ื ื‘ื™ื˜ ืขืœ ืชืจื‘ื•ืช ืคื•ืคื•ืœืจื™ืช.
00:36
But before that, let's look at pop culture.
6
36275
2162
00:38
So, you know H.G. Wells's "War of the Worlds," novel and movie.
7
38461
3468
ืื–, ืืชื ืžื›ื™ืจื™ื ืืช ื”ืกืคืจ ื•ื”ืกืจื˜ ืฉืœ ื”.ื’. ื•ื•ืœืก, ืžืœื—ืžืช ื”ืขื•ืœืžื•ืช.
00:41
And what you see over here is a very popular video game,
8
41953
3321
ื•ืžื” ืฉืืชื ืจื•ืื™ื ืคื” ื–ื”ื• ืžืฉื—ืง ืžื—ืฉื‘
ืžืื•ื“ ืคื•ืคื•ืœืจื™.
00:45
and in this fiction, they describe these alien creatures and robots
9
45298
3700
ื‘ืกืคืจื•ืช ืžืชื•ืืจื™ื ื”ื™ืฆื•ืจื™ื ื”ื–ืจื™ื ื”ืœืœื•
ื›ืจื•ื‘ื•ื˜ื™ื ื‘ืขืœื™ ืฉืœื•ืฉ ืจื’ืœื™ื™ื ืฉืžืฉืœื™ื˜ื™ื ื˜ืจื•ืจ ื‘ื›ื“ื•ืจ ื”ืืจืฅ.
00:49
that have three legs that terrorize Earth.
10
49022
2262
ืื‘ืœ ื”ืจื•ื‘ื•ื˜ ืฉืœื™, ืกื˜ืจื™ื™ื“ืจ, ืœื ื ืข ื‘ืฆื•ืจื” ื›ื–ื•.
00:51
But my robot, STriDER, does not move like this.
11
51308
3535
00:54
This is an actual dynamic simulation animation.
12
54867
3051
ืื–, ื–ื•ื”ื™ ืœืžืขืฉื” ืื ื™ืžืฆื™ื” ืฉืœ ืกื™ืžื•ืœืฆื™ื” ื“ื™ื ืžื™ืช.
00:57
I'm going to show you how the robot works.
13
57942
2057
ืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื ืื™ืš ื”ืจื•ื‘ื•ื˜ ืขื•ื‘ื“.
ื”ื•ื ื”ื•ืคืš ืืช ื’ื•ืคื• ื‘ 180 ืžืขืœื•ืช.
01:00
It flips its body 180 degrees
14
60023
2392
01:02
and it swings its leg between the two legs
15
62439
2058
ื”ื•ื ืžื ื™ืฃ ืืช ืจื’ืœื• ื‘ื™ืŸ ืฉืชื™ ืจื’ืœื™ื• ื”ืื—ืจื•ืช ื›ื“ื™ ืœื‘ืœื•ื ืืช ื”ื ืคื™ืœื”.
01:04
and catches the fall.
16
64521
1159
01:05
So that's how it walks.
17
65704
1162
ืื–, ื›ืš ื”ื•ื ื”ื•ืœืš. ืื‘ืœ ื›ืืฉืจ ืืชื ืžื‘ื™ื˜ื™ื ืขืœื™ื ื•
01:06
But when you look at us human beings, bipedal walking,
18
66890
2712
ื‘ื ื™ ื”ืื“ื, ื”ื•ืœื›ื™ ืฉื ื™ ื”ื’ืคื™ื™ื,
01:09
what you're doing is,
19
69626
1158
ืžื” ืฉืื ื• ืขื•ืฉื™ื ื–ื” ืœื ื‘ืืžืช ืžืฉืชืžืฉื™ื ื‘ืฉืจื™ืจ
01:10
you're not really using muscle to lift your leg and walk like a robot.
20
70808
4087
ื›ื“ื™ ืœื”ืจื™ื ืืช ื”ืจื’ืœ ื›ืžื• ืจื•ื‘ื•ื˜, ื ื›ื•ืŸ?
01:14
What you're doing is, you swing your leg and catch the fall,
21
74919
3337
ืžื” ืฉืืชื ืขื•ืฉื™ื, ื”ื•ื ืœืžืขืฉื” ืœื”ื ื™ืฃ ืืช ืจื’ืœื›ื ื•ืœื‘ืœื•ื ืืช ื”ื ืคื™ืœื”,
ื ืขืžื“ื™ื ืฉื•ื‘, ืžื ื™ืคื™ื ืืช ื”ืจื’ืœ ื•ื‘ื•ืœืžื™ื ืืช ื”ื ืคื™ืœื”.
01:18
stand up again, swing your leg and catch the fall.
22
78280
2456
01:20
You're using your built-in dynamics, the physics of your body,
23
80760
3167
ืžืฉืชืžืฉื™ื ื‘ื“ื™ื ืžื™ืงื” ื”ืžื•ื‘ื ื™ืช ืฉืœื›ื, ื”ืคื™ื–ื™ืงื” ืฉืœ ื’ื•ืคื›ื,
01:23
just like a pendulum.
24
83951
1751
ืžืžืฉ ื›ืžื• ืžื˜ื•ื˜ืœืช.
01:25
We call that the concept of passive dynamic locomotion.
25
85726
3358
ืื ื• ืงื•ืจืื™ื ืœื’ื™ืฉื” ื”ื–ืืช ื ื™ื™ื“ื•ืช ื“ื™ื ืžื™ืช-ืคืืกื™ื‘ื™ืช.
01:29
What you're doing is, when you stand up,
26
89108
2138
ืžื” ืฉืืชื ืขื•ืฉื™ื ื›ืืฉืจ ืืชื ืžืชืจื•ืžืžื™ื,
01:31
potential energy to kinetic energy,
27
91270
2081
ืื ืจื’ื™ื” ืคื•ื˜ื ืฆื™ืืœื™ืช ืœืื ืจื’ื™ื” ืงื™ื ื˜ื™ืช,
01:33
potential energy to kinetic energy.
28
93375
1977
ืื ืจื’ื™ื” ืคื•ื˜ื ืฆื™ืืœื™ืช ืœืื ืจื’ื™ื” ืงื™ื ื˜ื™ืช.
01:35
It's a constantly falling process.
29
95376
1977
ื–ื”ื• ืชื”ืœื™ืš ื ืคื™ืœื” ืจืฆื•ืฃ.
01:37
So even though there is nothing in nature that looks like this,
30
97377
3049
ืื–, ืœืžืจื•ืช ืฉืื™ืŸ ืฉื•ื ื“ื‘ืจ ื‘ื˜ื‘ืข ืฉื ืจืื” ื›ืš,
01:40
really, we're inspired by biology and applying the principles of walking
31
100450
4129
ืœืžืขืฉื” ืงื™ื‘ืœื ื• ื”ืฉืจืื” ืžืขื•ืœื ื”ื—ื™
ื•ื™ื™ืฉืžื ื• ืืช ืขื™ืงืจื•ืŸ ื”ื”ืœื™ื›ื”
01:44
to this robot.
32
104603
1157
ืœืจื•ื‘ื•ื˜ ื–ื”, ื•ืœื›ืŸ ื–ื”ื• ืจื•ื‘ื•ื˜ ืฉืคื•ืชื— ื‘ื”ืฉืจืื” ืžืขื•ืœื ื”ื—ื™.
01:45
Thus, it's a biologically inspired robot.
33
105784
1977
01:47
What you see here, this is what we want to do next.
34
107785
2413
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ, ื–ื” ืžื” ืฉืื ื• ืจื•ืฆื™ื ืœืขืฉื•ืช ื‘ืฉืœื‘ ื”ื‘ื.
ืื ื• ืจื•ืฆื™ื ืœืงืคืœ ืืช ื”ืจื’ืœื™ื™ื ื•ืœืฉื’ืจ ืื•ืชื• ืœืžืขืœื” ื‘ืชื ื•ืขื” ืืจื•ื›ืช ื˜ื•ื•ื—.
01:50
We want to fold up the legs and shoot it up for long-range motion.
35
110222
3514
01:53
And it deploys legs -- it looks almost like "Star Wars" --
36
113760
2794
ื•ื”ื•ื ืคื•ืจืก ืืช ืจื’ืœื™ื•, ื–ื” ื ืจืื” ื›ืžืขื˜ ื›ืžื• ืžืœื—ืžืช ื”ื›ื•ื›ื‘ื™ื.
01:56
so when it lands, it absorbs the shock and starts walking.
37
116578
2864
ื›ืฉื”ื•ื ื ื•ื—ืช, ื”ื•ื ืกื•ืคื’ ืืช ื”ื—ื‘ื˜ื” ื•ืžืชื—ื™ืœ ืœืœื›ืช.
01:59
What you see over here, this yellow thing, this is not a death ray.
38
119466
3205
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ, ื”ื“ื‘ืจ ื”ืฆื”ื•ื‘ ื”ื–ื”, ื”ื•ื ืœื ืงืจืŸ ืžื•ื•ืช.
02:02
(Laughter)
39
122695
1012
ื–ื” ืจืง ื›ื“ื™ ืœื”ืจืื•ืช ืฉืื ื™ืฉ ืžืฆืœืžื•ืช
02:03
This is just to show you
40
123731
1159
02:04
that if you have cameras or different types of sensors,
41
124914
2687
ืื• ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื—ื™ื™ืฉื ื™ื
ืžืฉื•ื ืฉื”ื•ื ื’ื‘ื•ื” - ื”ื•ื ื‘ื’ื•ื‘ื” ืžื˜ืจ ืฉืžื•ื ื™ื -
02:07
because it's 1.8 meters tall,
42
127625
1517
ื”ื•ื ื™ื›ื•ืœ ืœืจืื•ืช ืžืขื‘ืจ ืœืžื›ืฉื•ืœื™ื ื›ืžื• ืฉื™ื—ื™ื ื•ื“ื•ืžื™ื”ื.
02:09
you can see over obstacles like bushes and those kinds of things.
43
129166
3086
ืื– ื™ืฉ ืœื ื• ืฉื ื™ ืื‘ื•ืช-ื˜ื™ืคื•ืก.
02:12
So we have two prototypes.
44
132276
1347
02:13
The first version, in the back, that's STriDER I.
45
133647
2943
ื”ื’ื™ืจืกื” ื”ืจืืฉื•ื ื”, ื‘ืจืงืข, ื–ื” ืกื˜ืจื™ื™ื“ืจ 1.
02:16
The one in front, the smaller, is STriDER II.
46
136614
2167
ื•ื–ื” ืžืœืคื ื™ื, ื”ืงื˜ืŸ ื™ื•ืชืจ, ื–ื” ืกื˜ืจื™ื™ื“ืจ 2.
02:18
The problem we had with STriDER I is, it was just too heavy in the body.
47
138805
3508
ื”ื‘ืขื™ื” ืฉื”ื™ืชื” ืœื ื• ื‘ืกื˜ืจื™ื™ื“ืจ 1 ื”ื™ื
ืฉื”ื’ื•ืฃ ืฉืœื• ื”ื™ื” ื›ื‘ื“ ืžื“ื™. ื”ื™ื• ืœื ื• ื›ืœ-ื›ืš ื”ืจื‘ื” ืžื ื•ืขื™ื,
02:22
We had so many motors aligning the joints
48
142337
2584
ืืชื ื™ื•ื“ืขื™ื, ื™ื™ืฉื•ืจ ื”ืžืคืจืงื™ื, ื•ื“ื‘ืจื™ื ืžืขื™ืŸ ืืœื”.
02:24
and those kinds of things.
