A 30-year history of the future | Nicholas Negroponte

300,441 views ใƒป 2014-07-08

TED


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

ืžืชืจื’ื: Ido Dekkers ืžื‘ืงืจ: Tal Dekkers
00:12
(Video) Nicholas Negroponte: Can we switch to the video disc,
0
12657
2454
(ืกืจื˜ื•ืŸ) ื ื™ืงื•ืœืืก ื ื’ืจื•ืคื•ื ื˜ื”: ืืคืฉืจ ืœืขื‘ื•ืจ ืืœ ื”ื™ื“ืื• ื“ื™ืกืง,,
00:15
which is in play mode?
1
15111
2123
ืฉื ืžืฆื ื‘ืžืฆื‘ ื ื’ื™ื ื”?
00:17
I'm really interested in how you put people and computers together.
2
17234
5230
ืื ื™ ื‘ืืžืช ืžืชืขื ื™ื™ื™ืŸ ืื™ืš ืžื—ื‘ืจื™ื ืื ืฉื™ื ื•ืžื—ืฉื‘ื™ื ื™ื—ื“.
00:22
We will be using the TV screens or their equivalents
3
22464
3370
ืื ื• ื ืฉืชืžืฉ ื‘ืžืกื›ื™ ื˜ืœื•ื•ื™ื–ื™ื”, ืื• ื‘ื“ื•ืžื™ื”ื
00:25
for electronic books of the future.
4
25834
4374
ื‘ืฉื‘ื™ืœ ืกืคืจื™ื ืืœืงื˜ืจื•ื ื™ื ื‘ืขืชื™ื“.
00:30
(Music, crosstalk)
5
30208
3614
(ืžื•ื–ื™ืงื”, ืจืขืฉื™ ืจืงืข)
00:50
Very interested in touch-sensitive displays,
6
50117
2252
ืžืื•ื“ ืžืชืขื ื™ื™ืŸ ื‘ืžืกื›ื™ ืžื’ืข,
00:52
high-tech, high-touch, not having to pick up your fingers to use them.
7
52369
4327
ืžืชืงื“ื ื˜ื›ื ื•ืœื•ื’ื™ืช, ืžื ื•ื”ืœ ื‘ืžื’ืข, ืœื ืฆืจื™ืš ืœื”ืจื™ื ืืช ื”ืืฆื‘ืข ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ื”ื.
00:56
There is another way where computers
8
56696
1800
ื™ืฉ ื“ืจืš ืื—ืจืช ื‘ื” ืžื—ืฉื‘ื™ื
00:58
touch people: wearing, physically wearing.
9
58496
2463
ื ื•ื’ืขื™ื ื‘ืื ืฉื™ื. ืœื‘ื•ืฉ, ืœื‘ื•ืฉ ืคื™ื–ื™
01:08
Suddenly on September 11th,
10
68646
2021
ืœืคืชืข, ื‘11 ื‘ืกืคื˜ืžื‘ืจ
01:10
the world got bigger.
11
70667
2637
ื”ืขื•ืœื ื ื”ื™ื” ื’ื“ื•ืœ ื™ื•ืชืจ.
01:13
NN: Thank you. (Applause)
12
73304
2985
ื .ื : ืชื•ื“ื” ืœื›ื (ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
01:16
Thank you.
13
76289
2059
ืชื•ื“ื” ืœื›ื
01:18
When I was asked to do this,
14
78348
2108
ื›ืฉื ืชื‘ืงืฉืชื™ ืœืขืฉื•ืช ืืช ื–ื”
01:20
I was also asked to look at all 14 TED Talks
15
80456
4196
ื ืชื‘ืงืฉืชื™ ื’ื ืœืฆืคื•ืช ื‘ื›ืœ 14 ื”ืจืฆืื•ืช TED
01:24
that I had given,
16
84652
1710
ืฉื ืชืชื™
01:26
chronologically.
17
86362
1798
ื›ืจื•ื ื•ืœื•ื’ื™ืช.
01:28
The first one was actually two hours.
18
88160
2274
ื”ืจืืฉื•ื ื” ืœืžืขืฉื” ื”ื™ืชื” ื‘ืื•ืจืš ืฉืœ ืฉืขืชื™ื™ื.
01:30
The second one was an hour,
19
90434
1456
ื”ืฉื ื™ื™ื” ื”ื™ืชื” ื‘ืื•ืจืš ืฉืœ ืฉืขื”,
01:31
and then they became half hours,
20
91890
1549
ื•ืื—ืจื™ ื–ื” ื”ืŸ ื”ืคื›ื• ืœื—ืฆืื™ ืฉืขื•ืช,
01:33
and all I noticed was my bald spot getting bigger.
