Dennis Hong: My 7 species of robot

138,643 views ใƒป 2010-04-07

TED


์•„๋ž˜ ์˜๋ฌธ์ž๋ง‰์„ ๋”๋ธ”ํด๋ฆญํ•˜์‹œ๋ฉด ์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค.

๋ฒˆ์—ญ: Junhan Kim ๊ฒ€ํ† : Ji-Hyuk Park
๋จผ์ € STriDER ๋ผ๋Š” ๋กœ๋ด‡์„ ์†Œ๊ฐœํ•ด ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
00:16
So the first robot to talk about is called STriDER.
0
16069
3174
Self-excited Tripedal
00:19
It stands for Self-excited Tripedal Dynamic Experimental Robot.
1
19267
3469
Dynamic Experimental Robot์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
00:22
It's a robot that has three legs, which is inspired by nature.
2
22760
4358
๋‹ค๋ฆฌ๊ฐ€ ์„ธ๊ฐœ์ธ ๋กœ๋ด‡์ด๋ฉฐ
์ž์—ฐ์—์„œ ํžŒํŠธ๋ฅผ ์–ป์—ˆ์ฃ .
00:27
But have you seen anything in nature, an animal that has three legs?
3
27760
3411
๊ทธ๋Ÿฐ๋ฐ ์—ฌ๋Ÿฌ๋ถ„ ์ค‘์—
๋‹ค๋ฆฌ๊ฐ€ ์„ธ๊ฐœ ๋‹ฌ๋ฆฐ ์ƒ๋ฌผ์„ ๋ณด์‹  ๋ถ„์ด ๊ณ„์‹ ๊ฐ€์š”?
00:31
Probably not. So why do I call this a biologically inspired robot?
4
31195
3870
์•„๋งˆ ์—†์„๊ฒ๋‹ˆ๋‹ค.
๊ทธ๋Ÿผ ์™œ ์ƒ๋ฌผํ•™์  ๋กœ๋ด‡์ด๋ผ ๋ถ€๋ฅด๋ฉฐ, ์ž‘๋™์›๋ฆฌ๋Š” ๋ญ˜๊นŒ์š”?
00:35
How would it work?
5
35089
1162
์šฐ์„  ๋Œ€์ค‘๋ฌธํ™”๋ฅผ ํ•œ๋ฒˆ ์‚ดํŽด๋ณด์ฃ .
00:36
But before that, let's look at pop culture.
6
36275
2162
00:38
So, you know H.G. Wells's "War of the Worlds," novel and movie.
7
38461
3468
ํ—ˆ๋ฒ„ํŠธ ์กฐ์ง€ ์›ฐ์Šค์˜ ์šฐ์ฃผ์ „์Ÿ์€ ์˜ํ™”๋กœ๋„ ๋งŒ๋“ค์—ˆ์ฃ .
00:41
And what you see over here is a very popular video game,
8
41953
3321
์ง€๊ธˆ ๋ณด์‹œ๋Š”๊ฑด ์•„์ฃผ ์œ ๋ช…ํ•œ
๋น„๋””์˜ค ๊ฒŒ์ž„์ด์ฃ . (*Half-Life 2)
00:45
and in this fiction, they describe these alien creatures and robots
9
45298
3700
์†Œ์„ค์—์„œ๋Š” ๋‹ค๋ฆฌ ์„ธ๊ฐœ ๋‹ฌ๋ฆฐ ์™ธ๊ณ„ ๋กœ๋ด‡์ด
์ง€๊ตฌ๋ฅผ ๊ณต๊ฒฉํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜์˜ค์ฃ .
00:49
that have three legs that terrorize Earth.
10
49022
2262
ํ•˜์ง€๋งŒ STriDER ๋Š” ์ด๋Ÿฐ์‹์œผ๋กœ ์›€์ง์ด์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
00:51
But my robot, STriDER, does not move like this.
11
51308
3535
00:54
This is an actual dynamic simulation animation.
12
54867
3051
์ด๊ฒƒ์ด ์‹ค์ œ๋กœ ์›€์ง์ด๋Š” ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜์ƒ์ž…๋‹ˆ๋‹ค.
00:57
I'm going to show you how the robot works.
13
57942
2057
๋กœ๋ด‡์ด ์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€ ๋ณด์—ฌ๋“œ๋ฆฌ๋ ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์ด ๋กœ๋ด‡์€ ๋ชธ์„ 180๋„ ๋’ค์ง‘์–ด์„œ
01:00
It flips its body 180 degrees
14
60023
2392
01:02
and it swings its leg between the two legs
15
62439
2058
๋‘ ๋‹ค๋ฆฌ ์‚ฌ์ด๋กœ ํ•œ ๋‹ค๋ฆฌ๋ฅผ ํ”๋“ค์–ด์„œ ๋•…์— ๋”›์Šต๋‹ˆ๋‹ค.
01:04
and catches the fall.
16
64521
1159
01:05
So that's how it walks.
17
65704
1162
์ด๊ฒƒ์ด ๋กœ๋ด‡์ด ๊ฑท๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
01:06
But when you look at us human beings, bipedal walking,
18
66890
2712
๋‘ ๋‹ค๋ฆฌ๋กœ ๊ฑท๋Š” ์ธ๊ฐ„์˜ ๊ฒฝ์šฐ,
01:09
what you're doing is,
19
69626
1158
๊ฑธ์„ ๋•Œ ๊ทผ์œก์„ ์ด์šฉํ•ด ๋‹ค๋ฆฌ๋ฅผ ๋“ค์–ด์˜ฌ๋ ค
01:10
you're not really using muscle to lift your leg and walk like a robot.
20
70808
4087
๋กœ๋ด‡์ฒ˜๋Ÿผ ๊ฑท์ง€๋Š” ์•Š์ฃ ?
01:14
What you're doing is, you swing your leg and catch the fall,
21
74919
3337
์‹ค์ œ๋กœ๋Š” ํ•œ ์ชฝ ๋‹ค๋ฆฌ๋ฅผ ํ”๋“ค์–ด์„œ ๋ฐ”๋‹ฅ์„ ๋”›๊ณ 
๋ชธ์„ ์„ธ์šด ๋‹ค์Œ, ๋‹ค๋ฅธ ๋‹ค๋ฆฌ๋ฅผ ํ”๋“ค์–ด ๋ฐ”๋‹ฅ์„ ๋”›์Šต๋‹ˆ๋‹ค.
01:18
stand up again, swing your leg and catch the fall.
22
78280
2456
01:20
You're using your built-in dynamics, the physics of your body,
23
80760
3167
์—ฌ๋Ÿฌ๋ถ„์ด ํƒ€๊ณ ๋‚œ ์—ญํ•™, ์ธ์ฒด์˜ ๋ฌผ๋ฆฌํ•™์„
01:23
just like a pendulum.
24
83951
1751
๋งˆ์น˜ ์ง„์ž์™€ ๊ฐ™์ด ์‚ฌ์šฉํ•˜๋Š”๊ฑฐ์ฃ .
01:25
We call that the concept of passive dynamic locomotion.
25
85726
3358
๊ทธ๊ฒƒ์„ ์ˆ˜๋™ ๋™์  ์šด๋™(Passive dynamic locomotion)๋ผ๊ณ  ํ•˜์ฃ .
01:29
What you're doing is, when you stand up,
26
89108
2138
๋ชธ์„ ์„ธ์›Œ ๊ฑธ์–ด๊ฐˆ ๋•Œ
01:31
potential energy to kinetic energy,
27
91270
2081
์œ„์น˜์—๋„ˆ์ง€๊ฐ€ ์šด๋™์—๋„ˆ์ง€๋กœ ๋ฐ”๋€Œ๊ณ 
01:33
potential energy to kinetic energy.
28
93375
1977
์œ„์น˜์—๋„ˆ์ง€๊ฐ€ ์šด๋™์—๋„ˆ์ง€๋กœ ๋ฐ”๋€Œ์ฃ .
01:35
It's a constantly falling process.
29
95376
1977
์ด๋Ÿฌํ•œ ๊ณผ์ •๋“ค์ด ์ง€์†์ ์œผ๋กœ ๋ฐ˜๋ณต๋ฉ๋‹ˆ๋‹ค.
01:37
So even though there is nothing in nature that looks like this,
30
97377
3049
๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ž์—ฐ์—์„œ๋Š” ๋‹ค๋ฆฌ๊ฐ€ ์„ธ๊ฐœ์ธ ์ƒ๋ฌผ์„ ๋ณผ ์ˆ˜ ์—†์ง€๋งŒ,
01:40
really, we're inspired by biology and applying the principles of walking
31
100450
4129
์‹ค์ œ๋กœ๋Š” ์ƒ๋ฌผํ•™์—์„œ ์˜๊ฐ์„ ์–ป์€ ๊ฒƒ์ด๊ณ 
๊ทธ ๋ณดํ–‰์˜ ์›๋ฆฌ๋ฅผ ์ ์šฉํ•œ ๊ฒƒ์ด๋‹ˆ,
01:44
to this robot.
32
104603
1157
์ƒ๋ฌผํ•™์  ๋กœ๋ด‡์ด๋ผ ๋ถ€๋ฅด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
01:45
Thus, it's a biologically inspired robot.
33
105784
1977
01:47
What you see here, this is what we want to do next.
34
107785
2413
์ง€๊ธˆ ๋ณด์‹œ๋Š” ๊ฒƒ์€ ๊ฐœ๋ฐœ ๊ณ„ํš ์ค‘์ธ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
๋กœ๋ด‡์ด ๋‹ค๋ฆฌ๋ฅผ ์ ‘์—ˆ๋‹ค ํŽด๋ฉด์„œ ๋†’์ด ๋›ฐ์–ด์˜ค๋ฆ…๋‹ˆ๋‹ค.
01:50
We want to fold up the legs and shoot it up for long-range motion.
35
110222
3514
01:53
And it deploys legs -- it looks almost like "Star Wars" --
36
113760
2794
๊ทธ๋ฆฌ๊ณ  ๋‹ค๋ฆฌ๋ฅผ ํŽผ์นฉ๋‹ˆ๋‹ค. ๋งˆ์น˜ ์Šคํƒ€์›Œ์ฆˆ ๊ฐ™์ฃ .
01:56
so when it lands, it absorbs the shock and starts walking.
37
116578
2864
์ฐฉ์ง€ํ•  ๋•Œ ์ถฉ๊ฒฉ์„ ํก์ˆ˜ํ•œ ๋‹ค์Œ ๊ฑท๊ธฐ ์‹œ์ž‘ํ•˜์ฃ .
01:59
What you see over here, this yellow thing, this is not a death ray.
38
119466
3205
์—ฌ๊ธฐ์„œ ๋ณด์‹œ๋Š” ์ด ๋…ธ๋ž€ ๊ฒƒ์€ ์ฃฝ์Œ์˜ ๊ด‘์„ ์ด ์•„๋‹ˆ๋ผ,
02:02
(Laughter)
39
122695
1012
์ดํ•ด๋ฅผ ๋•๊ธฐ ์œ„ํ•œ ๊ฒƒ์ธ๋ฐ,
02:03
This is just to show you
40
123731
1159
02:04
that if you have cameras or different types of sensors,
41
124914
2687
์นด๋ฉ”๋ผ๋‚˜ ์„ผ์„œ๋ฅผ ์ด์šฉํ•ด
1.8m์˜ ํฐ ํ‚ค๋กœ
02:07
because it's 1.8 meters tall,
42
127625
1517
ํ’€ ์ˆฒ ๊ฐ™์€ ์žฅ์• ๋ฌผ ๋„ˆ๋จธ๋ฅผ ํƒ์ง€ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด์ฃ .