49
144945
1254
ืื–, ื”ื—ืœื˜ื ื• ืœื”ืจื›ื™ื‘ ืžื ื’ื ื•ืŸ ืžื›ื ื™
02:26
So we decided to synthesize a mechanical mechanism
50
146223
3200
02:29
so we could get rid of all the motors, and with a single motor,
51
149447
3069
ื›ืš ืฉื ื•ื›ืœ ืœื”ืคื˜ืจ ืžื›ืœ ื”ืžื ื•ืขื™ื, ื•ื‘ืขื–ืจืช ืžื ื•ืข ืื—ื“
02:32
we can coordinate all the motions.
52
152540
1677
ื ื•ื›ืœ ืœืชืื ืืช ื›ืœ ื”ืชื ื•ืขื•ืช.
02:34
It's a mechanical solution to a problem, instead of using mechatronics.
53
154241
3377
ื–ื”ื• ืคืชืจื•ืŸ ืžื›ื ื™ ืœื‘ืขื™ื”, ื‘ืžืงื•ื ืฉื™ืžื•ืฉ ื‘ืžื›ื˜ืจื•ื ื™ืงื”.
02:37
So with this, now the top body is lighted up; it's walking in our lab.
54
157642
3412
ื•ื›ืš, ื‘ืื•ืคืŸ ื”ื–ื”, ืคืœื’ ื”ื’ื•ืฃ ื”ืขืœื™ื•ืŸ ืงืœ ืžืกืคื™ืง ื›ื“ื™ ืฉื™ื•ื›ืœ ืœืœื›ืช ื‘ืžืขื‘ื“ื”.
ื–ื” ื”ื™ื” ื”ืฆืขื“ ื”ืžื•ืฆืœื— ื”ืจืืฉื•ืŸ.
02:41
This was the very first successful step.
55
161078
2059
02:43
It's still not perfected, its coffee falls down,
56
163161
2668
ื–ื” ืขื“ื™ื™ืŸ ืœื ืžื•ืฉืœื. ื”ื•ื ื ื•ืคืœ ืœืขืชื™ื ืงืจื•ื‘ื•ืช,
02:45
so we still have a lot of work to do.
57
165853
1982
ื›ืš ืฉื™ืฉ ืœืคื ื™ื ื• ืขื•ื“ ืขื‘ื•ื“ื” ืจื‘ื”.
02:48
The second robot I want to talk about is called IMPASS.
58
168685
2696
ื”ืจื•ื‘ื•ื˜ ื”ืฉื ื™ ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื• ื ืงืจื ืื™ืžืคืืก.
02:51
It stands for Intelligent Mobility Platform with Actuated Spoke System.
59
171405
4459
ืคื™ืจื•ืฉ ื”ืฉื ื”ื•ื ืคืœื˜ืคื•ืจืžื” ื—ื›ืžื” ื ื™ื™ื“ืช ืขื ืžืขืจื›ืช ื—ื™ืฉื•ืจื™ื ืžื•ื ืขืช.
02:55
It's a wheel-leg hybrid robot.
60
175888
2595
ืื– ื–ื”ื• ืจื•ื‘ื•ื˜ ื”ื™ื‘ืจื™ื“ื™ ื‘ืขืœ ืจื’ืœ-ื’ืœื’ืœื™ืช.
02:58
So think of a rimless wheel or a spoke wheel,
61
178507
3857
ืชื—ืฉื‘ื• ืขืœ ื’ืœื’ืœ ืœืœื ื—ื™ืฉื•ืง,
ืื• ื’ืœื’ืœ ื—ื™ืฉื•ืจื™ื.
03:02
but the spokes individually move in and out of the hub;
62
182388
2977
ืื‘ืœ ื”ื—ื™ืฉื•ืจื™ื ื–ื–ื™ื ืขืฆืžืื™ืช ืคื ื™ืžื” ื•ื”ื—ื•ืฆื” ืžื”ืžืจื›ื–.
03:05
so, it's a wheel-leg hybrid.
63
185389
2087
ื›ืš ืฉื–ื” ืฉื™ืœื•ื‘ ืฉืœ ืจื’ืœ ื•ื’ืœื’ืœ.
03:07
We're literally reinventing the wheel here.
64
187500
2242
ืื ื• ืคืฉื•ื˜ื• ื›ืžืฉืžืขื• ืžืžืฆื™ืื™ื ื›ืืŸ ืืช ื”ื’ืœื’ืœ ืžื—ื“ืฉ.
03:09
Let me demonstrate how it works.
65
189766
2463
ืชื ื• ืœื™ ืœื”ื“ื’ื™ื ื›ื™ืฆื“ ื–ื” ืขื•ื‘ื“.
03:12
So in this video we're using an approach called the reactive approach.
66
192253
3849
ื•ื‘ื›ืŸ, ื‘ืกืจื˜ื•ืŸ ื”ื–ื” ืื ื• ืžืฉืชืžืฉื™ื ื‘ื’ื™ืฉื”
ืฉื ืงืจืืช ื’ื™ืฉื” ืชื’ื•ื‘ืชื™ืช.
03:16
Just simply using the tactile sensors on the feet,
67
196126
2977
ื‘ืขื–ืจืช ืฉื™ืžื•ืฉ ืคืฉื•ื˜ ื‘ื—ื™ื™ืฉื ื™ ืžื’ืข ืขืœ ื”ืจื’ืœื™ื™ื,
03:19
it's trying to walk over a changing terrain,
68
199127
2810
ื”ื•ื ืžื ืกื” ืœืœื›ืช ืขืœ ืคื ื™ ืฉื˜ื— ืžืฉืชื ื™ื,
03:21
a soft terrain where it pushes down and changes.
69
201961
2700
ืคื ื™ ืฉื˜ื— ืจื›ื™ื ื”ื ืœื—ืฆื™ื ืœืžื˜ื” ื•ืžืฉืชื ื™ื.
03:24
And just by the tactile information,
70
204685
2197
ื•ืจืง ื‘ืขื–ืจืช ืžื™ื“ืข ืžื—ื™ื™ืฉื ื™ ื”ืžื’ืข
03:26
it successfully crosses over these types of terrains.
71
206906
2755
ื”ื•ื ื—ื•ืฆื” ื‘ื”ืฆืœื—ื” ืืช ืกื•ื’ื™ ื”ืฉื˜ื— ื”ืœืœื•.
03:29
But, when it encounters a very extreme terrain --
72
209685
3805
ืื‘ืœ ื›ืืฉืจ ื”ื•ื ืžืชืžื•ื“ื“ ืขื ืคื ื™ ืฉื˜ื— ืงื™ืฆื•ื ื™ื™ื,
03:33
in this case, this obstacle is more than three times the height
73
213514
3913
ื‘ืžืงืจื” ื–ื” ื”ืžื›ืฉื•ืœ ื”ื•ื ื™ื•ืชืจ ืžืคื™ ืฉืœื•ืฉ
ืžื’ื•ื‘ื” ื”ืจื•ื‘ื•ื˜,
03:37
of the robot --
74
217451
1170
03:38
then it switches to a deliberate mode,
75
218645
1874
ื”ื•ื ืขื•ื‘ืจ ืœืฉื™ื˜ืช ืคืขื•ืœื” ืžื—ื•ืฉื‘ืช,
03:40
where it uses a laser range finder and camera systems
76
220543
2814
ื‘ื” ื”ื•ื ืขื•ืฉื” ืฉื™ืžื•ืฉ ื‘ืžื“ ื˜ื•ื•ื— ืœื™ื™ื–ืจ,
ื•ืžืขืจื›ื•ืช ืฆื™ืœื•ื ื‘ื›ื“ื™ ืœื–ื”ื•ืช ืืช ื”ืžื›ืฉื•ืœ ื•ืืช ื’ื•ื“ืœื•,
03:43
to identify the obstacle and the size.
77
223381
1826
ื•ื”ื•ื ืžืชื›ื ืŸ ื‘ื–ื”ื™ืจื•ืช ืืช ื”ืชื ื•ืขื” ืฉืœ ื”ื—ื™ืฉื•ืจื™ื,
03:45
And it carefully plans the motion of the spokes
78
225231
2984
ื•ืžืชืื ืื•ืชื” ื›ืš ืฉื™ื•ื›ืœ ืœื”ืคื’ื™ืŸ
03:48
and coordinates it so it can show this very impressive mobility.
79
228239
3709
ืกื•ื’ ื–ื” ืฉืœ ื ื™ื™ื“ื•ืช ืžืื•ื“ ืžืื•ื“ ืžืจืฉื™ืžื”.
03:51
You probably haven't seen anything like this out there.
80
231972
2641
ืงืจื•ื‘ ืœื•ื•ื“ืื™ ืฉืœื ืจืื™ืชื ืฉื•ื ื“ื‘ืจ ืžืขื™ืŸ ื–ื”.
ื–ื”ื• ืจื•ื‘ื•ื˜ ื‘ืขืœ ื™ื›ื•ืœืช ื ื™ื™ื“ื•ืช ื’ื‘ื•ื”ื” ืžืื•ื“
03:54
This is a very high-mobility robot that we developed called IMPASS.
81
234637
3670
ืฉืื ื• ืคื™ืชื—ื ื•, ื”ืžื›ื•ื ื” ืื™ืžืคืืก.
03:59
Ah, isn't that cool?
82
239873
1788
ืื”! ื ื›ื•ืŸ ืฉื–ื” ืžื’ื ื™ื‘?
04:01
When you drive your car,
83
241685
3294
ื›ืืฉืจ ืืชื ื ื•ื”ื’ื™ื ื‘ืžื›ื•ื ื™ืชื›ื,
ื‘ืขืช ืฉืืชื ืžื›ื•ื•ื ื™ื ืืช ื”ืžื›ื•ื ื™ืช, ืืชื ืžืฉืชืžืฉื™ื ื‘ืฉื™ื˜ื”
04:05
when you steer your car, you use a method called Ackermann steering.
84
245003
3922
ืฉื ืงืจืืช ื”ื™ื’ื•ื™ ืืงืจืžืŸ.
04:08
The front wheels rotate like this.
85
248949
1851
ื”ื’ืœื’ืœื™ื ื”ืงื“ืžื™ื™ื ืžืกืชื•ื‘ื‘ื™ื ื‘ืฆื•ืจื” ื›ื–ื•.
04:10
For most small-wheeled robots,
86
250824
2515
ืžืจื‘ื™ืช ื”ืจื•ื‘ื•ื˜ื™ื ื”ืงื˜ื ื™ื ื‘ืขืœื™ ื”ื’ืœื’ืœื™ื
04:13
they use a method called differential steering
87
253363
2249
ืžืฉืชืžืฉื™ื ื‘ืฉื™ื˜ื” ืฉื ืงืจืืช ื”ื™ื’ื•ื™ ื“ื™ืคืจื ืฆื™ืืœื™
04:15
where the left and right wheel turn the opposite direction.
88
255636
2857
ื‘ื” ื”ื’ืœื’ืœ ื”ื™ืžื ื™ ื•ื”ืฉืžืืœื™ ืžืกืชื•ื‘ื‘ื™ื ื‘ื›ื™ื•ื•ื ื™ื ื ื’ื“ื™ื™ื.
04:18
For IMPASS, we can do many, many different types of motion.
89
258517
2898
ืขื‘ื•ืจ ืื™ืžืคืืก, ืื ื• ื™ื›ื•ืœื™ื ืœื”ื’ื™ืข ืœืกื•ื’ื™ื ืจื‘ื™ื ืฉืœ ืชื ื•ืขื”.
04:21
For example, in this case,
90
261439
1269
ืœื“ื•ื’ืžื”, ื‘ืžืงืจื” ื”ื–ื”, ืืฃ-ืขืœ-ืคื™ ืฉื’ืœื’ืœ ื™ืžื™ืŸ ื•ืฉืžืืœ ืžื—ื•ื‘ืจื™ื
04:22
even though the left and right wheels are connected
91
262732
2400
ื‘ืฆื™ืจ ืื—ื“, ื”ื ืžืกืชื•ื‘ื‘ื™ื ื‘ืื•ืชื” ืžื”ื™ืจื•ืช ื–ื•ื•ื™ืชื™ืช.