21
93439
3936
ื•ื”ื“ื‘ืจ ื”ื™ื—ื™ื“ ื‘ื• ื”ื‘ื—ื ืชื™- ื–ื” ืฉื”ืงืจื—ืช ืฉืœื™ ื’ื“ืœื”.
01:37
(Laughter)
22
97375
1620
(ืฆื—ื•ืง)
01:38
Imagine seeing your life, 30 years of it, go by,
23
98995
4168
ืชืืจื• ืœืขืฆืžื›ื, ืœืจืื•ืช ืืช ื”ื—ื™ื™ื ืฉืœื›ื, 30 ืฉื ื™ื ืžื”ื, ืขื•ื‘ืจื™ื ื›ื›ื”,
01:43
and it was, to say the least,
24
103163
3407
ื•ื–ื” ื”ื™ื”, ืœื”ื’ื™ื“ ื‘ืขื“ื™ื ื•ืช,
01:46
for me, quite a shocking experience.
25
106570
4373
ื‘ืฉื‘ื™ืœื™, ื—ื•ื•ื™ื” ื“ื™ ืงืฉื”.
01:50
So what I'm going to do in my time
26
110943
1593
ืื– ืžื” ืฉืื ื™ ืืขืฉื” ื‘ื–ืžืŸ ืฉืœื™
01:52
is try and share with you what happened
27
112536
1544
ื–ื” ืœื ืกื•ืช ืœื—ืœื•ืง ืื™ืชื›ื ืžื” ืงืจื”
01:54
during the 30 years,
28
114080
1802
ื‘ืžื”ืœืš 30 ืฉื ื”,
01:55
and then also make a prediction,
29
115882
2518
ื•ืื– ื’ื ืœืขืฉื•ืช ืชื—ื–ื™ืช,
01:58
and then tell you a little bit
30
118400
2061
ื•ืื– ืœื”ื’ื™ื“ ืœื›ื ืžืขื˜
02:00
about what I'm doing next.
31
120461
2654
ืขืœ ืžื” ืื ื™ ืขื•ืฉื” ืขื›ืฉื™ื•.
02:03
And I put on a slide
32
123115
2951
ื•ืื ื™ ืฉื ืขืœ ืฉืงื•ืคื™ืช
02:06
where TED 1 happened in my life.
33
126066
4060
ื”ื™ื›ืŸ ืฉ TED ื”ืจืืฉื•ืŸ ื”ืชืจื—ืฉ ื‘ื—ื™ื™.
02:10
And it's rather important
34
130126
1914
ื•ื–ื” ื“ื™ ื—ืฉื•ื‘
02:12
because I had done 15 years of research before it,
35
132040
4060
ืžืคื ื™ ืฉืขืฉื™ืชื™ 15 ืฉื ื™ื ืฉืœ ืžื—ืงืจ ืœืคื ื™ ื›ืŸ,
02:16
so I had a backlog, so it was easy.
36
136100
2428
ืื– ื”ื™ื” ืœื™ ื‘ืงืœื•ื’, ืื– ื–ื” ื”ื™ื” ืงืœ.
02:18
It's not that I was Fidel Castro
37
138528
1760
ื–ื” ืœื ืฉื”ื™ื™ืชื™ ืคื™ื“ืœ ืงืกื˜ืจื•
02:20
and I could talk for two hours,
38
140288
1833
ื•ื™ื›ื•ืœืชื™ ืœื“ื‘ืจ ื‘ืžืฉืš ืฉืขืชื™ื™ื,
02:22
or Bucky Fuller.
39
142121
1322
ืื• ื‘ืืงื™ ืคื•ืœืจ.
02:23
I had 15 years of stuff,
40
143443
1915
ื”ื™ื• ืœื™ 15 ืฉื ื™ื ืฉืœ ื“ื‘ืจื™ื,
02:25
and the Media Lab was about to start.
41
145358
2472
ื•ืžืขื‘ื“ืช ื”ืžื“ื™ื” ืขืžื“ื” ืœื”ืชื—ื™ืœ.
02:27
So that was easy.
42
147830
1800
ืื– ื–ื” ื”ื™ื” ืงืœ.
02:29
But there are a couple of things
43
149630
2664
ืื‘ืœ ื™ืฉ ื›ืžื” ื“ื‘ืจื™ื
02:32
about that period
44
152294
1688
ื‘ื ื•ื’ืข ืœืชืงื•ืคื” ื”ื”ื™ื
02:33
and about what happened that are
45
153982
2053
ื•ื‘ื ื•ื’ืข ืœืžื” ืฉืงืจื”
02:36
really quite important.
46
156035
1855
ืฉืžืžืฉ ื—ืฉื•ื‘ื™ื.