02:09
you can see over obstacles like bushes and those kinds of things.
43
129166
3086
์šฐ๋ฆฌ๋Š” ๋‘ ์ข…๋ฅ˜์˜ ์ดˆ๊ธฐ๋ชจ๋ธ์„ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
02:12
So we have two prototypes.
44
132276
1347
02:13
The first version, in the back, that's STriDER I.
45
133647
2943
๋’ท ์ชฝ์ด ์ดˆ๊ธฐ ๋ชจ๋ธ์ธ STriDER I ์ด๊ณ ์š”,
02:16
The one in front, the smaller, is STriDER II.
46
136614
2167
์•ž์— ์žˆ๋Š” ์ž‘์€ ๊ฒƒ์ด ๋‘๋ฒˆ์งธ STriDER II ์ž…๋‹ˆ๋‹ค.
02:18
The problem we had with STriDER I is, it was just too heavy in the body.
47
138805
3508
STriDER I ์˜ ๋ฌธ์ œ๋Š”
๋„ˆ๋ฌด ๋ฌด๊ฒ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ด€์ ˆ์„ ์›€์ง์ด๊ธฐ ์œ„ํ•ด ์“ฐ์ธ ๋ชจํ„ฐ๋“ค์ด
02:22
We had so many motors aligning the joints
48
142337
2584
๋„ˆ๋ฌด ๋งŽ์•˜์ฃ .
02:24
and those kinds of things.
49
144945
1254
๊ทธ๋ž˜์„œ ๊ธฐ๊ณ„์ ์ธ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ
02:26
So we decided to synthesize a mechanical mechanism
50
146223
3200
02:29
so we could get rid of all the motors, and with a single motor,
51
149447
3069
๋‹ค๋ฅธ ๋ชจํ„ฐ๋“ค์„ ์ œ๊ฑฐํ•˜๊ณ  ํ•˜๋‚˜์˜ ๋ชจํ„ฐ๋งŒ์œผ๋กœ
02:32
we can coordinate all the motions.
52
152540
1677
๋ชจ๋“  ์›€์ง์ž„์„ ์ œ์–ดํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค.
02:34
It's a mechanical solution to a problem, instead of using mechatronics.
53
154241
3377
๊ธฐ๊ณ„์  ๋ฌธ์ œ์ ์„ ๊ธฐ๊ณ„์ „์ž๊ณตํ•™์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ํ•ด๊ฒฐํ•œ ๊ฒƒ์ด์ฃ .
02:37
So with this, now the top body is lighted up; it's walking in our lab.
54
157642
3412
์ด์ œ๋Š” ๋ณธ์ฒด๊ฐ€ ๊ฐ€๋ฒผ์›Œ์ ธ์„œ ์—ฐ๊ตฌ์‹ค ์•ˆ์—์„œ๋„ ์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
์ฒซ ๊ฑธ์Œ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๋‚ด๋”›๋Š” ์ˆœ๊ฐ„์ด์ฃ .
02:41
This was the very first successful step.
55
161078
2059
02:43
It's still not perfected, its coffee falls down,
56
163161
2668
์•„์ง ์™„๋ฒฝํ•˜์ง€ ์•Š๊ณ , ์ปคํ”ผ๋„ ์Ÿ์•„์š”.
02:45
so we still have a lot of work to do.
57
165853
1982
๊ฐœ์„  ํ•ด์•ผํ•  ๊ฒƒ์ด ์•„์ง๋„ ๋งŽ์Šต๋‹ˆ๋‹ค.
02:48
The second robot I want to talk about is called IMPASS.
58
168685
2696
๋‘๋ฒˆ์งธ๋กœ ์†Œ๊ฐœ๋“œ๋ฆด ๋กœ๋ด‡์€ IMPASS ์ž…๋‹ˆ๋‹ค.
02:51
It stands for Intelligent Mobility Platform with Actuated Spoke System.
59
171405
4459
Intelligent Mobility Platform with Actuated Spoke System ์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
02:55
It's a wheel-leg hybrid robot.
60
175888
2595
๋ฐ”ํ€ด์™€ ๋‹ค๋ฆฌ๊ฐ€ ๊ฒฐํ•ฉ๋œ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
02:58
So think of a rimless wheel or a spoke wheel,
61
178507
3857
ํ…Œ๋‘๋ฆฌ ์—†๋Š” ๋ฐ”ํ€ด๋‚˜
๋ฐ”ํ€ด์‚ด ๋ฟ์ธ ๋ฐ”ํ€ด์™€ ๋น„์Šทํ•˜์ง€๋งŒ,
03:02
but the spokes individually move in and out of the hub;
62
182388
2977
๋ฐ”ํ€ด์‚ด๋“ค์€ ๋…๋ฆฝ์ ์œผ๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค.
03:05
so, it's a wheel-leg hybrid.
63
185389
2087
๊ทธ๋ž˜์„œ ๋ฐ”ํ€ด์™€ ๋‹ค๋ฆฌ์˜ ๊ฒฐํ•ฉํ˜•์ด๋ผ ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
03:07
We're literally reinventing the wheel here.
64
187500
2242
๋งํ•˜์ž๋ฉด ๋ฐ”ํ€ด์˜ ์žฌ๋ฐœ๋ช…์ด์ฃ .
03:09
Let me demonstrate how it works.
65
189766
2463
์–ด๋–ป๊ฒŒ ์›€์ง์ด๋Š”์ง€ ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.
03:12
So in this video we're using an approach called the reactive approach.
66
192253
3849
์šฐ๋ฆฌ๋Š” ๋ฐ˜์‘์  ์ ‘๊ทผ๋ฒ• (reactive approach) ์„
์‚ฌ์šฉ ํ–ˆ์Šต๋‹ˆ๋‹ค.
03:16
Just simply using the tactile sensors on the feet,
67
196126
2977
๋‹ค๋ฆฌ์˜ ์ด‰๊ฐ์„ผ์„œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ
03:19
it's trying to walk over a changing terrain,
68
199127
2810
๋ณ€ํ™”ํ•˜๋Š” ์ง€ํ˜•์„ ๊ฑท๊ณ  ์žˆ๋Š” ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
03:21
a soft terrain where it pushes down and changes.
69
201961
2700
๋ˆ„๋ฅด๋ฉด ํ‘น๊บผ์ง€๋Š” ๊ทธ๋Ÿฐ ์ง€ํ˜•์ด์ฃ .
03:24
And just by the tactile information,
70
204685
2197
์ด‰๊ฐ์„ผ์„œ์˜ ์ •๋ณด๋ฅผ ๋ถ„์„ํ•ด์„œ
03:26
it successfully crosses over these types of terrains.
71
206906
2755
ํ‘น์‹ ํ•œ ์ง€ํ˜•์„ ์ž˜ ์ด๋™ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
03:29
But, when it encounters a very extreme terrain --
72
209685
3805
๊ทธ๋Ÿฌ๋‚˜ ๋งค์šฐ ํฐ ์ง€ํ˜•์—์„œ๋Š” ์–ด๋–จ๊นŒ์š”?
03:33
in this case, this obstacle is more than three times the height
73
213514
3913
์ด ์žฅํ•ด๋ฌผ์€ ๋กœ๋ด‡์˜ ํ‚ค๋ณด๋‹ค ์„ธ๋ฐฐ ๊ฐ€๋Ÿ‰
๋” ๋†’์Šต๋‹ˆ๋‹ค.
03:37
of the robot --
74
217451
1170
03:38
then it switches to a deliberate mode,
75
218645
1874
๋กœ๋ด‡์€ ์ธก์ •๋ชจ๋“œ๋กœ ์ „ํ™˜๋ฉ๋‹ˆ๋‹ค.
03:40
where it uses a laser range finder and camera systems
76
220543
2814
๋ ˆ์ด์ € ์„ผ์„œ์™€ ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ
์žฅ์• ๋ฌผ๊ณผ ๊ทธ ํฌ๊ธฐ๋ฅผ ์ธก์ •ํ•ฉ๋‹ˆ๋‹ค.
03:43
to identify the obstacle and the size.
77
223381
1826
๊ทธ๋ฆฌ๊ณ  ๋ฐ”ํ€ด์‚ด์„ ์–ด๋–ป๊ฒŒ ์›€์ง์ผ์ง€๋ฅผ ๊ณ„ํšํ•˜๊ณ 
03:45
And it carefully plans the motion of the spokes
78
225231
2984
๊ทธ๊ฒƒ์„ ์กฐ์ ˆํ•˜์—ฌ ์ด๋ ‡๊ฒŒ ์›€์ง์ด๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
03:48
and coordinates it so it can show this very impressive mobility.
79
228239
3709
์šฐ์ˆ˜ํ•œ ์šด๋™์„ฑ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.
03:51
You probably haven't seen anything like this out there.
80
231972
2641
์•„๋งˆ๋„ ์ด๋Ÿฐ ๊ฒƒ์€ ์ฒ˜์Œ ๋ณด์‹ค ๊ฒ๋‹ˆ๋‹ค.
์ €ํฌ๊ฐ€ ๊ฐœ๋ฐœํ•œ ์šด๋™์„ฑ์ด ์šฐ์ˆ˜ํ•œ ๋กœ๋ด‡
03:54
This is a very high-mobility robot that we developed called IMPASS.
81
234637
3670
IMPASS ์ž…๋‹ˆ๋‹ค.
03:59
Ah, isn't that cool?
82
239873
1788
๋ฉ‹์ง€์ง€ ์•Š์Šต๋‹ˆ๊นŒ?
04:01
When you drive your car,
83
241685
3294
์šฐ๋ฆฌ๊ฐ€ ์ž๋™์ฐจ๋ฅผ ์šด์ „ํ•  ๋•Œ
ํ•ธ๋“ค์„ ์กฐ์ž‘ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ ์ด๋•Œ
04:05
when you steer your car, you use a method called Ackermann steering.
84
245003
3922
์•ก์ปค๋งŒ ์Šคํ‹ฐ์–ด๋ง(Ackermann steering)๋ฒ•์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
04:08
The front wheels rotate like this.
85
248949
1851
์•ž๋ฐ”ํ€ด๊ฐ€ ์ด๋ ‡๊ฒŒ ์›€์ง์ด๋Š” ๊ฒƒ์ด์ฃ .
04:10
For most small-wheeled robots,
86
250824
2515
๋ฐ”ํ€ด๊ฐ€ ์ž‘์€ ๋กœ๋ด‡์€ ๋Œ€๋ถ€๋ถ„
04:13
they use a method called differential steering
87
253363
2249
์ฐจ๋™ ์Šคํ‹ฐ์–ด๋ง(differential steering)๋ฒ•์„ ์“ฐ์ฃ .
04:15
where the left and right wheel turn the opposite direction.