04:25
with a single axle rotating at the same angle of velocity,
92
265156
2766
ืื ื• ืคืฉื•ื˜ ืžืฉื ื™ื ืืช ืื•ืจืš ื”ื—ื™ืฉื•ืจ.
04:27
we simply change the length of the spoke, it affects the diameter,
93
267946
3134
ื–ื” ืžืฉืคื™ืข ืขืœ ื”ืงื•ื˜ืจ, ื•ืื– ื”ื•ื ืคื•ื ื” ืฉืžืืœื”, ื”ื•ื ืคื•ื ื” ื™ืžื™ื ื”.
04:31
then can turn to the left and to the right.
94
271104
2087
ื•ื‘ื›ืŸ, ืืœื• ืจืง ื›ืžื” ื“ื•ื’ืžืื•ืช ืœื“ื‘ืจื™ื ื”ืžื’ื ื™ื‘ื™ื ืฉื ื™ืชืŸ
04:33
These are just some examples of the neat things we can do with IMPASS.
95
273215
3353
ืœืขืฉื•ืช ืขื ืื™ืžืคืืก.
04:36
This robot is called CLIMBeR:
96
276592
1774
ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ืžื›ื•ื ื” ืงืœื™ื™ืžื‘ืจ,
04:38
Cable-suspended Limbed Intelligent Matching Behavior Robot.
97
278390
3400
ืจืืฉื™ ื”ืชื™ื‘ื•ืช ื”ืŸ ืจื•ื‘ื•ื˜ ื‘ืขืœ ื’ืคื™ื™ื-ืชืœื•ื™ื•ืช-ื›ื‘ืœื™ื ื”ืชื•ืื ื”ืชื ื”ื’ื•ืช ื—ื›ืžื”.
04:41
I've been talking to a lot of NASA JPL scientists --
98
281814
3127
ืื– ืฉื•ื—ื—ืชื™ ืขื ื—ื•ืงืจื™ื ืจื‘ื™ื ืžื”ืžืขื‘ื“ื” ืœื”ื ืขื” ืกื™ืœื•ื ื™ืช ื‘ื ืืกื,
04:44
at JPL, they are famous for the Mars rovers --
99
284965
2150
ื”ืžืขื‘ื“ื” ืœื”ื ืขื” ืกื™ืœื•ื ื™ืช ืžืคื•ืจืกืžืช ื‘ื’ืฉื•ืฉื™ื•ืช ืžืื“ื™ื.
ื•ื”ืžื“ืขื ื™ื ื•ื”ื’ื™ืื•ืœื•ื’ื™ื ืชืžื™ื“ ืื•ืžืจื™ื ืœื™
04:47
and the scientists, geologists always tell me
100
287139
2371
ืฉื”ืžื“ืข ื”ืžืขื ื™ื™ืŸ ื‘ืืžืช,
04:49
that the real interesting science, the science-rich sites,
101
289534
3127
ื”ืืชืจื™ื ื”ืขืฉื™ืจื™ื-ืžื“ืขื™ืช, ื”ื ืชืžื™ื“ ื‘ืื™ื–ื•ืจื™ ื”ืฆื•ืงื™ื.
04:52
are always at the cliffs.
102
292685
1511
04:54
But the current rovers cannot get there.
103
294220
1950
ืื‘ืœ ื”ื’ืฉื•ืฉื™ื•ืช ื”ื ื•ื›ื—ื™ื•ืช ืœื ื™ื›ื•ืœื•ืช ืœื”ื’ื™ืข ืœืฉื.
04:56
So, inspired by that, we wanted to build a robot
104
296194
2483
ืื– ื‘ื”ืฉืจืืช ืžื’ื‘ืœื” ื–ื• ืจืฆื™ื ื• ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜
04:58
that can climb a structured cliff environment.
105
298701
3117
ืฉืžืกื•ื’ืœ ืœื˜ืคืก ื‘ืกื‘ื™ื‘ื” ืฉืœ ืฆื•ืงื™ื ืžื•ื‘ื ื™ื.
05:01
So this is CLIMBeR.
106
301842
1224
ื•ื‘ื›ืŸ, ื–ื”ื• ืงืœื™ื™ืžื‘ืจ.
05:03
It has three legs.
107
303090
1511
ืื–, ืžื” ืฉื”ื•ื ืขื•ืฉื”, ื™ืฉ ืœื• ืฉืœื•ืฉ ืจื’ืœื™ื. ื‘ื˜ื— ืงืฉื” ืœืจืื•ืช,
05:04
It's probably difficult to see, but it has a winch and a cable at the top.
108
304625
3583
ืื‘ืœ ื™ืฉ ืœื• ื›ื ื ืช ื•ื›ื‘ืœ ื‘ื—ืœืงื• ื”ืขืœื™ื•ืŸ.
05:08
It tries to figure out the best place to put its foot.
109
308232
2581
ื•ื”ื•ื ืžื ืกื” ืœื—ืฉื‘ ืืช ื”ืžืงื•ื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืœื”ื ื™ื— ืืช ืจื’ืœื•.
05:10
And then once it figures that out,
110
310837
1635
ื•ืื–, ื›ืืฉืจ ื”ื—ื™ืฉื•ื‘ ื”ื•ืฉืœื
05:12
in real time, it calculates the force distribution:
111
312496
2977
ื”ื•ื ืžื‘ืฆืข ื—ื™ืฉื•ื‘ื™ื ื‘ื–ืžืŸ ืืžืช ืœืคื™ืœื•ื’ ื”ื›ื•ื—.
05:15
how much force it needs to exert to the surface
112
315497
2523
ื›ืžื” ื›ื•ื— ื”ื•ื ืฆืจื™ืš ืœื”ืคืขื™ืœ ืขืœ ืคื ื™-ื”ืฉื˜ื—
05:18
so it doesn't tip and doesn't slip.
113
318044
1977
ื›ืš ืฉื”ื•ื ืœื ื™ืชื”ืคืš ื•ืœื ื™ื—ืœื™ืง.
05:20
Once it stabilizes that, it lifts a foot,
114
320045
2141
ื›ืืฉืจ ื”ื•ื ืžืชื™ื™ืฆื‘ ื”ื•ื ืžืจื™ื ืจื’ืœ,
05:22
and then with the winch, it can climb up these kinds of cliffs.
115
322210
3303
ื•ืื– ื‘ืขื–ืจืช ื”ื›ื ื ืช, ื”ื•ื ืžืกื•ื’ืœ ืœื˜ืคืก ืขืœ ื“ื‘ืจื™ื ืžืขื™ืŸ ืืœื”.
05:26
Also for search and rescue applications as well.
116
326045
2616
ื’ื ืœืฉื™ืžื•ืฉื™ื ืฉืœ ื—ื™ืคื•ืฉ ื•ื”ืฆืœื”.
05:28
Five years ago, I actually worked at NASA JPL
117
328685
2419
ืœืžืขืฉื”, ืœืคื ื™ ื—ืžืฉ ืฉื ื™ื ืขื‘ื“ืชื™ ื‘ืžืขื‘ื“ื” ืœื”ื ืขื” ืกื™ืœื•ื ื™ืช ื‘ื ืืกื
ื‘ืžื”ืœืš ื”ืงื™ืฅ ื›ืขืžื™ืช ืกื’ืœ.
05:31
during the summer as a faculty fellow.
118
331128
1850
ื•ื”ื™ื” ืœื”ื ื›ื‘ืจ ืจื•ื‘ื•ื˜ ืฉืฉ-ืจื’ืœื™ ื”ืžื›ื•ื ื” ืœื™ืžื•ืจ.
05:33
And they already had a six-legged robot called LEMUR.
119
333002
3450
05:36
So this is actually based on that.
120
336476
1640
ืื–, ื–ื” ืžื‘ื•ืกืก ืขืœ ื›ืš. ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื ืงืจื ืžืืจืก,
05:38
This robot is called MARS:
121
338140
1291
05:39
Multi-Appendage Robotic System.
122
339455
1617
ืฉืคื™ืจื•ืฉื• ืžืขืจื›ืช ืจื•ื‘ื•ื˜ื™ืช ืžืจื•ื‘ืช-ื’ืคื™ื™ื. ื–ื”ื• ืจื•ื‘ื•ื˜ ืฉืฉ-ืจื’ืœื™.
05:41
It's a hexapod robot.
123
341096
1238
05:42
We developed our adaptive gait planner.
124
342358
1977
ืคื™ืชื—ื ื• ืืช ืžืชื›ื ืŸ-ื”ื”ืœื™ื›ื” ื”ืžืกืชื’ืœ ืฉืœื ื•.
05:44
We actually have a very interesting payload on there.
125
344359
2525
ืœืžืขืฉื”, ื™ืฉ ืœื ื• ืขืœื™ื• ืžื˜ืขืŸ ืžืขื ื™ื™ืŸ ืžืื•ื“.
05:46
The students like to have fun.
126
346908
1447
ื”ืกื˜ื•ื“ื ื˜ื™ื ืื•ื”ื‘ื™ื ืœื™ื”ื ื•ืช. ื•ื›ืืŸ ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืืช ื–ื”
05:48
And here you can see that it's walking over unstructured terrain.
127
348379
3095
ื”ื•ืœืš ืขืœ ืคื ื™ ืฉื˜ื— ืœื ืžื•ื‘ื ื”.
05:51
(Motor sound)
128
351498
1117
ื”ื•ื ืžื ืกื” ืœืœื›ืช ืขืœ ืคื ื™-ืฉื˜ื— ื’ืกื™ื,
05:52
It's trying to walk on the coastal terrain, a sandy area,
129
352639
2797
ืื–ื•ืจื™ื ื—ื•ืœื™ื™ื,
05:55
but depending on the moisture content or the grain size of the sand,
130
355460
4648
ืื‘ืœ ื‘ื”ืชืื ืœืจืžืช ื”ืœื—ื•ืช ืื• ืœื’ื•ื“ืœ ื’ืจื’ื™ืจื™ ื”ื—ื•ืœ
06:00
the foot's soil sinkage model changes, so it tries to adapt its gait
131
360132
3844
ืžืฉืชื ื” ืžื•ื“ืœ ืฉืงื™ืขืช ื”ื—ื•ืœ ืฉืœ ื”ืจื’ืœ.
ืื– ื”ื•ื ืžื ืกื” ืœืกื’ืœ ืืช ื”ื”ืœื™ื›ื” ืฉืœื• ื›ื“ื™ ืฉื™ื•ื›ืœ ืœืขื‘ื•ืจ ื‘ื”ืฆืœื—ื” ืขืœ ื›ืœ ืกื•ื’ื™ ื”ื“ื‘ืจื™ื ื”ืœืœื•.
06:04
to successfully cross over these kind of things.
132
364000
2240
06:06
It also does some fun stuff.
133
366264
1507
ื•ื‘ื ื•ืกืฃ, ื”ื•ื ืขื•ืฉื” ื“ื‘ืจื™ื ื›ื™ืคื™ื™ื, ื›ืคื™ ืฉื ื™ืชืŸ ืœืฉืขืจ.
06:07
As you can imagine, we get so many visitors visiting our lab.
134
367795
3485
ืื ื—ื ื• ืžืงื‘ืœื™ื ืžื‘ืงืจื™ื ืจื‘ื™ื ื‘ืžืขื‘ื“ื” ืฉืœื ื•.
06:11
So when the visitors come, MARS walks up to the computer,
135
371304
2732
ืื–, ื›ืืฉืจ ืžื‘ืงืจื™ื ื‘ืื™ื, ืžืืจืก ื ื™ื’ืฉ ืœืžื—ืฉื‘,
ื•ืžืชื—ื™ืœ ืœื”ืงืœื™ื“ "ืฉืœื•ื ืฉืžื™ ืžืืจืก."