02:37
One is that
47
157890
2556
ืื—ื“ ื”ื•ื
02:40
it was a period when computers
48
160446
2896
ืฉื–ื• ื”ื™ืชื” ืชืงื•ืคื” ื‘ื” ืžื—ืฉื‘ื™ื
02:43
weren't yet for people.
49
163342
2637
ืขื“ื™ื™ืŸ ืœื ื”ื™ื• ื‘ืฉื‘ื™ืœ ืื ืฉื™ื.
02:45
And the other thing that sort of happened
50
165979
3145
ื•ื“ื‘ืจื™ื ืื—ืจื™ื ืฉืกื•ื’ ืฉืœ ืงืจื•
02:49
during that time is that
51
169124
3071
ื‘ืžื”ืœืš ื”ื–ืžืŸ ื”ื”ื•ื
02:52
we were considered sissy computer scientists.
52
172195
3382
ืฉื ื—ืฉื‘ื ื• ืœืžื“ืขื ื™ ืžื—ืฉื‘ ื—ื ื•ื ื™ื.
02:55
We weren't considered the real thing.
53
175577
1563
ืœื ื ื—ืฉื‘ื ื• ืœื“ื‘ืจ ื”ืืžื™ืชื™.
02:57
So what I'm going to show you is, in retrospect,
54
177140
3999
ืื– ืžื” ืฉืื ื™ ืขื•ืžื“ ืœื”ืจืื•ืช ืœื›ื ื–ื”, ื‘ืžื‘ื˜ ืœืื—ื•ืจ,
03:01
a lot more interesting and a lot more accepted
55
181139
2508
ื”ืจื‘ื” ื™ื•ืชืจ ืžืขื ื™ื™ืŸ ื•ื”ืจื‘ื” ื™ื•ืชืจ ืžืงื•ื‘ืœ
03:03
than it was at the time.
56
183647
2066
ืžืฉื–ื” ื”ื™ื” ื‘ื–ืžื ื•.
03:05
So I'm going to characterize the years
57
185713
2554
ืื– ืื ื™ ืขื•ืžื“ ืœืืคื™ื™ืŸ ืืช ื”ืฉื ื™ื
03:08
and I'm even going to go back
58
188267
1833
ื•ืื ื™ ืืคื™ืœื• ืื—ื–ื•ืจ
03:10
to some very early work of mine,
59
190100
2104
ืœืขื‘ื•ื“ื•ืช ืžืžืฉ ืžื•ืงื“ืžื•ืช ืฉืœื™,
03:12
and this was the kind of stuff I was doing in the '60s:
60
192204
2886
ื•ื–ื” ื”ื™ื” ืกื•ื’ ื”ื“ื‘ืจื™ื ืฉืขืฉื™ืชื™ ื‘ืฉื ื•ืช ื” 60:
03:15
very direct manipulation,
61
195090
2187
ืžื ื™ืคื•ืœืฆื™ื” ืžืื•ื“ ื™ืฉื™ืจื”,
03:17
very influenced as I studied architecture
62
197277
2655
ืžืื•ื“ ืžื•ืฉืคืขืช ื›ืฉืœืžื“ืชื™ ืืจื›ื™ื˜ืงื˜ื•ืจื”
03:19
by the architect Moshe Safdie,
63
199932
2087
ืžื”ืืจื›ื™ื˜ืงื˜ ืžืฉื” ืกืคื“ื™,
03:22
and you can see that we even built robotic things
64
202019
2762
ื•ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืืคื™ืœื• ื‘ื ื™ื ื• ื“ื‘ืจื™ื ืจื•ื‘ื•ื˜ื™ื™ื
03:24
that could build habitat-like structures.
65
204781
2756
ืฉื™ื›ืœื• ืœื‘ื ื•ืช ืžื‘ื ื™ื ื“ืžื•ื™ื™ ืžื’ื•ืจื™ื.
03:27
And this for me was
66
207537
1687
ื•ื‘ืฉื‘ื™ืœื™ ื–ื” ื”ื™ื”
03:29
not yet the Media Lab,
67
209224
1916
ืœื ืขื“ื™ื™ืŸ ืžืขื‘ื“ืช ื”ืžื“ื™ื”,
03:31
but was the beginning of what I'll call
68
211140
2817
ืื‘ืœ ื–ื” ื”ื™ื” ื”ื”ืชื—ืœื” ืฉืœ ืžื” ืฉืื ื™ ืงื•ืจื ืœื•
03:33
sensory computing,
69
213957
1519
ืžื—ืฉื•ื‘ ื—ืฉ,
03:35
and I pick fingers
70
215476
1872
ื•ืื ื™ ื‘ื—ืจืชื™ ื‘ืืฆื‘ืขื•ืช
03:37
partly because everybody thought it was ridiculous.