88
255636
2857
์ขŒ์šฐ ๋ฐ”ํ€ด๊ฐ€ ๋ฐ˜๋Œ€๋กœ ๋Œ์•„๊ฐ€๋Š” ๋ฐฉ์‹์ด์ฃ .
04:18
For IMPASS, we can do many, many different types of motion.
89
258517
2898
IMPASS์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์œผ๋กœ ์›€์ง์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:21
For example, in this case,
90
261439
1269
์˜ˆ๋ฅผ ๋“ค์–ด ์ขŒ์šฐ ๋ฐ”ํ€ด๊ฐ€ ํ•œ๊ฐœ์˜ ์ถ•์œผ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋”๋ผ๋„
04:22
even though the left and right wheels are connected
91
262732
2400
๋™์ผํ•œ ๊ฐ์†๋„๋กœ ํšŒ์ „ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
04:25
with a single axle rotating at the same angle of velocity,
92
265156
2766
๋ฐ”ํ€ด์‚ด ๊ธธ์ด๋ฅผ ๋ฐ”๊พธ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ
04:27
we simply change the length of the spoke, it affects the diameter,
93
267946
3134
๋ฐ”ํ€ด์˜ ์ง€๋ฆ„์ด ๋ฐ”๋€Œ๊ณ  ์ขŒ์šฐ ๋ฐฉํ–ฅ์ „ํ™˜์ด ๊ฐ€๋Šฅํ•˜์ฃ .
04:31
then can turn to the left and to the right.
94
271104
2087
์ด๋Ÿฐ ๊ฒƒ๋“ค์€ ๋ช‡๊ฐ€์ง€ ์˜ˆ์— ์ง€๋‚˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
04:33
These are just some examples of the neat things we can do with IMPASS.
95
273215
3353
IMPASS๋Š” ๋” ๋งŽ์€ ๊ฒƒ์„ ํ•  ์ˆ˜ ์žˆ์ฃ .
04:36
This robot is called CLIMBeR:
96
276592
1774
์ด ๋กœ๋ด‡์€ CLIMBeR ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
04:38
Cable-suspended Limbed Intelligent Matching Behavior Robot.
97
278390
3400
Cable-suspended Limbed Intelligent Matching Behavior Robot ์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
04:41
I've been talking to a lot of NASA JPL scientists --
98
281814
3127
์ €๋Š” ํ™”์„ฑ ํƒ์‚ฌ์ฐจ๋Ÿ‰์œผ๋กœ ์œ ๋ช…ํ•œ NASA JPL์˜ ๊ณผํ•™์ž๋“ค๊ณผ
04:44
at JPL, they are famous for the Mars rovers --
99
284965
2150
๋งŽ์€ ์ด์•ผ๊ธฐ๋ฅผ ๋‚˜๋ˆด์Šต๋‹ˆ๋‹ค.
๊ทธ ๊ณณ ๊ณผํ•™์ž๋“ค๊ณผ ์ง€์งˆํ•™์ž๋“ค์€ ์ €์—๊ฒŒ
04:47
and the scientists, geologists always tell me
100
287139
2371
๊ณผํ•™์ ์œผ๋กœ ์ •๋ง ์žฌ๋ฏธ์žˆ๊ณ  ์ค‘์š”ํ•œ ์žฅ์†Œ๋Š”
04:49
that the real interesting science, the science-rich sites,
101
289534
3127
ํ•ญ์ƒ ์ ˆ๋ฒฝ์— ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค.
04:52
are always at the cliffs.
102
292685
1511
04:54
But the current rovers cannot get there.
103
294220
1950
ํ˜„์žฌ์˜ ํƒ์‚ฌ์ฐจ๋Ÿ‰์œผ๋กœ๋Š” ์ ˆ๋ฒฝ์— ๋ชป ์˜ฌ๋ผ๊ฐ€์ฃ .
04:56
So, inspired by that, we wanted to build a robot
104
296194
2483
๊ทธ๋ž˜์„œ ๊ฑฐ๊ธฐ์„œ ํžŒํŠธ๋ฅผ ์–ป์–ด
04:58
that can climb a structured cliff environment.
105
298701
3117
์ ˆ๋ฒฝ์„ ์˜ค๋ฅผ ์ˆ˜ ์žˆ๋Š” ๋กœ๋ด‡์„ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
05:01
So this is CLIMBeR.
106
301842
1224
์ด๊ฒƒ์ด CLIMBeR ์ž…๋‹ˆ๋‹ค.
05:03
It has three legs.
107
303090
1511
์ด ๋กœ๋ด‡์€ 3๊ฐœ์˜ ๋‹ค๋ฆฌ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ์ž˜ ์•ˆ๋ณด์ด์ง€๋งŒ,
05:04
It's probably difficult to see, but it has a winch and a cable at the top.
108
304625
3583
์œ—๋ถ€๋ถ„์— ์ผ€์ด๋ธ”๊ณผ ์œˆ์น˜๊ฐ€ ๋‹ฌ๋ ค์žˆ์Šต๋‹ˆ๋‹ค.
05:08
It tries to figure out the best place to put its foot.
109
308232
2581
๋กœ๋ด‡์€ ๋‹ค๋ฆฌ๋ฅผ ๋†“๊ธฐ์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๊ณณ์„ ์ฐพ์Šต๋‹ˆ๋‹ค.
05:10
And then once it figures that out,
110
310837
1635
์ ํ•ฉํ•œ ์žฅ์†Œ๋ฅผ ์ฐพ์•„๋‚ด๋ฉด
05:12
in real time, it calculates the force distribution:
111
312496
2977
์‹ค์‹œ๊ฐ„์œผ๋กœ ํž˜์˜ ๋ถ„์‚ฐ์„ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.
05:15
how much force it needs to exert to the surface
112
315497
2523
ํ‘œ๋ฉด์— ํž˜์„ ์–ผ๋งˆ๋‚˜ ๊ฐ€ํ•ด์•ผ ํ•˜๋Š”์ง€๋ฅผ ๊ณ„์‚ฐํ•ด
05:18
so it doesn't tip and doesn't slip.
113
318044
1977
๊ธฐ์šธ์–ด์ง€๊ฑฐ๋‚˜ ๋ฏธ๋„๋Ÿฌ์ง€์ง€ ์•Š์Šต๋‹ˆ๋‹ค.
05:20
Once it stabilizes that, it lifts a foot,
114
320045
2141
์•ˆ์ •๋œ ์ž์„ธ๋ฅผ ์ทจํ•œ ๋’ค์— ๋‹ค๋ฆฌ๋ฅผ ๋“ค์–ด์˜ฌ๋ฆฌ๊ณ 
05:22
and then with the winch, it can climb up these kinds of cliffs.
115
322210
3303
์œˆ์น˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ ‡๊ฒŒ ๊ธฐ์–ด์˜ค๋ฆ…๋‹ˆ๋‹ค.
05:26
Also for search and rescue applications as well.
116
326045
2616
์กฐ์‚ฌ๋‚˜ ๊ตฌ์กฐ์— ์ ํ•ฉํ•œ ๋กœ๋ด‡์ด์ฃ .
05:28
Five years ago, I actually worked at NASA JPL
117
328685
2419
5๋…„ ์ „ ์—ฌ๋ฆ„, ์ €๋Š” NASA JPL์—์„œ
์—ฐ๊ตฌ์ง„์œผ๋กœ ์ผํ•œ ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
05:31
during the summer as a faculty fellow.
118
331128
1850
๊ทธ๊ณณ์—” ๋‹ค๋ฆฌ๊ฐ€ ์—ฌ์„ฏ๊ฐœ์ธ LEMUR๊ฐ€ ์ด๋ฏธ ๊ฐœ๋ฐœ๋˜์–ด ์žˆ์—ˆ์ฃ .
05:33
And they already had a six-legged robot called LEMUR.
119
333002
3450
05:36
So this is actually based on that.
120
336476
1640
๊ทธ ๋กœ๋ด‡์— ๊ธฐ์ดˆ๋ฅผ ๋‘๊ณ  ๋งŒ๋“ ๊ฒƒ์ด MARS์ž…๋‹ˆ๋‹ค.
05:38
This robot is called MARS:
121
338140
1291
05:39
Multi-Appendage Robotic System.
122
339455
1617
Multi-Appendage Robotic System, ๋‹ค๋ฆฌ๊ฐ€ 6๊ฐœ ๋‹ฌ๋ฆฐ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
05:41
It's a hexapod robot.
123
341096
1238
05:42
We developed our adaptive gait planner.
124
342358
1977
์ ์‘๋ ฅ์„ ๊ฐ–์ถ˜ ๋ณดํ–‰์‹œ์Šคํ…œ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:44
We actually have a very interesting payload on there.
125
344359
2525
์žฌ๋ฏธ์žˆ๊ฒŒ ์ƒ๊ธด ๋ฌผ๊ฑด์„ ์‹ฃ๊ณ  ์žˆ์ฃ .
05:46
The students like to have fun.
126
346908
1447
ํ•™์ƒ๋“ค์€ ์ฆ๊ฒ๊ฒŒ ์ผํ•˜๋Š”๊ฒƒ์„ ์ข‹์•„ํ•ฉ๋‹ˆ๋‹ค.
05:48
And here you can see that it's walking over unstructured terrain.
127
348379
3095
๋ถˆ๊ทœ์น™์ ์ธ ์ง€ํ˜•์„ ๊ฑธ์–ด๊ฐ€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
05:51
(Motor sound)
128
351498
1117
๊ฑฐ์นœ ๋ชจ๋ž˜๋ฐญ ์œ„๋ฅผ
05:52
It's trying to walk on the coastal terrain, a sandy area,
129
352639
2797
๊ฑธ์–ด๊ฐ€๋Š” ์ค‘์ž…๋‹ˆ๋‹ค.
05:55
but depending on the moisture content or the grain size of the sand,
130
355460
4648
์Šต๋„์™€ ๋ชจ๋ž˜์˜ ํฌ๊ธฐ์— ๋”ฐ๋ผ
06:00
the foot's soil sinkage model changes, so it tries to adapt its gait
131
360132
3844
๋ฐœ๋กœ ๋ชจ๋ž˜์œ„๋ฅผ ์–ด๋–ป๊ฒŒ ๋””๋”œ์ง€๋ฅผ ์กฐ์ ˆํ•ฉ๋‹ˆ๋‹ค.
ํ™˜๊ฒฝ์— ๋”ฐ๋ผ ๋ณดํ–‰์„ ์กฐ์ ˆํ•ด ์ €๋Ÿฐ ์ง€ํ˜•์—์„œ๋„ ์ž˜ ๊ฑท์Šต๋‹ˆ๋‹ค.
06:04
to successfully cross over these kind of things.
132
364000
2240
06:06
It also does some fun stuff.
133
366264
1507
๊ต‰์žฅํžˆ ์žฌ๋ฏธ์žˆ๋Š” ๊ฑธ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
06:07
As you can imagine, we get so many visitors visiting our lab.
134
367795
3485
์ €ํฌ ์—ฐ๊ตฌ์‹ค์—๋Š” ์†๋‹˜๋“ค์ด ๋งŽ์ฃ .