06:14
starts typing, "Hello, my name is MARS.
136
374060
2048
"ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœืจื•ืžืœื”,"
06:16
Welcome to RoMeLa,
137
376132
1529
06:17
the Robotics Mechanisms Laboratory at Virginia Tech."
138
377685
2613
"ืžืขื‘ื“ืช ืžื›ื ื™ืงื•ืช ื”ืจื•ื‘ื•ื˜ื™ืงื”, ื•ื™ืจื’'ื™ื ื™ื” ื˜ืง."
06:20
(Laughter)
139
380322
1470
06:21
This robot is an amoeba robot.
140
381816
2125
ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื”ื•ื ืจื•ื‘ื•ื˜ ืืžื‘ื”.
06:23
Now, we don't have enough time to go into technical details,
141
383965
2888
ืขื›ืฉื™ื•, ืื™ืŸ ืœื ื• ื“ื™ ื–ืžืŸ ืœื”ื›ื ืก ืœืคืจื˜ื™ื ื˜ื›ื ื™ื™ื,
06:26
I'll just show you some of the experiments.
142
386877
2057
ืจืง ืืฆื™ื’ ืœื›ื ื›ืžื” ืžื”ื ื™ืกื•ื™ื™ื.
06:28
These are some of the early feasibility experiments.
143
388958
2512
ืื–, ื”ื ื” ื›ืžื” ืžื ื™ืกื•ื™ื™ ื”ื”ื™ืชื›ื ื•ืช ื”ืžื•ืงื“ืžื™ื.
ืื ื—ื ื• ืžืื›ืกื ื™ื ืื ืจื’ื™ื” ืคื•ื˜ื ืฆื™ืืœื™ืช ื‘ืขื•ืจ ื”ื’ืžื™ืฉ ื‘ื›ื“ื™ ืœื’ืจื•ื ืœื• ืœื–ื•ื–.
06:31
We store potential energy to the elastic skin to make it move,
144
391494
3085
06:34
or use active tension cords to make it move forward and backward.
145
394603
3803
ืื• ืžืฉืชืžืฉื™ื ื‘ืžื™ืชืจื™ ืžืชื™ื—ื” ืคืขื™ืœื™ื ื‘ื›ื“ื™ ืœื’ืจื•ื ืœื• ืœื ื•ืข
ืงื“ื™ืžื” ื•ืื—ื•ืจื”. ื”ื•ื ื ืงืจื ื›ื™ืžืจื”.
06:38
It's called ChIMERA.
146
398430
1157
06:39
We also have been working with some scientists and engineers
147
399611
3012
ืื ื• ื’ื ืขื‘ื“ื ื• ืขื ื›ืžื” ืžื“ืขื ื™ื
ื•ืžื”ื ื“ืกื™ื ืžืื•ื ื™ื‘ืจืกื™ื˜ืช ืคื ืกื™ืœื‘ื ื™ื”
06:42
from UPenn
148
402647
1151
06:43
to come up with a chemically actuated version of this amoeba robot.
149
403822
3833
ื›ื“ื™ ืœืคืชื— ื’ื™ืจืกื” ื‘ื”ื ืขื” ื›ื™ืžื™ืช
ืฉืœ ืจื•ื‘ื•ื˜ ื”ืืžื‘ื” ื”ื–ื”.
06:47
We do something to something,
150
407679
1883
ืื ื—ื ื• ืžื•ืกื™ืคื™ื ืžืฉื”ื• ืœืžืฉื”ื•
06:49
and just like magic, it moves.
151
409586
2668
ื•ื›ืžื• ืงืกื, ื”ื ื–ื–ื™ื. ื”ื‘ื•ืขื”.
06:52
"The Blob."
152
412886
1582
06:55
This robot is a very recent project.
153
415193
1777
ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื”ื•ื ื‘ื™ืŸ ื”ืคืจื•ื™ืงื˜ื™ื ื”ืื—ืจื•ื ื™ื ืฉืœื ื•. ื”ื•ื ื ืงืจื ืจืคืืœ.
06:56
It's called RAPHaEL:
154
416994
1151
ื™ื“ ืจื•ื‘ื•ื˜ื™ืช ืžื•ืคืขืœืช ืข"ื™ ืื•ื•ื™ืจ ืขื ืจืฆื•ืขื•ืช ื’ืžื™ืฉื•ืช.
06:58
Robotic Air-Powered Hand with Elastic Ligaments.
155
418169
2687
07:00
There are a lot of really neat, very good robotic hands
156
420880
2999
ื™ืฉ ื”ืจื‘ื” ื“ื‘ืจื™ื ืžืื•ื“ ืžื’ื ื™ื‘ื™ื, ืœืžืฉืœ ื™ืฉ ื™ื“ื™ื™ื ืจื•ื‘ื•ื˜ื™ื•ืช ื˜ื•ื‘ื•ืช ืžืื•ื“ ื‘ืฉื•ืง.
07:03
out there on the market.
157
423903
1163
ื”ื‘ืขื™ื” ื”ื™ื ืฉื”ืŸ ืคืฉื•ื˜ ื™ื•ืชืจ ืžื“ื™ ื™ืงืจื•ืช, ืขืฉืจื•ืช ืืœืคื™ ื“ื•ืœืจื™ื.
07:05
The problem is, they're just too expensive --
158
425090
2180
07:07
tens of thousands of dollars.
159
427294
1405
07:08
So for prosthesis applications it's probably not too practical,
160
428723
3021
ื•ื‘ื›ืŸ, ืœื™ื™ืฉื•ืžื™ื ืฉืœ ืชื•ืชื‘ื™ื ื–ื” ื›ื ืจืื” ืœื ืคืจืงื˜ื™,
ืžืฉื•ื ืฉื”ืžื—ื™ืจ ืื™ื ื• ื‘ื”ื™ืฉื’ ื™ื“.
07:11
because it's not affordable.
161
431768
1345
ืจืฆื™ื ื• ืœื”ืชืžื•ื“ื“ ืขื ื”ื‘ืขื™ื” ื”ื–ื• ืžื›ื™ื•ื•ืŸ ืฉื•ื ื” ืœื—ืœื•ื˜ื™ืŸ.
07:13
We wanted to tackle this problem in a very different direction.
162
433137
3474
07:16
Instead of using electrical motors, electromechanical actuators,
163
436635
3049
ื‘ืžืงื•ื ืœื”ืฉืชืžืฉ ื‘ืžื ื•ืขื™ื ื—ืฉืžืœื™ื™ื, ืžื ื™ืขื™ื ืืœืงื˜ืจื•-ืžื›ื ื™ื™ื,
07:19
we're using compressed air.
164
439708
1756
ืื ื• ืžืฉืชืžืฉื™ื ื‘ืื•ื•ื™ืจ ื“ื—ื•ืก.
07:21
We developed these novel actuators for the joints, so it's compliant.
165
441488
3447
ืคื™ืชื—ื ื• ืืช ื”ืžืคืขื™ืœื™ื ื”ื—ื“ื™ืฉื™ื ื”ืœืœื• ืœืžืคืจืงื™ื.
ื–ื” ื ื™ืชืŸ ืœื”ืชืืžื”. ืืชื ื™ื›ื•ืœื™ื ืœืžืขืฉื” ืœืฉื ื•ืช ืืช ื”ื›ื•ื—,
07:24
You can actually change the force,
166
444959
1702
07:26
simply just changing the air pressure.
167
446685
1826
ืคืฉื•ื˜ ืข"ื™ ืฉื™ื ื•ื™ ืœื—ืฅ ื”ืื•ื•ื™ืจ.
07:28
And it can actually crush an empty soda can.
168
448535
2190
ื•ื”ื•ื ื™ื›ื•ืœ ืœืžื—ื•ืฅ ืคื—ื™ืช ืกื•ื“ื” ืจื™ืงื”.
07:30
It can pick up very delicate objects like a raw egg,
169
450749
3050
ื”ื•ื ื™ื›ื•ืœ ืœื”ืจื™ื ื“ื‘ืจื™ื ืžืื•ื“ ืฉื‘ื™ืจื™ื ื›ืžื• ื‘ื™ืฆื” ื˜ืจื™ื™ื”.
07:33
or in this case, a lightbulb.
170
453823
1588
ืื• ื›ืžื• ื‘ืžืงืจื” ื”ื–ื”, ื ื•ืจื”.
07:36
The best part: it took only 200 dollars to make the first prototype.
171
456050
3669
ื”ื—ืœืง ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ, ืขืœื” ืœื ื• ืจืง $200 ื›ื“ื™ ืœื™ืฆื•ืจ ืื‘ื˜ื™ืคื•ืก ืจืืฉื•ื ื™.
ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื”ื•ื ืœืžืขืฉื” ืžืžืฉืคื—ืช ื”ืจื•ื‘ื•ื˜ื™ื ื”ื ื—ืฉื™ื™ื
07:41
This robot is actually a family of snake robots
172
461166
2748
07:43
that we call HyDRAS,
173
463938
1368
ืฉืื ื• ืงื•ืจืื™ื ืœื• ื”ื™ื“ืจืืก,
07:45
Hyper Degrees-of-freedom Robotic Articulated Serpentine.
174
465330
2711
ื ื—ืฉ ืจื•ื‘ื•ื˜ื™ ืžืจื•ื‘ื” ื“ืจื’ื•ืช ื—ื•ืคืฉ.
ื–ื”ื• ืจื•ื‘ื•ื˜ ืฉื™ื›ื•ืœ ืœื˜ืคืก ืขืœ ืžื‘ื ื™ื.
07:48
This is a robot that can climb structures.
175
468065
2171
07:50
This is a HyDRAS's arm.
176
470260
2083
ื–ื•ื”ื™ ื–ืจื•ืข ื”ื™ื“ืจืืก.
07:52
It's a 12-degrees-of-freedom robotic arm.
177
472367
2009
ื–ื•ื”ื™ ื–ืจื•ืข ืจื•ื‘ื•ื˜ื™ืช ื‘ืขืœืช 12 ื“ืจื’ื•ืช ื—ื•ืคืฉ.
07:54
But the cool part is the user interface.
178
474400
2348
ืื‘ืœ ื”ื—ืœืง ื”ืžื’ื ื™ื‘ ื”ื•ื ืžืžืฉืง ื”ืžืฉืชืžืฉ.
07:56
The cable over there, that's an optical fiber.
179
476772
2743
ื”ื›ื‘ืœ ืฉืžื•ืฆื’ ื›ืืŸ, ื”ื•ื ืกื™ื‘ ืื•ืคื˜ื™.
07:59
This student, it's probably her first time using it,
180
479539
2436
ื•ื”ืกื˜ื•ื“ื ื˜ื™ืช ื”ื–ื•, ืงืจื•ื‘ ืœื•ื•ื“ืื™ ื‘ืฉื™ืžื•ืฉ ืจืืฉื•ืŸ ื‘ืžืขืจื›ืช,
08:01
but she can articulate it in many different ways.
181
481999
2357
ืื‘ืœ ื”ื™ื ื™ื›ื•ืœื” ืœืชืคืขืœ ืื•ืชื• ื‘ื”ืจื‘ื” ื“ืจื›ื™ื ืฉื•ื ื•ืช.
ืื–, ืœืžืฉืœ ื‘ืขื™ืจืง, ืืชื ื™ื•ื“ืขื™ื, ื‘ืื–ื•ืจ ื”ืงืจื‘ื•ืช,
08:04
So, for example, in Iraq, the war zone, there are roadside bombs.
182
484380
3463
ื™ืฉ ืžื˜ืขื ื™ ืฆื“. ื ื›ื•ืŸ ืœืขื›ืฉื™ื• ืืชื ืฉื•ืœื—ื™ื
08:07
Currently, you send these remotely controlled vehicles that are armed.