06:11
So when the visitors come, MARS walks up to the computer,
135
371304
2732
์†๋‹˜์ด ์˜ค์‹œ๋ฉด MARS๊ฐ€ ์ปดํ“จํ„ฐ๋กœ ๊ฑธ์–ด๊ฐ€์„œ
ํƒ€์ดํ•‘์„ ํ•ฉ๋‹ˆ๋‹ค.
06:14
starts typing, "Hello, my name is MARS.
136
374060
2048
"์•ˆ๋…•ํ•˜์„ธ์š”. ์ œ ์ด๋ฆ„์€ MARS์ž…๋‹ˆ๋‹ค.
06:16
Welcome to RoMeLa,
137
376132
1529
06:17
the Robotics Mechanisms Laboratory at Virginia Tech."
138
377685
2613
๋ฒ„์ง€๋‹ˆ์•„ ๊ณต๋Œ€ ๋กœ๋ด‡ ๊ธฐ๊ณ„๊ณตํ•™ ์—ฐ๊ตฌ์‹ค RoMeLa์— ์˜ค์‹ ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค."
06:20
(Laughter)
139
380322
1470
06:21
This robot is an amoeba robot.
140
381816
2125
์ด ๋กœ๋ด‡์€ ์•„๋ฉ”๋ฐ” ๋กœ๋ด‡ ์ž…๋‹ˆ๋‹ค.
06:23
Now, we don't have enough time to go into technical details,
141
383965
2888
๊ธฐ์ˆ ์ ์œผ๋กœ ์ƒ์„ธํ•˜๊ฒŒ ์„ค๋ช…ํ•  ์‹œ๊ฐ„์ด ์ถฉ๋ถ„์น˜ ์•Š์œผ๋‹ˆ
06:26
I'll just show you some of the experiments.
142
386877
2057
์‹คํ—˜์„ ์กฐ๊ธˆ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
06:28
These are some of the early feasibility experiments.
143
388958
2512
ํ˜„์žฌ ์‹คํ˜„๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€ํ† ํ•˜๊ณ  ์žˆ๋Š” ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค.
ํƒ„์„ฑ์ด ์žˆ๋Š” ํ‘œ๋ฉด์— ์œ„์น˜ ์—๋„ˆ์ง€๋ฅผ ์ถ•์ ํ•˜์—ฌ ์ด๋™ํ•˜๊ฑฐ๋‚˜
06:31
We store potential energy to the elastic skin to make it move,
144
391494
3085
06:34
or use active tension cords to make it move forward and backward.
145
394603
3803
๋˜๋Š” ํƒ„์„ฑ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์•ž๋’ค๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค.
ChIMERA๋ผ๋Š” ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
06:38
It's called ChIMERA.
146
398430
1157
06:39
We also have been working with some scientists and engineers
147
399611
3012
ํŽœ์‹ค๋ฒ ๋‹ˆ์•„ ๋Œ€ํ•™์˜ ๊ณผํ•™์ž์™€
์—”์ง€๋‹ˆ์–ด๋“ค๊ณผ ํ˜‘๋ ฅํ•˜์—ฌ
06:42
from UPenn
148
402647
1151
06:43
to come up with a chemically actuated version of this amoeba robot.
149
403822
3833
ํ™”ํ•™๋ฌผ์งˆ์— ๋ฐ˜์‘ํ•˜๋Š” ๋กœ๋ด‡๋„
๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
06:47
We do something to something,
150
407679
1883
์–ด๋–ค ํ™”ํ•™๋ฌผ์งˆ์„ ๋ฐœ๋ผ์ฃผ๋ฉด,
06:49
and just like magic, it moves.
151
409586
2668
๋งˆ๋ฒ•๊ณผ ๊ฐ™์ด ์›€์ง์ž…๋‹ˆ๋‹ค. ๊ดด์ƒํ•œ ์ƒ๋ฌผ์ฒด ๊ฐ™์ฃ .
06:52
"The Blob."
152
412886
1582
06:55
This robot is a very recent project.
153
415193
1777
๋‹ค์Œ์€ ์ตœ๊ทผ์— ๊ฐœ๋ฐœ์ค‘์ธ ๋กœ๋ด‡ RAPHaEL ์ž…๋‹ˆ๋‹ค.
06:56
It's called RAPHaEL:
154
416994
1151
Robotic Air Powered Hand with Elastic Ligaments ์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
06:58
Robotic Air-Powered Hand with Elastic Ligaments.
155
418169
2687
07:00
There are a lot of really neat, very good robotic hands
156
420880
2999
์ƒ์šฉ์œผ๋กœ ๋‚˜์˜จ ๋ฉ‹์ง„ ๋กœ๋ด‡ ์†์€ ๋งŽ์ง€๋งŒ
07:03
out there on the market.
157
423903
1163
์ˆ˜๋งŒ๋‹ฌ๋Ÿฌ๋ฅผ ํ˜ธ๊ฐ€ํ•˜๋Š” ๋น„์‹ผ ๊ฐ€๊ฒฉ์ด ๋ฌธ์ œ์ฃ .
07:05
The problem is, they're just too expensive --
158
425090
2180
07:07
tens of thousands of dollars.
159
427294
1405
07:08
So for prosthesis applications it's probably not too practical,
160
428723
3021
๊ทธ๋ž˜์„œ ์˜์ˆ˜๋กœ ์“ฐ๊ธฐ์—๋Š” ํ˜„์‹ค์„ฑ์ด ๋–จ์–ด์ง€์ฃ .
๋„ˆ๋ฌด ๋น„์‹ธ๋‹ˆ๊นŒ์š”.
07:11
because it's not affordable.
161
431768
1345
์šฐ๋ฆฌ๋“ค์€ ์ด ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฅธ ๊ฐ๋„์—์„œ ํ’€๊ณ ์ž ํ–ˆ์Šต๋‹ˆ๋‹ค.
07:13
We wanted to tackle this problem in a very different direction.
162
433137
3474
07:16
Instead of using electrical motors, electromechanical actuators,
163
436635
3049
์ „๊ธฐ ๋ชจํ„ฐ์™€ ์ „๊ธฐํ™”ํ•™์  ์„ค๊ณ„๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ 
07:19
we're using compressed air.
164
439708
1756
์••์ถ•๊ณต๊ธฐ๋ฅผ ์‚ฌ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.
07:21
We developed these novel actuators for the joints, so it's compliant.
165
441488
3447
๊ด€์ ˆ์„ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์„ค๊ณ„๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค.
์กฐ์ž‘ํ•˜๊ธฐ๊ฐ€ ์‰ฝ์Šต๋‹ˆ๋‹ค. ํž˜ ์กฐ์ ˆ์€
07:24
You can actually change the force,
166
444959
1702
07:26
simply just changing the air pressure.
167
446685
1826
๊ณต๊ธฐ์••์„ ๋ฐ”๊ฟ”์ฃผ๋Š” ๊ฒƒ๋งŒ์œผ๋กœ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
07:28
And it can actually crush an empty soda can.
168
448535
2190
๋นˆ ํƒ„์‚ฐ์Œ๋ฃŒ ๊นกํ†ต์„ ์ฐŒ๊ทธ๋Ÿฌ๋œจ๋ฆฌ๊ฑฐ๋‚˜
07:30
It can pick up very delicate objects like a raw egg,
169
450749
3050
๋‹ฌ๊ฑ€์ด๋‚˜ ์ „๊ตฌ์™€ ๊ฐ™์€ ๊นจ์ง€๊ธฐ ์‰ฌ์šด ๊ฒƒ์„
07:33
or in this case, a lightbulb.
170
453823
1588
์‚ด๋ฉฐ์‹œ ์žก์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:36
The best part: it took only 200 dollars to make the first prototype.
171
456050
3669
์ตœ๋Œ€ ์žฅ์ ์€ ์ดˆ๊ธฐ๋ชจ๋ธ ์ œ์ž‘๋น„๊ฐ€ 200๋‹ฌ๋Ÿฌ ๋ฐ–์— ๋“ค์ง€ ์•Š์€ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
์ด๊ฒƒ์€ ๋ฑ€ ํ˜•ํƒœ์˜ ๋กœ๋ด‡์œผ๋กœ
07:41
This robot is actually a family of snake robots
172
461166
2748
07:43
that we call HyDRAS,
173
463938
1368
HyDRAS ๋ผ๊ณ  ๋ถ€๋ฆ…๋‹ˆ๋‹ค.
07:45
Hyper Degrees-of-freedom Robotic Articulated Serpentine.
174
465330
2711
Hyper Degrees-of-freedom Robotic Articulated Serpentine ์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
์ด๋Ÿฌํ•œ ์ง€ํ˜•๋„ ์ž˜ ์˜ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
07:48
This is a robot that can climb structures.
175
468065
2171
07:50
This is a HyDRAS's arm.
176
470260
2083
์ด๊ฒƒ์€ HyDRAS ์˜ ํŒ”์ž…๋‹ˆ๋‹ค.
07:52
It's a 12-degrees-of-freedom robotic arm.
177
472367
2009
12๋ฐฉํ–ฅ์œผ๋กœ ์›€์ง์ด๋Š” ๋กœ๋ด‡ ํŒ”์ด์ฃ .
07:54
But the cool part is the user interface.
178
474400
2348
์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค๊ฐ€ ์ตœ๊ณ ์˜ ์žฅ์ ์ด์ฃ .
07:56
The cable over there, that's an optical fiber.
179
476772
2743
์ €๊ธฐ ๋ณด์ด๋Š” ์ผ€์ด๋ธ”์€ ๊ด‘์„ฌ์œ ์ด์ฃ .
07:59
This student, it's probably her first time using it,
180
479539
2436
์ด ํ•™์ƒ์„ ์ฒ˜์Œ ์จ๋ณด๋Š” ๊ฒƒ์ด์ง€๋งŒ
08:01
but she can articulate it in many different ways.
181
481999
2357
์—ฌ๋Ÿฌ๋ฐฉํ–ฅ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์ด ์—†์Šต๋‹ˆ๋‹ค.
์˜ˆ๋ฅผ ๋“ค์–ด ์ด๋ผํฌ์™€ ๊ฐ™์€ ์ „์žฅ์—๋Š”
08:04
So, for example, in Iraq, the war zone, there are roadside bombs.
182
484380
3463
๊ธธ๊ฐ€์— ํญํƒ„ ๊ฐ™์€ ๊ฒƒ์ด ์žˆ๋‹ค๋ฉด,
08:07
Currently, you send these remotely controlled vehicles that are armed.
183
487867
4011
์ง€๊ธˆ์€ ํŒ”์ด ๋‹ฌ๋ฆฐ ์ฐจ๋Ÿ‰์„ ์›๊ฒฉ ์กฐ์ข…ํ•˜์—ฌ ๋ณด๋‚ด๊ณ  ์žˆ์ง€๋งŒ
08:11
It takes really a lot of time and it's expensive to train the operator
184
491902
3539
์ด๋Ÿฐ ๋ณต์žกํ•œ ๋กœ๋ด‡ ํŒ” ์กฐ์ข… ํ›ˆ๋ จ์€
์—„์ฒœ๋‚œ ๋ˆ๊ณผ ์‹œ๊ฐ„์ด ๋“ค์–ด๊ฐ‘๋‹ˆ๋‹ค.
08:15
to operate this complex arm.
185
495465
1738
08:17
In this case, it's very intuitive;
186
497227
1967
์ด ๋กœ๋ด‡์€ ์กฐ์ž‘์ด ๋งค์šฐ ์ง๊ด€์ ์ด๋ผ
08:19
this student, probably his first time using it,
187
499218
2268
์ฒ˜์Œ ์‚ฌ์šฉํ•˜๋Š” ํ•™์ƒ๋„ ๋ณต์žกํ•œ ์ž‘์—…์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
08:21
is doing very complex manipulation tasks,
188
501510
1978
08:23
picking up objects and doing manipulation, just like that.
189
503512
3361
๋ฌผ๊ฑด์„ ์ง‘์–ด๋“ค๊ณ  ์กฐ์ž‘ํ•˜๋Š” ๊ฒƒ์ด์ฃ .
๋ณด์‹œ๋Š” ๋ฐ”์™€ ๊ฐ™์ด ๋งค์šฐ ์ง๊ด€์ ์ด์ฃ .
08:26
Very intuitive.
190
506897
1205
08:30
Now, this robot is currently our star robot.
191
510025
2597
์ด ๋กœ๋ด‡์€ ์šฐ๋ฆฌ์˜ ์Šคํƒ€ ๋กœ๋ด‡์ž…๋‹ˆ๋‹ค.
08:32
We actually have a fan club for the robot, DARwIn:
192
512646
2985
ํŒฌํด๋Ÿฝ๊นŒ์ง€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋กœ๋ด‡ DARwIn ์ด์ฃ .
08:35
Dynamic Anthropomorphic Robot with Intelligence.
193
515655
2901
Dynamic Anthropomorphic Robot With Intelligence ์˜ ์•ฝ์ž์ž…๋‹ˆ๋‹ค.
08:38
As you know, we're very interested in human walking,
194
518580
3883
์šฐ๋ฆฌ๋“ค์€ ํœด๋จธ๋…ธ์ด๋“œ, ์ฆ‰
์ธ๊ฐ„์ฒ˜๋Ÿผ ๊ฑท๋Š” ๋กœ๋ด‡์— ๊ด€์‹ฌ์ด ๋งŽ์ฃ .
08:42
so we decided to build a small humanoid robot.
195
522487
2192
๊ทธ๋ž˜์„œ ์ž‘์€ ๋กœ๋ด‡์„ ๋งŒ๋“ค ๊ณ„ํš์„ ์„ธ์› ์ฃ .
08:44
This was in 2004; at that time,
196
524703
1762
2004๋…„ ๋‹น์‹œ์—๋Š”
08:46
this was something really, really revolutionary.
197
526489
2270
๊ฝค๋‚˜ ํ˜๋ช…์ ์ธ ๊ฒƒ์ด์—ˆ์Šต๋‹ˆ๋‹ค.
08:48
This was more of a feasibility study:
198
528783
1801
๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์˜€์ฃ .
08:50
What kind of motors should we use? Is it even possible?
199
530608
2651
์–ด๋–ค ๋ชจํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด์•ผํ•˜๋Š”์ง€?
์ •๋ง ๊ฐ€๋Šฅํ•œ์ง€? ์–ด๋–ป๊ฒŒ ์กฐ์ • ํ•ด์•ผํ•˜๋Š”์ง€?
08:53
What kinds of controls should we do?
200
533283
1734
๊ทธ๋ž˜์„œ ์–ด๋–ค ์„ผ์„œ๋„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•˜์ฃ .
08:55
This does not have any sensors, so it's an open-loop control.
201
535041
3520
๊ฐœ๋ฃจํ”„ ์ œ์–ด (open loop control) ์ด์ฃ .
08:58
For those who probably know, if you don't have any sensors
202
538585
2770
์•„๋งˆ ์—ฌ๋Ÿฌ๋ถ„๋„ ์•Œ๊ณ  ๊ณ„์‹ค๊ฒ๋‹ˆ๋‹ค.
์„ผ์„œ ์—†์ด ๋ฐธ๋Ÿฐ์Šค๊ฐ€ ๋ฌด๋„ˆ์ง€๋ฉด ์ด๋Ÿฐ์ผ์ด ์ผ์–ด๋‚˜์ฃ .
09:01
and there's any disturbances, you know what happens.
203
541379
2573
09:03
(Laughter)
204
543976
2113
(์›ƒ์Œ)
09:06
Based on that success, the following year we did the proper mechanical design,
205
546113
5224
์ด ์„ฑ๊ณต์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ๋‹ค์Œ ํ•ด์—๋Š”
๋™๋ ฅํ•™๋ถ€ํ„ฐ ์‹œ์ž‘ํ•˜์—ฌ ์ œ๋Œ€๋กœ ๋œ
09:11
starting from kinematics.
206
551361
1224
๊ธฐ๊ณ„๋ฅผ ์„ค๊ณ„ํ–ˆ์Šต๋‹ˆ๋‹ค.
09:12
And thus, DARwIn I was born in 2005.
207
552609
2910
2005๋…„์— DARwIn I ๊ฐ€ ํƒ„์ƒํ•˜์˜€์Šต๋‹ˆ๋‹ค.
09:15
It stands up, it walks -- very impressive.
208
555543
2311
๋กœ๋ด‡์ด ์ผ์–ด๋‚˜์„œ ๊ฑท์Šต๋‹ˆ๋‹ค. ๊ฝค ์ธ์ƒ์ ์ด์ฃ .
09:17
However, still, as you can see, it has a cord, an umbilical cord.
209
557878
3357
ํ•˜์ง€๋งŒ ์•„์ง ์ฝ”๋“œ๊ฐ€ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
ํƒฏ์ค„๊ณผ ๊ฐ™์€ ์ฝ”๋“œ์ฃ . ์•„์ง๊นŒ์ง€๋Š” ์™ธ๋ถ€์ „์›๊ณผ ์™ธ๋ถ€์กฐ์ž‘์—
09:21
So we're still using an external power source
210
561259
2172
09:23
and external computation.
211
563455
1599
์˜์กดํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
์ด์ œ 2006๋…„์ž…๋‹ˆ๋‹ค. ์ด์ œ๋ถ€ํ„ฐ ์žฌ๋ฏธ์žˆ์–ด์ง‘๋‹ˆ๋‹ค.
09:26
So in 2006, now it's really time to have fun.
212
566002
3311
09:29
Let's give it intelligence.
213
569337
1459
๋กœ๋ด‡์—๊ฒŒ ์ง€๋Šฅ์„ ์ฃผ์—ˆ์Šต๋‹ˆ๋‹ค. ์ปดํ“จํŒ…์— ํ•„์š”ํ•œ ๋ชจ๋“  ๊ฒƒ๋“ค,
09:30
We give it all the computing power it needs:
214
570820
2121
09:32
a 1.5 gigahertz Pentium M chip, two FireWire cameras,
215
572965
2530
1.5Ghz ํŽœํ‹ฐ์—„ M ์นฉ๊ณผ
๋‘๊ฐœ์˜ Firewire ์นด๋ฉ”๋ผ, 8๊ฐœ์˜ ํ‰ํ˜•๊ณ„,
09:35
rate gyros, accelerometers, four forced sensors on the foot,
216
575519
2846
๊ฐ€์†๋„๊ณ„, ๋ฐœ์— ํ† ํฌ์„ผ์„œ 4๊ฐœ, ๋ฆฌํŠฌ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ์žฅ์ฐฉํ–ˆ์Šต๋‹ˆ๋‹ค.
09:38
lithium polymer batteries --
217
578389
1350
09:39
and now DARwIn II is completely autonomous.
218
579763
3150
์ด์ œ DARwIn II๋Š” ์™„์ „ํžˆ ๋…์ž์ ์œผ๋กœ ์›€์ง์ž…๋‹ˆ๋‹ค.
09:43
It is not remote controlled. There's no tethers.
219
583406
2691
์›๊ฒฉ ์กฐ์ข…์„ ํ•˜์ง€ ์•Š์ฃ .
์ด์ œ ์ฝ”๋“œ๋Š” ํ•„์š”์—†์Šต๋‹ˆ๋‹ค. ์Šค์Šค๋กœ ์ฃผ๋ณ€์„ ๋‘˜๋Ÿฌ๋ณด๊ณ 
09:46
It looks around, searches for the ball ... looks around, searches for the ball,
220
586121
3733
๋ณผ์„ ์ฐพ์•„์„œ ์ถ•๊ตฌ ๊ฒŒ์ž„์„ ํ•ฉ๋‹ˆ๋‹ค.
09:49
and it tries to play a game of soccer autonomously -- artificial intelligence.
221
589878
4929
๋…๋ฆฝ์ ์ธ ์ธ๊ณต์ง€๋Šฅ์ด์ฃ .
09:54
Let's see how it does.
222
594831
1154
์–ด๋–ป๊ฒŒ ํ•˜๋Š”์ง€ ๋ด…์‹œ๋‹ค. ์ฒ˜์Œ ์‹œ๋„ํ•œ๊ฑด๋ฐ์š”,
09:56
This was our very first trial, and ...
223
596009
1947
09:57
(Video) Spectators: Goal!
224
597980
4367
๊ทธ๋ฆฌ๊ณ .. (๋น„๋””์˜ค) ๊ณจ!!!
10:03
Dennis Hong: There is actually a competition called RoboCup.
225
603498
2950
๋กœ๋ณด์ปต์ด๋ผ ๋ถˆ๋ฆฌ๋Š” ๊ฒฝ๊ธฐ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
10:06
I don't know how many of you have heard about RoboCup.
226
606472
2587
๋กœ๋ณด์ปต์— ๋Œ€ํ•ด์„œ ๋“ค์–ด๋ณด์‹  ๋ถ„์ด ์–ผ๋งˆ๋‚˜ ์žˆ์„์ง€ ๋ชจ๋ฅด์ง€๋งŒ,
์Šค์Šค๋กœ ์›€์ง์ด๋Š” ๋กœ๋ด‡๋“ค์˜ ๊ตญ์ œ ์ถ•๊ตฌ๊ฒฝ๊ธฐ์ฃ .
10:09
It's an international autonomous robot soccer competition.
227
609083
4374
10:13
And the actual goal of RoboCup is,
228
613481
2748
๊ทธ๋ฆฌ๊ณ  ๋กœ๋ณด์ปต์˜ ๋ชฉํ‘œ, ์ง„์งœ ๋ชฉํ‘œ๋Š”
10:16
by the year 2050,
229
616253
2193
2050๋…„๊นŒ์ง€
10:18
we want to have full-size, autonomous humanoid robots
230
618470
3731
์Šค์Šค๋กœ ์›€์ง์ด๋Š” ์‹ค๋ฌผํฌ๊ธฐ์˜ ํœด๋จธ๋…ธ์ด๋“œ ๋กœ๋ด‡์„ ๋งŒ๋“ค์–ด์„œ
์ธ๊ฐ„ ์›”๋“œ์ปต ์ฑ”ํ”ผ์–ธ๋“ค๊ณผ ์ถ•๊ตฌ ์‹œํ•ฉ์„ ํ•ด์„œ
10:22
play soccer against the human World Cup champions
231
622225
3074
10:25
and win.
232
625323
1153
์ด๊ธฐ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:26
(Laughter)
233
626500
1032
10:27
It's a true, actual goal.