183
487867
4011
ืจื›ื‘ื™ื ืžืžื•ื’ื ื™ื ื‘ืฉืœื˜ ืจื—ื•ืง.
08:11
It takes really a lot of time and it's expensive to train the operator
184
491902
3539
ืœื•ืงื— ื–ืžืŸ ืจื‘ ื•ื™ืงืจ ืžืื•ื“
ืœืืžืŸ ืืช ื”ืžืคืขื™ืœ ืœืฉืœื•ื˜ ื‘ื–ืจื•ืข ื”ืžื•ืจื›ื‘ืช ื”ื–ื•.
08:15
to operate this complex arm.
185
495465
1738
08:17
In this case, it's very intuitive;
186
497227
1967
ื‘ืžืงืจื” ื”ื–ื”, ื–ื” ืžืื•ื“ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™.
08:19
this student, probably his first time using it,
187
499218
2268
ื”ืกื˜ื•ื“ื ื˜ ื”ื–ื”, ืงืจื•ื‘ ืœื•ื•ื“ืื™ ื‘ืฉื™ืžื•ืฉ ืจืืฉื•ืŸ ื‘ืžืขืจื›ืช, ืžื‘ืฆืข ืžืฉื™ืžื” ืžื•ืจื›ื‘ืช ืžืื•ื“,
08:21
is doing very complex manipulation tasks,
188
501510
1978
08:23
picking up objects and doing manipulation, just like that.
189
503512
3361
ืœื”ืจื™ื ืขืฆืžื™ื ื•ืœื‘ืฆืข ืคืขื•ืœื•ืช,
ืคืฉื•ื˜ ื›ืš, ืžืื•ื“ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™.
08:26
Very intuitive.
190
506897
1205
08:30
Now, this robot is currently our star robot.
191
510025
2597
ื›ืขืช, ื”ืจื•ื‘ื•ื˜ ื”ื–ื” ื”ื•ื ืœืขืช ืขืชื” ื”ื›ื•ื›ื‘ ืฉืœื ื•.
08:32
We actually have a fan club for the robot, DARwIn:
192
512646
2985
ืœืžืขืฉื” ื™ืฉ ืœื ื• ืžื•ืขื“ื•ืŸ ืžืขืจื™ืฆื™ื ืœืจื•ื‘ื•ื˜ ื“ืืจื•ื•ื™ืŸ,
08:35
Dynamic Anthropomorphic Robot with Intelligence.
193
515655
2901
ืจื•ื‘ื•ื˜ ื“ืžื•ื™-ืื“ื ื“ื™ื ืžื™ ื‘ืขืœ ืื™ื ื˜ืœื™ื’ื ืฆื™ื”.
08:38
As you know, we're very interested in human walking,
194
518580
3883
ื›ืคื™ ืฉืืชื ื™ื•ื“ืขื™ื ื™ืฉ ืœื ื• ืขื ื™ื™ืŸ ืจื‘
ื‘ืจื•ื‘ื•ื˜ื™ื ื“ืžื•ื™ื™-ืื“ื, ื”ืœื™ื›ื” ืื ื•ืฉื™ืช.
08:42
so we decided to build a small humanoid robot.
195
522487
2192
ืื– ื”ื—ืœื˜ื ื• ืœื‘ื ื•ืช ืจื•ื‘ื•ื˜ ืงื˜ืŸ ื“ืžื•ื™-ืื“ื.
08:44
This was in 2004; at that time,
196
524703
1762
ื–ื” ื”ื™ื” ื‘ืฉื ืช 2004, ื•ื‘ืชืงื•ืคื” ื–ื•
08:46
this was something really, really revolutionary.
197
526489
2270
ื–ื” ื”ื™ื” ืžืฉื”ื• ืžืื•ื“ ืžื”ืคื›ื ื™.
08:48
This was more of a feasibility study:
198
528783
1801
ื–ื” ื”ื™ื” ื™ื•ืชืจ ืžื—ืงืจ ื”ื™ืชื›ื ื•ืช,
08:50
What kind of motors should we use? Is it even possible?
199
530608
2651
ื‘ืื™ื–ื” ืกื•ื’ ืฉืœ ืžื ื•ืขื™ื ืขืœื™ื ื• ืœื”ืฉืชืžืฉ?
ื”ืื ื–ื” ื‘ื›ืœืœ ืืคืฉืจื™? ื‘ืื™ื–ื” ืกื•ื’ื™ื ืฉืœ ืคืงื“ื™ื ืขืœื™ื ื• ืœื”ืฉืชืžืฉ?
08:53
What kinds of controls should we do?
200
533283
1734
ื•ื‘ื›ืŸ, ืœื–ื” ืื™ืŸ ื—ื™ื™ืฉื ื™ื ื›ืœืœ.
08:55
This does not have any sensors, so it's an open-loop control.
201
535041
3520
ืื–, ื–ื•ื”ื™ ื‘ืงืจื” ื‘ืžืขื’ืœ ืคืชื•ื—.
08:58
For those who probably know, if you don't have any sensors
202
538585
2770
ื‘ืฉื‘ื™ืœ ืืœื” ืžื‘ื™ื ื™ื›ื ืฉืื•ืœื™ ื™ื•ื“ืขื™ื, ืื ืื™ืŸ ืœื›ื ื—ื™ื™ืฉื ื™ื
ื•ื™ืฉื ืŸ ื”ืคืจืขื•ืช ื›ืœืฉื”ืŸ, ืืชื ื™ื•ื“ืขื™ื ืžื” ืงื•ืจื”.
09:01
and there's any disturbances, you know what happens.
203
541379
2573
09:03
(Laughter)
204
543976
2113
(ืฆื—ื•ืง)
09:06
Based on that success, the following year we did the proper mechanical design,
205
546113
5224
ื•ื‘ื›ืŸ, ื‘ื”ืชื‘ืกืก ืขืœ ื”ืฆืœื—ื” ื–ื•, ื‘ืฉื ื” ืฉืœืื—ืจ ืžื›ืŸ
ืขืฉื™ื ื• ืชื›ื ื•ืŸ ืžื›ื ื™ ืจืื•ื™
09:11
starting from kinematics.
206
551361
1224
ื•ื”ืชื—ืœื ื• ืžืงื™ื ืžื˜ื™ืงื”.
09:12
And thus, DARwIn I was born in 2005.
207
552609
2910
ื•ื›ืš, ื‘ืฉื ืช 2005 ื ื•ืœื“ ื“ืืจื•ื•ื™ืŸ 1.
09:15
It stands up, it walks -- very impressive.
208
555543
2311
ื”ื•ื ืžื–ื“ืงืฃ. ื”ื•ื ื”ื•ืœืš, ืžืื•ื“ ืžืจืฉื™ื.
09:17
However, still, as you can see, it has a cord, an umbilical cord.
209
557878
3357
ืขื ื–ืืช, ืขื“ื™ื™ืŸ, ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช,
ื”ื•ื ืžื—ื•ื‘ืจ ืœื›ื‘ืœ, ื—ื‘ืœ ื˜ื‘ื•ืจ. ืื ื• ืขื“ื™ื™ืŸ ืžืฉืชืžืฉื™ื ื‘ืžืงื•ืจ ื›ื•ื— ื—ื™ืฆื•ื ื™,
09:21
So we're still using an external power source
210
561259
2172
09:23
and external computation.
211
563455
1599
ื•ื—ื™ืฉื•ื‘ ื—ื™ืฆื•ื ื™.
ื‘ืฉื ืช 2006, ื”ื’ื™ืข ื”ื–ืžืŸ ืœื›ื™ืฃ ื”ืืžื™ืชื™.
09:26
So in 2006, now it's really time to have fun.
212
566002
3311
09:29
Let's give it intelligence.
213
569337
1459
ื‘ื•ื ื ื™ืชืŸ ืœื• ืื™ื ื˜ืœื™ื’ื ืฆื™ื”. ื ื™ืชืŸ ืœื• ืืช ื›ืœ ื›ื•ื— ื”ื—ื™ืฉื•ื‘ ืœื• ื”ื•ื ื–ืงื•ืง,
09:30
We give it all the computing power it needs:
214
570820
2121
09:32
a 1.5 gigahertz Pentium M chip, two FireWire cameras,
215
572965
2530
ืฉื‘ื‘ ืคื ื˜ื™ื•ื ืื ืฉืœ 1.5 ื’'ื™ื’ื”-ื”ืจืฅ,
ืฉืชื™ ืžืฆืœืžื•ืช ื‘ื—ื™ื‘ื•ืจ ืžื”ื™ืจ, ืฉืžื•ื ื” ื’'ื™ื™ืจื•ืกืงื•ืคื™ื, ืžื“-ืชืื•ืฆื”,
09:35
rate gyros, accelerometers, four forced sensors on the foot,
216
575519
2846
ืืจื‘ืขื” ื—ื™ื™ืฉื ื™ ืคื™ืชื•ืœ ืขืœ ื”ืจื’ืœ ื•ืกื•ืœืœื•ืช ืœื™ืชื™ื•ื.
09:38
lithium polymer batteries --
217
578389
1350
09:39
and now DARwIn II is completely autonomous.
218
579763
3150
ื•ืขื›ืฉื™ื• ื“ืืจื•ื•ื™ืŸ 2 ื”ื•ื ืื•ื˜ื•ื ื•ืžื™ ืœื—ืœื•ื˜ื™ืŸ.
09:43
It is not remote controlled. There's no tethers.
219
583406
2691
ื”ื•ื ืœื ื ืฉืœื˜ ืžืจื—ื•ืง.
ื”ื•ื ืื™ื ื• ืงืฉื•ืจ. ื”ื•ื ืžืกืชื›ืœ ืกื‘ื™ื‘, ืžื—ืคืฉ ืื—ืจ ื”ื›ื“ื•ืจ,
09:46
It looks around, searches for the ball ... looks around, searches for the ball,
220
586121
3733
ืžืกืชื›ืœ ืกื‘ื™ื‘, ืžื—ืคืฉ ืื—ืจ ื”ื›ื“ื•ืจ ื•ืžื ืกื” ืœืฉื—ืง ื›ื“ื•ืจื’ืœ,
09:49
and it tries to play a game of soccer autonomously -- artificial intelligence.
221
589878
4929
ื‘ืื•ืคืŸ ืื•ื˜ื•ื ื•ืžื™, ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืžืœืื›ื•ืชื™ืช.
09:54
Let's see how it does.
222
594831
1154
ื‘ื•ื ื ืจืื” ืื ื”ื•ื ืžืฆืœื™ื—. ื–ื” ื”ื™ื” ื ืกื™ื•ื ื ื• ื”ืจืืฉื•ืŸ,
09:56
This was our very first trial, and ...
223
596009
1947
09:57
(Video) Spectators: Goal!
224
597980
4367
ื•... ืฉืขืจ!
10:03
Dennis Hong: There is actually a competition called RoboCup.
225
603498
2950
ื™ืฉ ืœืžืขืฉื” ืชื—ืจื•ืช ื‘ืฉื ืจื•ื‘ื•ืงืืค (ื’ื‘ื™ืข ื”ืจื•ื‘ื•ื˜ื™ื).
10:06
I don't know how many of you have heard about RoboCup.
226
606472
2587
ืื ื™ ืœื ื™ื•ื“ืข ื›ืžื” ืžื›ื ืฉืžืขื• ืขืœ ืจื•ื‘ื•ืงืืค.
ื–ื•ื”ื™ ืชื—ืจื•ืช ื›ื“ื•ืจื’ืœ ื‘ื™ื ืœืื•ืžื™ืช ืœืจื•ื‘ื•ื˜ื™ื ืื•ื˜ื•ื ื•ืžื™ื™ื.
10:09
It's an international autonomous robot soccer competition.