234
627556
1218
์ด๊ฑด ์ง„์งœ ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค. ๋งค์šฐ ์•ผ์‹ฌ์ฐฌ ๋ชฉํ‘œ์ด์ฃ .
10:28
It's a very ambitious goal, but we truly believe we can do it.
235
628798
3897
์šฐ๋ฆฐ ์ง„์งœ๋กœ ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฏฟ์Šต๋‹ˆ๋‹ค.
์ž‘๋…„์—๋Š” ์ค‘๊ตญ์—์„œ ๊ฐœ์ตœํ–ˆ์Šต๋‹ˆ๋‹ค.
10:32
This is last year in China.
236
632719
1734
10:34
We were the very first team in the United States that qualified
237
634477
3013
๋ฏธ๊ตญ์—์„œ ์ด ๊ฒฝ๊ธฐ์— ์ถœ์ „ํ•œ ํŒ€์€
์ €ํฌ๊ฐ€ ์ฒ˜์Œ์ž…๋‹ˆ๋‹ค.
10:37
in the humanoid RoboCup competition.
238
637514
1800
์ด๊ฒƒ์€ ์˜ฌํ•ด์ž…๋‹ˆ๋‹ค. ์˜ค์ŠคํŠธ๋ฆฌ์•„์—์„œ์˜€์ฃ .
10:39
This is this year in Austria.
239
639338
2180
10:41
You're going to see the action is three against three,
240
641542
2567
์™„์ „ํžˆ ์Šค์Šค๋กœ ์›€์ง์ด๋Š” ๋กœ๋ด‡๋“ค์ด 3๋Œ€3์œผ๋กœ
์‹œํ•ฉํ•˜๋Š” ๋ชจ์Šต์„ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
10:44
completely autonomous.
241
644133
1191
10:45
(Video) (Crowd groans)
242
645348
1091
๊ฐ‘๋‹ˆ๋‹ค.. ๊ทธ๋ ‡์ฃ !!
10:46
DH: There you go. Yes!
243
646463
1330
10:48
The robots track and they team-play amongst themselves.
244
648591
4142
๋กœ๋ด‡๋ผ๋ฆฌ ์„œ๋กœ
ํŒ€ ํ”Œ๋ ˆ์ด๋ฅผ ํ•˜๋Š”๊ฒƒ์ž…๋‹ˆ๋‹ค.
10:53
It's very impressive.
245
653194
1151
๋งค์šฐ ์ธ์ƒ์ ์ž…๋‹ˆ๋‹ค.
10:54
It's really a research event,
246
654369
1476
10:55
packaged in a more exciting competition event.
247
655869
4240
ํ•™์ˆ ํ–‰์‚ฌ์ง€๋งŒ, ์žฌ๋ฏธ์žˆ๋Š” ๊ฒฝ๊ธฐ์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
์—ฌ๊ธฐ ๋ณด์‹œ๋Š”๊ฒƒ์€ ์•„์ฃผ ์•„๋ฆ„๋‹ค์šด
11:00
What you see here is the beautiful Louis Vuitton Cup trophy.
248
660133
3528
๋ฃจ์ด๋น„ํ†ต ์ปต ํŠธ๋กœํ”ผ์ž…๋‹ˆ๋‹ค.
11:03
This is for the best humanoid.
249
663685
1519
์ตœ๊ณ ์˜ ํœด๋จธ๋…ธ์ด๋“œ์—๊ฒŒ ์ฃผ๋Š” ํŠธ๋กœํ”ผ์ด๊ณ 
11:05
We'd like to bring this, for the first time, to the United States next year,
250
665228
3669
๋‚ด๋…„์—” ์šฐ๋ฆฌ ํŒ€์ด ์ตœ์ดˆ๋กœ ์ด๊ฑธ ๋ฏธ๊ตญ์— ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ธฐ๋ฅผ ๋ฐ”๋ž๋‹ˆ๋‹ค.
ํ–‰์šด์„ ๋นŒ์–ด ์ฃผ์„ธ์š”.
11:08
so wish us luck.
251
668921
1155
๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
11:10
(Applause)
252
670100
1036
11:11
Thank you.
253
671160
1152
(๋ฐ•์ˆ˜)
11:12
(Applause)
254
672336
2081
11:14
DARwIn also has a lot of other talents.
255
674441
2068
DARwIn ์€ ๋งŽ์€ ์žฌ๋Šฅ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
11:16
Last year, it actually conducted the Roanoke Symphony Orchestra
256
676533
3716
์‹ค์ œ๋กœ ์ž‘๋…„์—” ๋กœ์•„๋…ธํฌ(Roanoke) ๊ตํ–ฅ์•…๋‹จ์„ ์ง€ํœ˜ํ–ˆ์—ˆ์ฃ .
์—ฐ๋ง ์ฝ˜์„œํŠธ์—์„œ์š”.
11:20
for the holiday concert.
257
680273
2388
11:22
This is the next generation robot, DARwIn IV,
258
682685
2976
์ด๊ฒƒ์ด ์ฐจ์„ธ๋Œ€ ๋กœ๋ด‡ DARwIn IV์ž…๋‹ˆ๋‹ค.
11:25
much smarter, faster, stronger.
259
685685
2976
์ข€ ๋” ๋˜‘๋˜‘ํ•ด์ง€๊ณ  ๋น ๋ฅด๊ณ  ๊ฐ•ํ•ด์กŒ์ฃ .
11:28
And it's trying to show off its ability:
260
688685
1977
๋กœ๋ด‡์˜ ๋Šฅ๋ ฅ์„ ๋ณด์—ฌ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.
11:30
"I'm macho, I'm strong."
261
690686
1797
"๋‚œ ๋งˆ์ดˆ๋‹ค. ๋‚œ ๊ฐ•ํ•ด"
11:32
(Laughter)
262
692507
1444
11:33
"I can also do some Jackie Chan-motion, martial art movements."
263
693975
4225
"๋‚œ ์„ฑ๋ฃก๊ฐ™์ด ์›€์ง์ผ ์ˆ˜ ์žˆ์ฃ .
๋ฌด์ˆ ๋™์ž‘๋„ ํ•ด์š”"
11:38
(Laughter)
264
698224
2012
(์›ƒ์Œ)
11:41
And it walks away. So this is DARwIn IV.
265
701685
1935
์ด๊ฒƒ์ด DARwIn IV ์ž…๋‹ˆ๋‹ค.
11:43
Again, you'll be able to see it in the lobby.
266
703644
2135
์ด ๋กœ๋ด‡์„ ๋กœ๋น„์—์„œ ๋ณด์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
11:45
We truly believe this will be the very first running humanoid robot
267
705803
3192
์ €ํฌ๋Š” ์ด ๋กœ๋ด‡์„ ๋ฏธ๊ตญ ์ตœ์ดˆ๋กœ
๋‹ฌ๋ฆฌ๋Š” ๋กœ๋ด‡์œผ๋กœ ๋งŒ๋“ค๊ณ ์ž ํ•˜๊ณ  ์žˆ์œผ๋‹ˆ ๊ธฐ๋Œ€ํ•˜์…”๋„ ์ข‹์Šต๋‹ˆ๋‹ค.
11:49
in the United States.
268
709019
1151
11:50
So stay tuned.
269
710194
1154
ํ˜„์žฌ ๊ฐœ๋ฐœํ•˜๊ณ  ์žˆ๋Š” ์žฌ๋ฏธ์žˆ๋Š” ๋กœ๋ด‡๋“ค์˜ ์›€์ง์ด๋Š” ๋ชจ์Šต์„ ๋ณด์…จ์Šต๋‹ˆ๋‹ค.
11:51
All right. So I showed you some of our exciting robots at work.
270
711372
3001
๊ทธ๋Ÿผ ์ €ํฌ๋“ค์˜ ์„ฑ๊ณต์˜ ๋น„๊ฒฐ์€ ๋ฌด์—‡์ผ๊นŒ์š”?
11:54
So, what is the secret of our success?
271
714397
2188
11:56
Where do we come up with these ideas?
272
716609
1817
์–ด๋””์„œ ์ด๋Ÿฐ ์•„์ด๋””์–ด๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ณ  ์žˆ์œผ๋ฉฐ,
11:58
How do we develop these kinds of ideas?
273
718450
1893
์–ด๋–ป๊ฒŒ ์ด๋Ÿฐ ์•„์ด๋””์–ด๋ฅผ ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฑธ๊นŒ์š”?
12:00
We have a fully autonomous vehicle
274
720367
1790
์šฐ๋ฆฌ๋“ค์€ ๋„์‹ฌ์ง€๋ฅผ ์™„์ „ ์ž๋™์œผ๋กœ ์ฃผํ–‰ํ•˜๋Š”
12:02
that can drive into urban environments.
275
722181
1876
์ž๋™์ฐจ๋ฅผ ๋งŒ๋“ค์–ด์„œ DARPA ์–ด๋ฒˆ ์ฑŒ๋ฆฐ์ง€์— ๋‚˜๊ฐ€
12:04
We won a half a million dollars in the DARPA Urban Challenge.
276
724081
2899
50๋งŒ ๋‹ฌ๋Ÿฌ์˜ ์ƒ๊ธˆ์„ ๋•„์Šต๋‹ˆ๋‹ค.
์šฐ๋ฆฌ๋“ค์€ ๋˜ํ•œ ๋งน์ธ์ด ์šด์ „ ๊ฐ€๋Šฅํ•œ
12:07
We also have the world's very first vehicle that can be driven by the blind.
277
727004
3657
์ฐจ๋Ÿ‰์„ ์„ธ๊ณ„์ตœ์ดˆ๋กœ ๋งŒ๋“ค์—ˆ์Šต๋‹ˆ๋‹ค.
12:10
We call it the Blind Driver Challenge, very exciting.
278
730685
2524
์ด๊ฒƒ์€ ๋ธ”๋ผ์ธ๋“œ ๋“œ๋ผ์ด๋ฒ„ ์ฑŒ๋ฆฐ์ง€๋ผ๊ณ  ๋ถ€๋ฅด๋ฉฐ
๋ณด์—ฌ๋“œ๋ฆฌ๊ณ  ์‹ถ์€ ํ”„๋กœ์ ํŠธ๋Š” ๋” ๋งŽ์Šต๋‹ˆ๋‹ค.
12:13
And many, many other robotics projects I want to talk about.
279
733233
3172
12:16
These are just the awards that we won in 2007 fall
280
736429
2637
์ด๊ฒƒ์€ ์šฐ๋ฆฌ๋“ค์ด 2007๋…„ ๊ฐ€์„์—
๋กœ๋ด‡๊ณตํ•™ ์‹œํ•ฉ์—์„œ ์šฐ์Šนํ•˜์—ฌ ์ƒ์„ ํƒ„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
12:19
from robotics competitions and those kinds of things.
281
739090
2571
12:21
So really, we have five secrets.
282
741685
1893
๋‹ค์„ฏ๊ฐ€์ง€ ๋น„๋ฐ€์ด ์žˆ์Šต๋‹ˆ๋‹ค.
12:23
First is: Where do we get inspiration?