227
609083
4374
10:13
And the actual goal of RoboCup is,
228
613481
2748
ื•ื”ืžื˜ืจื” ืฉืœ ืจื•ื‘ื•ืงืืค, ื”ืžื˜ืจื” ื”ืืžื™ืชื™ืช ื”ื™ื,
10:16
by the year 2050,
229
616253
2193
ืขื“ ืœืฉื ืช 2050
10:18
we want to have full-size, autonomous humanoid robots
230
618470
3731
ืื ื—ื ื• ืจื•ืฆื™ื ืฉื™ื”ื™ื• ื‘ืจืฉื•ืชื™ื ื• ืจื•ื‘ื•ื˜ื™ื ืื ื•ืฉื™ื™ื ืื•ื˜ื•ื ื•ืžื™ื™ื ื‘ื’ื•ื“ืœ ืžืœื
ืฉื™ืฉื—ืงื• ื›ื“ื•ืจื’ืœ ื ื’ื“ ืืœื•ืคื™ ื”ืขื•ืœื ื”ืื ื•ืฉื™ื™ื
10:22
play soccer against the human World Cup champions
231
622225
3074
10:25
and win.
232
625323
1153
ื•ื™ื ืฆื—ื•.
10:26
(Laughter)
233
626500
1032
10:27
It's a true, actual goal.
234
627556
1218
ื–ืืช ื”ืžื˜ืจื” ื”ืืžื™ืชื™ืช. ื”ื™ื ืžื˜ืจื” ืžืื•ื“ ืฉืืคืชื ื™ืช,
10:28
It's a very ambitious goal, but we truly believe we can do it.
235
628798
3897
ืื‘ืœ ืื ื—ื ื• ื‘ืืžืช ืžืืžื™ื ื™ื ืฉืื ื—ื ื• ืžืกื•ื’ืœื™ื ืœื›ืš.
ื•ื‘ื›ืŸ, ื–ื” ื‘ืฉื ื” ืฉืขื‘ืจื” ื‘ืกื™ืŸ.
10:32
This is last year in China.
236
632719
1734
10:34
We were the very first team in the United States that qualified
237
634477
3013
ื”ื™ื™ื ื• ื”ืงื‘ื•ืฆื” ื”ืจืืฉื•ื ื” ืžืืจืฆื•ืช ื”ื‘ืจื™ืช ืฉืขืžื“ื” ื‘ื“ืจื™ืฉื•ืช ื”ืกืฃ
ื‘ืชื—ืจื•ืช ื”ืจื•ื‘ื•ื˜ื™ื ื“ืžื•ื™ื™-ื”ืื“ื.
10:37
in the humanoid RoboCup competition.
238
637514
1800
ื–ื” ื‘ืฉื ื” ื”ื ื•ื›ื—ื™ืช, ื–ื” ื”ื™ื” ื‘ืื•ืกื˜ืจื™ื”.
10:39
This is this year in Austria.
239
639338
2180
10:41
You're going to see the action is three against three,
240
641542
2567
ืืชื ืขื•ืžื“ื™ื ืœืจืื•ืช ืืช ื”ืืงืฉืŸ, ืฉืœื•ืฉื” ื ื’ื“ ืฉืœื•ืฉื”,
ืื•ื˜ื•ื ื•ืžื™ื™ื ืœื—ืœื•ื˜ื™ืŸ.
10:44
completely autonomous.
241
644133
1191
10:45
(Video) (Crowd groans)
242
645348
1091
ื”ื ื” ืœื›ื. ื›ืŸ!
10:46
DH: There you go. Yes!
243
646463
1330
10:48
The robots track and they team-play amongst themselves.
244
648591
4142
ื”ืจื•ื‘ื•ื˜ื™ื ืขื•ืงื‘ื™ื ื•ืžืฉื—ืงื™ื,
ืžืฉื—ืง ืงื‘ื•ืฆืชื™ ื‘ื™ื ื ืœื‘ื™ืŸ ืขืฆืžื.
10:53
It's very impressive.
245
653194
1151
ื–ื” ืžืื•ื“ ืžืจืฉื™ื. ื–ื”ื• ืœืžืขืฉื” ืื™ืจื•ืข ืžื—ืงืจื™
10:54
It's really a research event,
246
654369
1476
10:55
packaged in a more exciting competition event.
247
655869
4240
ืืจื•ื– ื‘ืชื•ืš ืื™ืจื•ืข ืชื—ืจื•ืชื™ ื”ืจื‘ื” ื™ื•ืชืจ ืžืœื”ื™ื‘.
ืžื” ืฉืืชื ืจื•ืื™ื ื›ืืŸ,
11:00
What you see here is the beautiful Louis Vuitton Cup trophy.
248
660133
3528
ื–ื”ื• ื’ื‘ื™ืข ืœื•ืื™ ื•ื•ื™ื˜ื•ืŸ ื”ื™ืคื”ืคื”.
11:03
This is for the best humanoid.
249
663685
1519
ื–ื”ื• ืขื‘ื•ืจ ื“ืžื•ื™-ื”ืื“ื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ,
11:05
We'd like to bring this, for the first time, to the United States next year,
250
665228
3669
ื•ืื ื—ื ื• ืจื•ืฆื™ื ืœื”ื‘ื™ื ืืช ื–ื” ื‘ืคืขื ื”ืจืืฉื•ื ื” ืœืืจืฆื•ืช ื”ื‘ืจื™ืช,
ื‘ืฉื ื” ื”ื‘ืื”, ืื– ืื—ืœื• ืœื ื• ื‘ื”ืฆืœื—ื”.
11:08
so wish us luck.
251
668921
1155
ืชื•ื“ื” ืœื›ื.
11:10
(Applause)
252
670100
1036
11:11
Thank you.
253
671160
1152
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
11:12
(Applause)
254
672336
2081
11:14
DARwIn also has a lot of other talents.
255
674441
2068
ืœื“ืืจื•ื•ื™ืŸ ื™ืฉ ื’ื ื›ืฉืจื•ื ื•ืช ืจื‘ื™ื ืื—ืจื™ื.
11:16
Last year, it actually conducted the Roanoke Symphony Orchestra
256
676533
3716
ื‘ืฉื ื” ืฉืขื‘ืจื” ื”ื•ื ืœืžืขืฉื” ื ื™ืฆื— ืขืœ ื”ืชื–ืžื•ืจืช ื”ืกื™ืžืคื•ื ื™ืช ืฉืœ ืจื•ื ื•ืง
ื‘ืงื•ื ืฆืจื˜ ื”ื—ื’.
11:20
for the holiday concert.
257
680273
2388
11:22
This is the next generation robot, DARwIn IV,
258
682685
2976
ื–ื”ื• ืจื•ื‘ื•ื˜ ืžื”ื“ื•ืจ ื”ื‘ื, ื“ืืจื•ื•ื™ืŸ 4,
11:25
much smarter, faster, stronger.
259
685685
2976
ืื‘ืœ ื—ื›ื ื™ื•ืชืจ, ืžื”ื™ืจ ื™ื•ืชืจ, ื—ื–ืง ื™ื•ืชืจ.
11:28
And it's trying to show off its ability:
260
688685
1977
ื•ื”ื•ื ืžื ืกื” ืœื”ืฉื•ื•ื™ืฅ ื‘ื™ื›ื•ืœืช ืฉืœื•.
11:30
"I'm macho, I'm strong."
261
690686
1797
"ืื ื™ ื’ื‘ืจ, ืื ื™ ื—ื–ืง."
11:32
(Laughter)
262
692507
1444
11:33
"I can also do some Jackie Chan-motion, martial art movements."
263
693975
4225
"ืื ื™ ื™ื›ื•ืœ ื’ื ืœืขืฉื•ืช ื›ืžื” ืชื ื•ืขื•ืช ื‘ืกื’ื ื•ืŸ ื’'ืงื™ ืฆ'ืืŸ"
ืชื ื•ืขื•ืช ืฉืœ ืืžื ื•ื™ื•ืช ืœื—ื™ืžื”.
11:38
(Laughter)
264
698224
2012
(ืฆื—ื•ืง)
11:41
And it walks away. So this is DARwIn IV.
265
701685
1935
ื•ื”ื•ื ื”ื•ืœืš ืœื“ืจื›ื•. ื–ื”ื• ื“ืืจื•ื•ื™ืŸ 4,
11:43
Again, you'll be able to see it in the lobby.
266
703644
2135
ืฉื•ื‘, ืชื•ื›ืœื• ืœืจืื•ืชื• ื‘ืœื•ื‘ื™.
11:45
We truly believe this will be the very first running humanoid robot
267
705803
3192
ืื ื• ื‘ืืžืช ืžืืžื™ื ื™ื ืฉื–ื” ื™ื”ื™ื” ื”ืจื•ื‘ื•ื˜ ื“ืžื•ื™-ื”ืื“ื ื”ืจืืฉื•ืŸ ื‘ืืจืฆื•ืช ื”ื‘ืจื™ืช
ืฉืžืกื•ื’ืœ ืœืจื•ืฅ. ืื– ืชืžืฉื™ื›ื• ืœืขืงื•ื‘.
11:49
in the United States.
268
709019
1151
11:50
So stay tuned.
269
710194
1154
ื‘ืกื“ืจ, ืื– ื”ืจืื™ืชื™ ืœื›ื ื›ืžื” ืžื”ืจื•ื‘ื•ื˜ื™ื ื”ืžืœื”ื™ื‘ื™ื ืฉืœื ื• ื‘ืคืขื•ืœื”.
11:51
All right. So I showed you some of our exciting robots at work.
270
711372
3001
ืื– ืžื”ื• ืกื•ื“ ื”ื”ืฆืœื—ื” ืฉืœื ื•?
11:54
So, what is the secret of our success?
271
714397
2188
11:56
Where do we come up with these ideas?
272
716609
1817
ืžืื™ืคื” ืื ื—ื ื• ืžื‘ื™ืื™ื ืืช ื”ืจืขื™ื•ื ื•ืช ื”ืœืœื•?
11:58
How do we develop these kinds of ideas?
273
718450
1893
ืื™ืš ืื ื—ื ื• ืžืคืชื—ื™ื ืจืขื™ื•ื ื•ืช ืžืขื™ืŸ ืืœื”?
12:00
We have a fully autonomous vehicle
274
720367
1790
ื™ืฉ ืœื ื• ืจื›ื‘ ืื•ื˜ื•ื ื•ืžื™ ืœื—ืœื•ื˜ื™ืŸ
12:02
that can drive into urban environments.
275
722181
1876
ืฉื™ื›ื•ืœ ืœื ื”ื•ื’ ื‘ืกื‘ื™ื‘ื” ืขื™ืจื•ื ื™ืช. ื–ื›ื™ื ื• ื‘ื—ืฆื™ ืžื™ืœื™ื•ืŸ ื“ื•ืœืจื™ื
12:04
We won a half a million dollars in the DARPA Urban Challenge.
276
724081
2899
ื‘ืืชื’ืจ ื”ืื•ืจื‘ื ื™ ืฉืœ ื“ืืจืคื.
ื™ืฉ ืœื ื• ื’ื ืืช ื”ืจื›ื‘ ื”ืจืืฉื•ืŸ ื‘ืขื•ืœื
12:07
We also have the world's very first vehicle that can be driven by the blind.
277
727004
3657
ืฉื ื™ืชืŸ ืœื ื™ื”ื•ื’ ื‘ื™ื“ื™ ืขื™ื•ื•ืจ.
12:10
We call it the Blind Driver Challenge, very exciting.
278
730685
2524
ืื ื• ืžื›ื ื™ื ืื•ืชื• ืืชื’ืจ ื”ื ื”ื’ ื”ืขื™ื•ื•ืจ, ืžืื•ื“ ืžืœื”ื™ื‘,
ื•ืขื•ื“ ื”ืจื‘ื” ื”ืจื‘ื” ืคืจื•ื™ื™ืงื˜ื™ื ืจื•ื‘ื•ื˜ื™ื™ื ืขืœื™ื”ื ืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ.