283
743602
2436
๋จผ์ € ์–ด๋””์—์„œ ์˜๊ฐ์„ ์–ป๊ณ 
์–ด๋–ป๊ฒŒ ๋ฒˆ๋œฉ์ด๋Š” ์ƒ์ƒ๋ ฅ์„ ์–ป๊ณ  ์žˆ๋Š” ๊ฑธ๊นŒ์š”?
12:26
Where do we get this spark of imagination?
284
746062
2079
์ด๊ฑด ์‹ค์ œ ์ œ ๊ฐœ์ธ์  ์ด์•ผ๊ธฐ ์ž…๋‹ˆ๋‹ค.
12:28
This is a true story, my personal story.
285
748165
2021
12:30
At night, when I go to bed, at three, four in the morning,
286
750210
2777
์ œ๊ฐ€ ์ž ๋“œ๋Š” ์‹œ๊ฐ์€ ์ƒˆ๋ฒฝ 3-4์‹œ ๊ฒฝ ์ž…๋‹ˆ๋‹ค
๋ˆ„์›Œ์„œ ๋ˆˆ์„ ๊ฐ์œผ๋ฉด ์„ ์ด๋‚˜ ์›์ด๋‚˜
12:33
I lie down, close my eyes, and I see these lines and circles
287
753011
2889
12:35
and different shapes floating around.
288
755924
1794
์—ฌ๋Ÿฌ๊ฐ€์ง€ ํ˜•ํƒœ๊ฐ€ ๋– ๋‹ค๋‹ˆ๋ฉด
12:37
And they assemble, and they form these kinds of mechanisms.
289
757742
2763
๊ทธ๊ฒƒ๋“ค์„ ์กฐํ•ฉํ•˜๊ฑฐ๋‚˜ ์–ด๋–ค ์ข…๋ฅ˜์˜ ๋ฉ”์นด๋‹ˆ์ฆ˜์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค.
12:40
And I think, "Ah, this is cool."
290
760529
1608
๊ทธ๋Ÿฌ๋ฉด ์ €๋Š” "์•„, ์ด๊ฑฐ ๊ดœ์ฐฎ๊ตฐ" ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๊ณ 
12:42
So right next to my bed I keep a notebook, a journal,
291
762161
2877
์นจ๋Œ€ ์˜†์— ๋†“์•„๋‘” ๋…ธํŠธ์™€
๋ถˆ์ด ๋“ค์–ด์˜ค๋Š” ํŽœ์„ ๊ฐ€์ง€๊ณ  ์“ฐ์ฃ .
12:45
with a special pen that has an LED light on it,
292
765062
2356
12:47
because I don't want to turn on the light and wake up my wife.
293
767442
3037
๋ถˆ์„ ์ผœ์„œ ์•„๋‚ด๋ฅผ ๊นจ์šฐ๊ณ  ์‹ถ์ง€ ์•Š๊ฑฐ๋“ ์š”.
์ƒ๊ฐ๋‚˜๋Š”๊ฒƒ์„ ์ „๋ถ€ ๋„์ ์ด๊ณ  ๊ทธ๋ฆผ์„ ๊ทธ๋ฆฌ๊ณ 
12:50
So I see this, scribble everything down, draw things, and go to bed.
294
770503
3269
๊ทธ๋Ÿฐ ๋‹ค์Œ ์ž ๋“ค์ฃ .
12:53
Every day in the morning, the first thing I do,
295
773796
2390
๋งค์ผ ์•„์นจ
์ปคํ”ผ๋ฅผ ๋งˆ์‹œ๊ฑฐ๋‚˜ ์ด ๋‹ฆ๊ธฐ ์ „์—
12:56
before my first cup of coffee, before I brush my teeth,
296
776210
2607
์ €๋Š” ๊ฐ€์žฅ ๋จผ์ € ๋…ธํŠธ๋ฅผ ํŽผ์ณ ๋ด…๋‹ˆ๋‹ค.
12:58
I open my notebook.
297
778841
1162
๋น„์–ด์žˆ์„ ๋•Œ๊ฐ€ ๋งŽ์ฃ .
13:00
Many times it's empty; sometimes I have something there.
298
780027
2663
๊ฐ€๋”์€ ์“ธ๋ชจ ์—†๋Š” ๊ฒƒ๋“ค๋„ ์žˆ๊ณ ์š”.
13:02
If something's there, sometimes it's junk.
299
782714
2066
๋Œ€๋ถ€๋ถ„์€ ์ œ๊ฐ€ ์“ด ๊ธ€์ž์กฐ์ฐจ ์ฝ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.
13:04
But most of the time, I can't read my handwriting.
300
784804
2357
์ƒˆ๋ฒฝ 4์‹œ์— ๋ญ˜ ๊ธฐ๋Œ€ํ•˜๊ฒ ์–ด์š”? ๊ทธ๋ ‡์ฃ ?
13:07
Four in the morning -- what do you expect, right?
301
787185
2324
13:09
So I need to decipher what I wrote.
302
789533
1904
์ œ๊ฐ€ ์“ด ๊ฑธ ํŒ๋…ํ•ด์•ผ ํ•  ์ง€๊ฒฝ์ž…๋‹ˆ๋‹ค.
13:11
But sometimes I see this ingenious idea in there,
303
791461
3200
ํ•˜์ง€๋งŒ, ๊ฐ€๋”์€ ๊ธฐ๋ฐœํ•œ ์•„์ด๋””์–ด๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ธฐ๋„ ํ•˜์ฃ .
13:14
and I have this eureka moment.
304
794685
1485
'์œ ๋ ˆ์นด'๋ฅผ ์™ธ์น˜๊ฒŒ ๋˜๋Š” ์ˆœ๊ฐ„์ž…๋‹ˆ๋‹ค.
13:16
I directly run to my home office, sit at my computer,
305
796194
2516
๊ณง์žฅ ์ง‘์— ์žˆ๋Š” ์‚ฌ๋ฌด์‹ค๋กœ ๊ฐ€์„œ ์ปดํ“จํ„ฐ ์•ž์— ์•‰์•„
13:18
I type in the ideas, I sketch things out
306
798734
1977
์•„์ด๋””์–ด๋“ค์„ ํƒ€์ดํ•‘ํ•˜๊ณ  ์Šค์ผ€์นญํ•ด์„œ
13:20
and I keep a database of ideas.
307
800735
1891
์•„์ด๋””์–ด๋ฅผ ์ปดํ“จํ„ฐ์— ์ €์žฅํ•˜์ฃ .
13:23
So when we have these calls for proposals,
308
803288
2361
์—ฐ๊ตฌ ๊ณต๋ชจ๊ฐ€ ๋œจ๋ฉด
13:25
I try to find a match between my potential ideas
309
805673
3570
๊ณต๋ชจ์™€ ๊ด€๋ จ๋œ ์ œ ์•„์ด๋””์–ด๋ฅผ
์ฐพ์•„๋ณด๊ณ ,
13:29
and the problem.
310
809267
1160
๋”ฑ ๋งž๋Š” ๊ฒƒ์ด ์žˆ๋‹ค๋ฉด ์—ฐ๊ตฌ๊ณ„ํš์„œ๋ฅผ ์ œ์ถœํ•ด์„œ
13:30
If there's a match, we write a research proposal,
311
810451
2317
์—ฐ๊ตฌ๋น„๋ฅผ ๋”ฐ์ฃ . ์—ฐ๊ตฌ๋Š” ์ด๋ ‡๊ฒŒ ์‹œ์ž‘๋ฉ๋‹ˆ๋‹ค.
13:32
get the research funding in,
312
812792
1347
13:34
and that's how we start our research programs.
313
814163
2160
๊ทธ๋Ÿฌ๋‚˜ ๋ฒˆ๋œฉ์ด๋Š” ์ƒ์ƒ๋ ฅ๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.
13:36
But just a spark of imagination is not good enough.
314
816347
2493
13:38
How do we develop these kinds of ideas?
315
818864
1880
์•„์ด๋””์–ด๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฐœ์ „์‹œํ‚ฌ๊นŒ์š”?
13:40
At our lab RoMeLa, the Robotics and Mechanisms Laboratory,
316
820768
2780
์šฐ๋ฆฌ๋“ค์˜ ์—ฐ๊ตฌ์‹ค RoMeLa ์—์„œ๋Š”
13:43
we have these fantastic brainstorming sessions.
317
823572
2612
๋ฉ‹์ง„ ์•„์ด๋””์–ดํšŒ์˜(brainstorming)์„ ํ•ฉ๋‹ˆ๋‹ค.
13:46
So we gather around, we discuss problems and solutions and talk about it.
318
826208
4335
๋ชจ๋‘ ๋‘˜๋Ÿฌ์•‰์•„ ๋ฌธ์ œ์ ์ด๋‚˜
์‚ฌํšŒ๋ฌธ์ œ๋“ฑ์— ๋Œ€ํ•˜์—ฌ ์˜๊ฒฌ์„ ๋‚˜๋ˆ•๋‹ˆ๋‹ค.
13:50
But before we start, we set this golden rule.
319
830567
2977
๊ทธ๋Ÿฌ๋‚˜ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ํ•˜๋‚˜์˜ ๊ทœ์น™์ด ์žˆ์ฃ .
13:53
The rule is:
320
833568
1649
๊ทธ ๊ทœ์น™์€
13:55
nobody criticizes anybody's ideas.
321
835241
2977
๋ˆ„๊ตฌ๋„ ๋‹ค๋ฅธ์ด์˜ ์•„์ด๋””์–ด๋‚˜
13:58
Nobody criticizes any opinion.
322
838242
2005
์˜๊ฒฌ์„ ๋น„ํŒํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
14:00
This is important, because many times, students fear or feel uncomfortable
323
840685
3547
๊ทธ๊ฒŒ ์ •๋ง ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์™œ๋ƒํ•˜๋ฉด
ํ•™์ƒ๋“ค์€ ์ž์‹ ์˜ ์˜๊ฒฌ์„ ๋‹ค๋ฅธ์ด๋“ค์ด ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ• ๊นŒ
14:04
about how others might think about their opinions and thoughts.
324
844256
3269
๋‘๋ ค์›Œํ•˜๊ฑฐ๋‚˜ ๋ถˆ์•ˆํ•ดํ•˜๊ธฐ ๋•Œ๋ฌธ์ด์ฃ .
14:07
So once you do this, it is amazing how the students open up.
325
847549
3790
์ด ๊ทœ์น™์€ ํšจ๊ณผ๊ฐ€ ์•„์ฃผ ์ข‹์œผ๋ฉฐ,
๋†€๋ž„์ •๋„๋กœ ํ•™์ƒ๋“ค์ด ์ž์œ ๋กญ๊ฒŒ ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์ฃ .
14:11
They have these wacky, cool, crazy, brilliant ideas,
326
851363
3298
ํ•™์ƒ๋“ค์€ ๊ธฐ๋ฐœํ•œ ์•„์ด๋””์–ด๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์–ด์„œ
14:14
and the whole room is just electrified with creative energy.
327
854685
3429
๋ฐฉ ์ „์ฒด์— ์ฐฝ์กฐ์ ์ธ ์—๋„ˆ์ง€๊ฐ€ ๋„˜์น˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
๊ทธ๋ ‡๊ฒŒ ์•„์ด๋””์–ด๋ฅผ ๋ฐœ์ „์‹œํ‚ค๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
14:18
And this is how we develop our ideas.
328
858138
2273
14:20
Well, we're running out of time.
329
860998
1557
์ด์ œ ์‹œ๊ฐ„์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ํ•œ ๊ฐ€์ง€๋งŒ ๋” ์ด์•ผ๊ธฐ ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค
14:22
One more thing I want to talk about is,
330
862579
1902
๋ฒˆ๋œฉ์ด๋Š” ์•„์ด๋””์–ด๋ฅผ ๋ฐœ์ „์‹œํ‚ค๋Š” ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ๋ถ€์กฑ ํ•ฉ๋‹ˆ๋‹ค.
14:24
you know, just a spark of idea and development is not good enough.
331
864505
3156
14:27
There was a great TED moment -- I think it was Sir Ken Robinson, was it?
332
867685
4711
๋ฉ‹์ง„ TED ๊ฐ•์—ฐ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
์•„๋งˆ ์ผ„ ๋กœ๋นˆ์Šจ์”จ์˜€์ฃ ? ๋งž๋‚˜์š”?
14:32
He gave a talk about how education and school kill creativity.
333
872420
4438
์–ด๋–ป๊ฒŒ ํ•™๊ต๊ฐ€ ์ฐฝ์˜๋ ฅ์„ ์ฃฝ์ด๋Š”์ง€
์ด์•ผ๊ธฐํ•ด ์ฃผ์—ˆ์ฃ .
14:36
Well, actually, there's two sides to the story.
334
876882
2779
์‚ฌ์‹ค ์ด ์ด์•ผ๊ธฐ์—๋Š” ์–‘๋ฉด์„ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค.
14:39
So there is only so much one can do with just ingenious ideas
335
879685
5213
์ฆ‰, ๊ธฐ๋ฐœํ•œ ์•„์ด๋””์–ด์™€ ์ฐฝ์˜๋ ฅ๊ณผ
๊ณตํ•™์  ์ง๊ฐ๋งŒ์œผ๋กœ๋Š”
14:44
and creativity and good engineering intuition.
336
884922
3016
ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์— ํ•œ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
14:47
If you want to go beyond a tinkering,
337
887962
1794
๋‹จ์ˆœํžˆ ๋ญ”๊ฐ€ ๋งŒ๋“œ๋Š” ๊ฒƒ ์ด์ƒ์˜ ์–ด๋–ค ๊ฒƒ์„ ํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด,
14:49
if you want to go beyond a hobby of robotics
338
889780
2150
์ทจ๋ฏธ๋กœ์„œ์˜ ๋กœ๋ด‡์„ ๋›ฐ์–ด๋„˜์–ด
14:51
and really tackle the grand challenges of robotics
339
891954
3441
๋กœ๋ด‡๊ณตํ•™์˜ ์ปค๋‹ค๋ž€ ๊ณผ์ œ๋ฅผ
์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํ’€๊ณ ์ž ํ•œ๋‹ค๋ฉด,
14:55
through rigorous research,
340
895419
1242
14:56
we need more than that.
341
896685
1155
ํ•„์š”ํ•œ ๊ฒƒ์ด ๋˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•™๊ต๊ฐ€ ํ•„์š”ํ•œ ์ด์œ ์ฃ .
14:57
This is where school comes in.
342
897864
2014
14:59
Batman, fighting against the bad guys,
343
899902
2494
๋ฐฐํŠธ๋งจ, ์•…๋‹น๋“ค๊ณผ ์‹ธ์šฐ๋Š” ๋ฐฐํŠธ๋งจ์€
15:02
he has his utility belt, he has his grappling hook,
344
902420
2393
๋งŒ๋Šฅ ๋ฒจํŠธ๋ฅผ ์ฐจ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
15:04
he has all different kinds of gadgets.
345
904837
1824
๊ฐˆ๊ณ ๋ฆฌ๋‚˜ ๊ฐ์ข… ๋„๊ตฌ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ์ฃ .
15:06
For us roboticists, engineers and scientists,
346
906685
2413
์šฐ๋ฆฌ ๋กœ๋ด‡๊ณตํ•™์ž๋‚˜
๊ธฐ์ˆ ์ž, ๊ณผํ•™์ž๋“ค์—๊ฒ ํ•™๊ต์—์„œ ๋ฐฐ์šด ๊ฐ•์˜๋‚˜ ํ•™๊ณผ์ •๋“ค์ด ์ด๋Ÿฌํ•œ ๋„๊ตฌ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
15:09
these tools are the courses and classes you take in class.
347
909122
4157
15:13
Math, differential equations.
348
913303
2002
์ˆ˜ํ•™, ๋ฏธ๋ถ„๋ฐฉ์ •์‹
15:15
I have linear algebra, science, physics --
349
915329
2740
์„ ํ˜•๋Œ€์ˆ˜ํ•™, ๊ณผํ•™, ๋ฌผ๋ฆฌํ•™,
์‹ฌ์ง€์–ด ์š”์ฆ˜์—” ํ™”ํ•™๊ณผ ์ƒ๋ฌผํ•™๊นŒ์ง€๋„ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.
15:18
even, nowadays, chemistry and biology, as you've seen.
350
918093
2968
์ด ๋ชจ๋“  ๊ฒƒ๋“ค์ด ์šฐ๋ฆฌ์—๊ฒŒ ํ•„์š”ํ•œ ๋„๊ตฌ๋“ค์ด์ฃ .
15:21
These are all the tools we need.
351
921085
1758
15:22
So the more tools you have, for Batman,
352
922867
1876
๋ฐฐํŠธ๋งจ์ด ๋งŽ์€ ๋„๊ตฌ๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋œ๋‹ค๋ฉด
15:24
more effective at fighting the bad guys,
353
924767
1977
์•…๋‹น๋“ค๊ณผ ์ข€ ๋” ํšจ๊ณผ์ ์œผ๋กœ ์‹ธ์šธ ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.
15:26
for us, more tools to attack these kinds of big problems.
354
926768
2906
์šฐ๋ฆฌ๋„ ์ด๋Ÿฌํ•œ ๋„๊ตฌ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
15:30
So education is very important.
355
930842
1865
๊ต์œก์ด ์ค‘์š”ํ•œ ์ด์œ ์ž…๋‹ˆ๋‹ค.
15:33
Also -- it's not only about that.
356
933828
2597
๋˜ํ•œ ๊ทธ๊ฒƒ ๋ฟ๋งŒ์ด ์•„๋‹ˆ๋ผ
์ •๋ง๋กœ ์—ด์‹ฌํžˆ ์ผํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
15:36
You also have to work really, really hard.
357
936449
2068
์ €๋Š” ํ•™์ƒ๋“ค์—๊ฒŒ ํ•ญ์ƒ ๋งํ•˜์ฃ .
15:38
So I always tell my students,
358
938541
1453
'ํ˜„๋ช…ํ•˜๊ฒŒ, ๊ทธ๋ฆฌ๊ณ  ์—ด์‹ฌํžˆ ์ผํ•˜๋ผ'
15:40
"Work smart, then work hard."
359
940018
2051
๋’ค์— ๋ณด์ด๋Š” ์‚ฌ์ง„์€ ์ƒˆ๋ฒฝ 3์‹œ์˜ ์—ฐ๊ตฌ์‹ค ๋ชจ์Šต์ž…๋‹ˆ๋‹ค.
15:42
This picture in the back -- this is three in the morning.
360
942093
2724
15:44
I guarantee if you come to our lab at 3, 4am,
361
944841
2329
์ €ํฌ๋“ค์˜ ์—ฐ๊ตฌ์‹ค์— ์ƒˆ๋ฒฝ 3,4์‹œ์— ์™€ ๋ณด์‹œ๋ฉด
๋ถ„๋ช… ํ•™์ƒ๋“ค์ด ์ผ์„ ํ•˜๊ณ  ์žˆ์„ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:47
we have students working there,
362
947194
1556
15:48
not because I tell them to, but because we are having too much fun.
363
948774
3209
์ œ๊ฐ€ ํ•˜๋ผ๊ณ  ํ•ด์„œ๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค. ๋ชจ๋‘ ์•„์ฃผ ์ฆ๊ฒ๊ฒŒ ์ผ์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.
์ด๊ฒƒ์ด ๋ฐ”๋กœ ๋งˆ์ง€๋ง‰ ์ฃผ์ œ ์ž…๋‹ˆ๋‹ค.
15:52
Which leads to the last topic:
364
952007
1654
15:53
do not forget to have fun.
365
953685
1869
์ฆ๊ธฐ๋Š” ๊ฒƒ์„ ์žŠ์ง€๋ง๋ผ.
15:55
That's really the secret of our success, we're having too much fun.
366
955578
3213
์ €ํฌ์˜ ์ง„์ •ํ•œ ์„ฑ๊ณต์˜ ๋น„๊ฒฐ์€ ์•„์ฃผ ์ฆ๊ฒ๊ฒŒ ์ผํ•œ๋‹ค๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
15:58
I truly believe that highest productivity comes when you're having fun,
367
958815
3466
์ €๋Š” ์ฆ๊ฒ๊ฒŒ ์ผํ•  ๋•Œ ๊ฐ€์žฅ ๋†’์€ ์ƒ์‚ฐ์„ฑ์„ ๊ฐ€์ ธ์˜ฌ ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ฏฟ์Šต๋‹ˆ๋‹ค.
์ €ํฌ๋Š” ๊ทธ๋ ‡๊ฒŒ ์ผํ•˜๊ณ  ์žˆ์ฃ .
16:02
and that's what we're doing.
368
962305
1356
16:03
And there you go.
369
963685
1154
๋Œ€๋‹จํžˆ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.
16:04
Thank you so much.
370
964863
1167
(๋ฐ•์ˆ˜)
16:06
(Applause)
371
966054
4102
์ด ์›น์‚ฌ์ดํŠธ ์ •๋ณด

์ด ์‚ฌ์ดํŠธ๋Š” ์˜์–ด ํ•™์Šต์— ์œ ์šฉํ•œ YouTube ๋™์˜์ƒ์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. ์ „ ์„ธ๊ณ„ ์ตœ๊ณ ์˜ ์„ ์ƒ๋‹˜๋“ค์ด ๊ฐ€๋ฅด์น˜๋Š” ์˜์–ด ์ˆ˜์—…์„ ๋ณด๊ฒŒ ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ฐ ๋™์˜์ƒ ํŽ˜์ด์ง€์— ํ‘œ์‹œ๋˜๋Š” ์˜์–ด ์ž๋ง‰์„ ๋”๋ธ” ํด๋ฆญํ•˜๋ฉด ๊ทธ๊ณณ์—์„œ ๋™์˜์ƒ์ด ์žฌ์ƒ๋ฉ๋‹ˆ๋‹ค. ๋น„๋””์˜ค ์žฌ์ƒ์— ๋งž์ถฐ ์ž๋ง‰์ด ์Šคํฌ๋กค๋ฉ๋‹ˆ๋‹ค. ์˜๊ฒฌ์ด๋‚˜ ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด ๋ฌธ์˜ ์–‘์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฌธ์˜ํ•˜์‹ญ์‹œ์˜ค.

https://forms.gle/WvT1wiN1qDtmnspy7