12:13
And many, many other robotics projects I want to talk about.
279
733233
3172
12:16
These are just the awards that we won in 2007 fall
280
736429
2637
ืืœื” ืจืง ื”ืคืจืกื™ื ื‘ื”ื ื–ื›ื™ื ื• ื‘ืกืชื™ื• 2007,
ืžืชื—ืจื•ื™ื•ืช ืจื•ื‘ื•ื˜ื™ืงื” ื•ืื™ืจื•ืขื™ื ืžืขื™ืŸ ืืœื”.
12:19
from robotics competitions and those kinds of things.
281
739090
2571
12:21
So really, we have five secrets.
282
741685
1893
ืœืืžื™ืชื• ืฉืœ ื“ื‘ืจ ื™ืฉ ืœื ื• ื—ืžื™ืฉื” ืกื•ื“ื•ืช.
12:23
First is: Where do we get inspiration?
283
743602
2436
ื”ืจืืฉื•ืŸ ื”ื•ื ืžื”ื™ื›ืŸ ืื ื• ืฉื•ืื‘ื™ื ื”ืฉืจืื”,
ืžืื™ืคื” ืžื’ื™ืข ื ื™ืฆื•ืฅ ื”ื“ืžื™ื•ืŸ ื”ื–ื”?
12:26
Where do we get this spark of imagination?
284
746062
2079
ื–ื”ื• ืกื™ืคื•ืจ ืืžื™ืชื™, ื”ืกื™ืคื•ืจ ื”ืื™ืฉื™ ืฉืœื™.
12:28
This is a true story, my personal story.
285
748165
2021
12:30
At night, when I go to bed, at three, four in the morning,
286
750210
2777
ื‘ืœื™ืœื” ื›ืฉืื ื™ ื”ื•ืœืš ืœื™ืฉื•ืŸ, ื‘-3 ืื• 4 ืœืคื ื•ืช ื‘ื•ืงืจ,
ืื ื™ ื ืฉื›ื‘, ืขื•ืฆื ืืช ืขื™ื ื™ื™, ื•ืจื•ืื” ืืช ื”ืงื•ื•ื™ื ื•ื”ืขื™ื’ื•ืœื™ื ื”ืืœื”
12:33
I lie down, close my eyes, and I see these lines and circles
287
753011
2889
12:35
and different shapes floating around.
288
755924
1794
ื•ืฆื•ืจื•ืช ืฉื•ื ื•ืช ืžืจื—ืคื•ืช ืกื‘ื™ื‘,
12:37
And they assemble, and they form these kinds of mechanisms.
289
757742
2763
ืžืชื—ื‘ืจื•ืช ื•ืื– ื™ื•ืฆืจื•ืช ืืช ืกื•ื’ื™ ื”ืžื ื’ื ื•ื ื™ื ื”ืœืœื•.
12:40
And I think, "Ah, this is cool."
290
760529
1608
ื•ืื– ืื ื™ ื—ื•ืฉื‘, "ืื”, ื–ื” ืžื’ื ื™ื‘."
12:42
So right next to my bed I keep a notebook, a journal,
291
762161
2877
ื•ืœื›ืŸ, ื‘ืกืžื•ืš ืœืžื™ื˜ื” ืื ื™ ืžื—ื–ื™ืง ืžื—ื‘ืจืช,
ื™ื•ืžืŸ, ืขื ืขื˜ ืžื™ื•ื—ื“ ืฉืžืื™ืจ, ืื•ืจ ืœื“,
12:45
with a special pen that has an LED light on it,
292
765062
2356
12:47
because I don't want to turn on the light and wake up my wife.
293
767442
3037
ื›ื™ ืื™ื ื ื™ ืจื•ืฆื” ืœื”ื“ืœื™ืง ืืช ื”ืื•ืจ ื•ืœื”ืขื™ืจ ืืช ืืฉืชื™.
ื•ื‘ื›ืŸ, ืื ื™ ืจื•ืื” ื–ืืช, ืžืฉืจื‘ื˜ ื”ื›ืœ, ืžืฉืจื˜ื˜ ื“ื‘ืจื™ื,
12:50
So I see this, scribble everything down, draw things, and go to bed.
294
770503
3269
ื•ื”ื•ืœืš ืœื™ืฉื•ืŸ.
12:53
Every day in the morning, the first thing I do,
295
773796
2390
ื›ืœ ื™ื•ื ื‘ื‘ื•ืงืจ,
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืื ื™ ืขื•ืฉื” ืœืคื ื™ ื›ื•ืก ื”ืงืคื” ื”ืจืืฉื•ื ื”,
12:56
before my first cup of coffee, before I brush my teeth,
296
776210
2607
ืœืคื ื™ ืฉืื ื™ ืžืฆื—ืฆื— ืฉื™ื ื™ื™ื, ืื ื™ ืคื•ืชื— ืืช ื”ืžื—ื‘ืจืช ืฉืœื™.
12:58
I open my notebook.
297
778841
1162
ื”ืจื‘ื” ืคืขืžื™ื ื”ื™ื ืจื™ืงื”,
13:00
Many times it's empty; sometimes I have something there.
298
780027
2663
ืœืคืขืžื™ื ื™ืฉ ืฉื ืžืฉื”ื•. ืœืขื™ืชื™ื ื–ื” ื—ืกืจ ื—ืฉื™ื‘ื•ืช,
13:02
If something's there, sometimes it's junk.
299
782714
2066
ืื‘ืœ ื‘ืจื•ื‘ ื”ืžืงืจื™ื ืื ื™ ืืคื™ืœื• ืœื ื™ื›ื•ืœ ืœืงืจื•ื ืืช ื›ืชื‘ ื™ื“ื™.
13:04
But most of the time, I can't read my handwriting.
300
784804
2357
ื–ื” ื‘-4 ืœืคื ื•ืช ื‘ื•ืงืจ, ืœืžื” ืืชื ืžืฆืคื™ื, ื ื›ื•ืŸ?
13:07
Four in the morning -- what do you expect, right?
301
787185
2324
13:09
So I need to decipher what I wrote.
302
789533
1904
ื•ื‘ื›ืŸ, ืื ื™ ืฆืจื™ืš ืœืคืขื ื— ืืช ืžื” ืฉื›ืชื‘ืชื™.
13:11
But sometimes I see this ingenious idea in there,
303
791461
3200
ืื‘ืœ ืœืคืขืžื™ื ืื ื™ ืจื•ืื” ืฉื ืจืขื™ื•ืŸ ืžื—ื•ื›ื,
13:14
and I have this eureka moment.
304
794685
1485
ื•ื™ืฉ ืœื™ ืืช ืจื’ืขื™ ื”ื”ืืจื” ื”ืœืœื•.
13:16
I directly run to my home office, sit at my computer,
305
796194
2516
ืื ื™ ืžื™ื™ื“ ืจืฅ ืœื—ื“ืจ ื”ืขื‘ื•ื“ื” ืฉื‘ื‘ื™ืชื™, ืžืชื™ื™ืฉื‘ ืžื•ืœ ื”ืžื—ืฉื‘,
13:18
I type in the ideas, I sketch things out
306
798734
1977
ืžืงืœื™ื“ ืืช ื”ืจืขื™ื•ื ื•ืช, ืžืฉืจื‘ื˜ ืืช ื”ื“ื‘ืจื™ื,
13:20
and I keep a database of ideas.
307
800735
1891
ื•ืื ื™ ืฉื•ืžืจ ืžืื’ืจ ืฉืœ ืจืขื™ื•ื ื•ืช.
13:23
So when we have these calls for proposals,
308
803288
2361
ื›ืืฉืจ ื™ืฉ ืœื ื• ืงื•ืœ-ืงื•ืจื ืœื”ืฆืขื•ืช
13:25
I try to find a match between my potential ideas
309
805673
3570
ืื ื™ ืžื ืกื” ืœืžืฆื•ื ื”ืชืืžื”
ื‘ื™ืŸ ืจืขื™ื•ื ื•ืชื™ ื”ืคื•ื˜ื ืฆื™ืืœื™ื™ื
13:29
and the problem.
310
809267
1160
ืœื‘ื™ืŸ ื”ื‘ืขื™ื”, ื•ืื ื™ืฉ ื”ืชืืžื”, ืื ื—ื ื• ื›ื•ืชื‘ื™ื ื”ืฆืขืช ืžื—ืงืจ,
13:30
If there's a match, we write a research proposal,
311
810451
2317
ืžืงื‘ืœื™ื ืืช ื”ืžื™ืžื•ืŸ ืœืžื—ืงืจ, ื•ื›ืš ืื ื• ืžืชื—ื™ืœื™ื ืืช ืชื•ื›ื ื™ืช ื”ืžื—ืงืจ ืฉืœื ื•.
13:32
get the research funding in,
312
812792
1347
13:34
and that's how we start our research programs.
313
814163
2160
ืื‘ืœ ื ื™ืฆื•ืฅ ื”ื“ืžื™ื•ืŸ ืœื‘ื“ื• ืื™ื ื• ื˜ื•ื‘ ืžืกืคื™ืง.
13:36
But just a spark of imagination is not good enough.
314
816347
2493
13:38
How do we develop these kinds of ideas?
315
818864
1880
ืื™ืš ืื ื—ื ื• ืžืคืชื—ื™ื ืืช ืกื•ื’ื™ ื”ืจืขื™ื•ื ื•ืช ื”ืœืœื•?
13:40
At our lab RoMeLa, the Robotics and Mechanisms Laboratory,
316
820768
2780
ื‘ืžืขื‘ื“ื” ืฉืœื ื• ืจื•ืžืœื”, ืžืขื‘ื“ืช ืžื›ื ื™ืงื•ืช ื”ืจื•ื‘ื•ื˜ื™ืงื”,
13:43
we have these fantastic brainstorming sessions.
317
823572
2612
ื™ืฉ ืœื ื• ืžืคื’ืฉื™ื ื ื”ื“ืจื™ื ืฉืœ ืกื™ืขื•ืจ-ืžื•ื—ื•ืช.
13:46
So we gather around, we discuss problems and solutions and talk about it.
318
826208
4335
ื•ื›ืš, ืื ื—ื ื• ืžืชืงื‘ืฆื™ื ื™ื—ื“ื™ื• ื•ื“ื ื™ื ื‘ื‘ืขื™ื•ืช
ื•ื‘ื‘ืขื™ื•ืช ื—ื‘ืจืชื™ื•ืช ื•ืžืฉื•ื—ื—ื™ื ืขืœื™ื”ืŸ.
13:50
But before we start, we set this golden rule.
319
830567
2977
ืื‘ืœ ืœืคื ื™ ืฉืžืชื—ื™ืœื™ื ืื ื• ืงื•ื‘ืขื™ื ืืช ื›ืœืœ ื”ื–ื”ื‘.
13:53
The rule is:
320
833568
1649
ื”ื›ืœืœ ื”ื•ื:
13:55
nobody criticizes anybody's ideas.
321
835241
2977
ืืฃ ืื—ื“ ืœื ืžื‘ืงืจ ืืช ืจืขื™ื•ื ื•ืชื™ื• ืฉืœ ื”ืื—ืจ.
13:58
Nobody criticizes any opinion.
322
838242
2005
ืืฃ ืื—ื“ ืœื ืžื‘ืงืจ ืืฃ ื“ืขื”.
14:00
This is important, because many times, students fear or feel uncomfortable
323
840685
3547
ื–ื” ื—ืฉื•ื‘, ืžืฉื•ื ืฉืคืขืžื™ื ืจื‘ื•ืช, ืกื˜ื•ื“ื ื˜ื™ื ื—ื•ืฉืฉื™ื
ืื• ืžืจื’ื™ืฉื™ื ืื™ ื ื•ื—ื•ืช ื‘ืืฉืจ ืœืชื’ื•ื‘ื•ืช ืฉืœ ื”ืื—ืจื™ื
14:04
about how others might think about their opinions and thoughts.
324
844256
3269
ืขืœ ื“ืขื•ืชื™ื”ื ื•ืžื—ืฉื‘ื•ืชื™ื”ื.
14:07
So once you do this, it is amazing how the students open up.
325
847549
3790
ื›ืืฉืจ ืืชื ืขื•ืฉื™ื ื–ืืช, ื–ื” ืžื“ื”ื™ื
ืื™ืš ื”ืกื˜ื•ื“ื ื˜ื™ื ื ืคืชื—ื™ื.
14:11
They have these wacky, cool, crazy, brilliant ideas,
326
851363
3298
ื™ืฉ ืœื”ื ืจืขื™ื•ื ื•ืช ืžื˜ื•ืจืคื™ื ืžื’ื ื™ื‘ื™ื ื•ืžื‘ืจื™ืงื™ื,
14:14
and the whole room is just electrified with creative energy.
327
854685
3429
ื›ืœ ื”ื—ื“ืจ ืžื—ื•ืฉืžืœ ื‘ืื ืจื’ื™ื” ื™ืฆื™ืจืชื™ืช.
ื›ืš ืื ื• ืžืคืชื—ื™ื ืืช ืจืขื™ื•ื ื•ืชื™ื ื•.
14:18
And this is how we develop our ideas.
328
858138
2273
14:20
Well, we're running out of time.
329
860998
1557
ื•ื‘ื›ืŸ, ื ื’ืžืจ ืœื ื• ื”ื–ืžืŸ, ืขื•ื“ ื“ื‘ืจ ืื—ื“ ืฉืื ื™ ืจื•ืฆื” ืœื“ื‘ืจ ืขืœื™ื• ื”ื•ื
14:22
One more thing I want to talk about is,
330
862579
1902
ืืชื ื™ื•ื“ืขื™ื, ืจืง ื ื™ืฆื•ืฅ ืฉืœ ืจืขื™ื•ืŸ ื•ืคื™ืชื•ื—ื• ืœื ื˜ื•ื‘ื™ื ืžืกืคื™ืง.
14:24
you know, just a spark of idea and development is not good enough.
331
864505
3156
14:27
There was a great TED moment -- I think it was Sir Ken Robinson, was it?
332
867685
4711
ืจื’ืข ื”-TED ื”ื™ื” ื ืคืœื ื›ืืฉืจ,
ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ื”ื™ื” ืื“ื•ืŸ ืงืŸ ืจื•ื‘ื™ื ืกื•ืŸ, ื–ื” ื”ื™ื” ื”ื•ื?
14:32
He gave a talk about how education and school kill creativity.
333
872420
4438
ื”ื•ื ื”ืจืฆื” ืขืœ ืื™ืš ื”ืฉื›ืœื”
ื•ื‘ืชื™-ืกืคืจ ื”ื•ืจืกื™ื ืืช ื”ื™ืฆื™ืจืชื™ื•ืช.
14:36
Well, actually, there's two sides to the story.
334
876882
2779
ื•ื‘ื›ืŸ, ืœืžืขืฉื” ื™ืฉ ืฉื ื™ ืฆื“ื“ื™ื ืœืกื™ืคื•ืจ.
14:39
So there is only so much one can do with just ingenious ideas
335
879685
5213
ืื–, ื™ืฉ ืžื’ื‘ืœื” ืœื“ื‘ืจื™ื ืฉืืคืฉืจ ืœืขืฉื•ืช
ืจืง ืขื ืจืขื™ื•ื ื•ืช ืžื‘ืจื™ืงื™ื,
14:44
and creativity and good engineering intuition.
336
884922
3016
ื™ืฆื™ืจืชื™ื•ืช, ื”ื ื“ืกื” ื˜ื•ื‘ื” ื•ืื™ื ื˜ื•ืื™ืฆื™ื”.
14:47
If you want to go beyond a tinkering,
337
887962
1794
ืื ืืชื ืจื•ืฆื™ื ืœื”ื’ื™ืข ืžืขื‘ืจ ืœืขื‘ื•ื“ืช ื˜ืœืื™ื,
14:49
if you want to go beyond a hobby of robotics
338
889780
2150
ืื ืืชื ืจื•ืฆื™ื ืœื”ื’ื™ืข ืžืขื‘ืจ ืœืจื•ื‘ื•ื˜ื™ื ื›ืชื—ื‘ื™ื‘
14:51
and really tackle the grand challenges of robotics
339
891954
3441
ื•ื‘ืืžืช ืœื”ืชืžื•ื“ื“ ืขื ื”ืืชื’ืจื™ื ื”ื’ื“ื•ืœื™ื ืฉืœ ื”ืจื•ื‘ื•ื˜ื™ืงื”
ื‘ืืžืฆืขื•ืช ืžื—ืงืจ ืงืคื“ื ื™
14:55
through rigorous research,
340
895419
1242
14:56
we need more than that.
341
896685
1155
ืื ื• ื–ืงื•ืงื™ื ืœื™ื•ืชืจ ืžื–ื”. ื›ืืŸ ื‘ื™ืช-ื”ืกืคืจ ื ื›ื ืก ืœืชืžื•ื ื”.
14:57
This is where school comes in.
342
897864
2014
14:59
Batman, fighting against the bad guys,
343
899902
2494
ื‘ืื˜ืžืŸ, ื ืœื—ื ื ื’ื“ ื”ืจืขื™ื,
15:02
he has his utility belt, he has his grappling hook,
344
902420
2393
ื™ืฉ ืœื• ืืช ื—ื’ื•ืจืช ื”ื›ืœื™ื ื”ื–ื•, ื™ืฉ ืœื• ืืช ืขื•ื’ืŸ ื”ืื ืงื•ืœ ืฉืœื•,
15:04
he has all different kinds of gadgets.
345
904837
1824
ื™ืฉ ืœื• ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื’ืื“ื’'ื˜ื™ื.
15:06
For us roboticists, engineers and scientists,
346
906685
2413
ืขื‘ื•ืจื™ื ื•, ืžืคืชื—ื™ ืจื•ื‘ื•ื˜ื™ื, ืžื”ื ื“ืกื™ื, ืžื“ืขื ื™ื,
ื”ื›ืœื™ื ื”ืœืœื•, ื”ื™ื ื ื”ืงื•ืจืกื™ื ื•ื”ืฉื™ืขื•ืจื™ื ืื•ืชื ืœื•ืžื“ื™ื ื‘ื›ื™ืชื”.
15:09
these tools are the courses and classes you take in class.
347
909122
4157
15:13
Math, differential equations.
348
913303
2002
ืžืชืžื˜ื™ืงื”, ืžืฉื•ื•ืื•ืช ื“ื™ืคืจื ืฆื™ืืœื™ื•ืช.
15:15
I have linear algebra, science, physics --
349
915329
2740
ื™ืฉ ืœื™ ื™ื“ืข ื‘ืืœื’ื‘ืจื” ืœื™ื ืืจื™ืช, ืžื“ืขื™ื, ืคื™ื–ื™ืงื”,
ื•ื›ื™ื•ื ืืคื™ืœื•, ื›ื™ืžื™ื” ื•ื‘ื™ื•ืœื•ื’ื™ื” ื›ืคื™ ืฉืจืื™ืชื.
15:18
even, nowadays, chemistry and biology, as you've seen.
350
918093
2968
ืืœื• ื›ืœ ื”ื›ืœื™ื ืœื”ื ืื ื• ื–ืงื•ืงื™ื.
15:21
These are all the tools we need.
351
921085
1758
15:22
So the more tools you have, for Batman,
352
922867
1876
ืื–, ื›ืžื” ืฉื™ืฉ ื‘ืจืฉื•ืชืš ื™ื•ืชืจ ื›ืœื™ื,
15:24
more effective at fighting the bad guys,
353
924767
1977
ืขื‘ื•ืจ ื‘ืื˜ืžืŸ - ื™ื•ืชืจ ื™ืขื™ืœ ืœื”ืœื—ื ื‘ืจืขื™ื,
15:26
for us, more tools to attack these kinds of big problems.
354
926768
2906
ื•ืขื‘ื•ืจื ื• - ื™ื•ืชืจ ื›ืœื™ื ืœืชืงื•ืฃ ื‘ืขื™ื•ืช ื’ื“ื•ืœื•ืช ืžืขื™ืŸ ืืœื”.
15:30
So education is very important.
355
930842
1865
ืœื›ืŸ, ื”ื”ืฉื›ืœื” ืžืื•ื“ ื—ืฉื•ื‘ื”.
15:33
Also -- it's not only about that.
356
933828
2597
ื‘ื ื•ืกืฃ, ื–ื” ืœื ืจืง ื–ื”,
ืžืขื‘ืจ ืœื›ืš ืฆืจื™ืš ื’ื ืœืขื‘ื•ื“ ื‘ืืžืช ื‘ืืžืช ืงืฉื”.
15:36
You also have to work really, really hard.
357
936449
2068
ื•ืœื›ืŸ ืื ื™ ืชืžื™ื“ ืื•ืžืจ ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืœื™
15:38
So I always tell my students,
358
938541
1453
ืชืขื‘ื“ื• ื—ื›ื ื•ืื– ืชืขื‘ื“ื• ืงืฉื”.
15:40
"Work smart, then work hard."
359
940018
2051
ื”ืชืžื•ื ื” ื”ื–ื• ื‘ืจืงืข ืฆื•ืœืžื” ื‘-3 ืœืคื ื•ืช ื‘ื•ืงืจ.
15:42
This picture in the back -- this is three in the morning.
360
942093
2724
15:44
I guarantee if you come to our lab at 3, 4am,
361
944841
2329
ืื ื™ ืขืจื‘ ืœื›ืš ืฉืื ืชื‘ื•ืื• ืœืžืขื‘ื“ืชื™ื ื• ื‘-3, 4 ืœืคื ื•ืช ื‘ื•ืงืจ
ื™ื”ื™ื• ืœื ื• ืกื˜ื•ื“ื ื˜ื™ื ืฉืขื•ื‘ื“ื™ื ืฉื,
15:47
we have students working there,
362
947194
1556
15:48
not because I tell them to, but because we are having too much fun.
363
948774
3209
ืœื ื‘ื’ืœืœ ืฉืื ื™ ืื•ืžืจ ืœื”ื, ืืœื ืžื›ื™ื•ื•ืŸ ืฉื›ื™ืฃ ืœื”ื.
ืžื” ืฉืžื•ื‘ื™ืœ ืœื ื•ืฉื ื”ืื—ืจื•ืŸ.
15:52
Which leads to the last topic:
364
952007
1654
15:53
do not forget to have fun.
365
953685
1869
ืืœ ืชืฉื›ื—ื• ืœื”ื ื•ืช.
15:55
That's really the secret of our success, we're having too much fun.
366
955578
3213
ื–ื”ื• ื‘ืืžืช ืกื•ื“ ื”ื”ืฆืœื—ื” ืฉืœื ื• - ื›ื™ืฃ ืœื ื•.
15:58
I truly believe that highest productivity comes when you're having fun,
367
958815
3466
ืื ื™ ื‘ืืžืช ืžืืžื™ืŸ ืฉื”ืชืคื•ืงื” ื”ื’ื‘ื•ื”ื” ื‘ื™ื•ืชืจ ืžื•ืฉื’ืช ื›ืืฉืจ ืืชื ื ื”ื ื™ื.
ื•ื–ื” ืžื” ืฉืื ื—ื ื• ืขื•ืฉื™ื.
16:02
and that's what we're doing.
368
962305
1356
16:03
And there you go.
369
963685
1154
ื”ื ื” ืœื›ื. ืชื•ื“ื” ืจื‘ื”.
16:04
Thank you so much.
370
964863
1167
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
16:06
(Applause)
371
966054
4102
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7