71
217348
4202
ื—ืœืงื™ืช ื‘ื’ืœืœ ืฉื›ื•ืœื ื—ืฉื‘ื• ืฉื–ื” ืžื’ื•ื›ื—.
03:41
Papers were published
72
221550
2155
ืžืืžืจื™ื ืคื•ืจืกืžื•
03:43
about how stupid it was to use fingers.
73
223705
4252
ืขืœ ื›ืžื” ื˜ื™ืคืฉื™ ื–ื” ืœื”ืฉืชืžืฉ ื‘ืืฆื‘ืขื•ืช.
03:47
Three reasons: One was they were low-resolution.
74
227957
2818
ืฉืœื•ืฉ ืกื™ื‘ื•ืช: ืื—ืช ื”ื™ืชื” ืจื–ื•ืœื•ืฆื™ื” ืžืžืฉ ื ืžื•ื›ื”.
03:50
The other is your hand would occlude
75
230775
1929
ื”ืฉื ื™ื” ื”ื™ื ืฉื”ื™ื“ ืžืกืชื™ืจื”
03:52
what you wanted to see,
76
232704
1441
ืžื” ืฉืืชื ืจื•ืฆื™ื ืœืจืื•ืช,
03:54
and the third, which was the winner,
77
234145
1758
ื•ื”ืฉืœื™ืฉื™ืช, ืฉื”ื™ืชื” ื”ื–ื•ื›ื”,
03:55
was that your fingers would get the screen dirty,
78
235903
3656
ื”ื™ืชื” ืฉื”ืืฆื‘ืขื•ืช ืฉืœื›ื ื™ืœื›ืœื›ื• ืืช ื”ืžืกืš,
03:59
and hence, fingers would never be
79
239559
2326
ื•ืœื›ืŸ, ืืฆื‘ืขื•ืช ืœืขื•ืœื ืœื ื™ื”ื™ื•
04:01
a device that you'd use.
80
241885
1788
ืžื›ืฉื™ืจ ืฉืชืฉืชืžืฉื• ื‘ื•.
04:03
And this was a device we built in the '70s,
81
243673
3049
ื•ื–ื” ื”ื™ื” ืžื›ืฉื™ืจ ืฉื ื‘ื ื” ื‘ืฉื ื•ืช ื” 70,
04:06
which has never even been picked up.
82
246722
1871
ืฉืžืขื•ืœื ืืคื™ืœื• ืœื ืชืคืฉ.
04:08
It's not just touch sensitive,
83
248593
1441
ื”ื•ื ืœื ืจืง ืจื’ื™ืฉ ืœืžื’ืข,
04:10
it's pressure sensitive.
84
250034
2178
ื”ื•ื ืจื’ื™ืฉ ืœืœื—ืฅ.
04:12
(Video) Voice: Put a yellow circle there.
85
252212
1977
(ืกืจื˜ื•ืŸ) ืงื•ืœ: ืฉื™ื ืขื™ื’ื•ืœ ืฆื”ื•ื‘ ืฉื.
04:14
NN: Later work, and again this was before TED 1 โ€”
86
254189
3444
ื .ื : ืžืื•ื—ืจ ื™ื•ืชืจ, ื•ืฉื•ื‘ ื–ื” ื”ื™ื” ืœืคื ื™ TED 1 --
04:17
(Video) Voice: Move that west of the diamond.
87
257633
2803
(ืกืจื˜ื•ืŸ) ืงื•ืœ: ืชื–ื™ื– ืืช ืžืขืจื‘ื™ืช ืœื™ื”ืœื•ื.
04:20
Create a large green circle there.
88
260436
3212
ืฆื•ืจ ืขื™ื’ื•ืœ ื’ื“ื•ืœ ื™ืจื•ืง ืฉื.
04:23
Man: Aw, shit.
89
263648
2329
ืื™ืฉ: ืื•ื”, ืฉื™ื˜.
04:25
NN: โ€” was to sort of do interface concurrently,
90
265977
3430
ื .ื : -- ื–ื” ื”ื™ื” ืกื•ื’ ืฉืœ ืœืขืฉื•ืช ืžืžืฉืง ื‘ืžืงื‘ื™ืœ,
04:29
so when you talked and you pointed
91
269407
1808
ืื– ื›ืฉื“ื™ื‘ืจืชื ื•ื”ืฆื‘ืขืชื
04:31
and you had, if you will,
92
271215
3187
ื•ื”ื™ื” ืœื›ื, ืื ืชืจืฆื•,
04:34
multiple channels.
93
274402
1559
ืขืจื•ืฆื™ื ืžืจื•ื‘ื™ื.
04:35
Entebbe happened.
94
275961
2007
ืื ื˜ื‘ื” ื”ืชืจื—ืฉื”.
04:37
1976, Air France was hijacked,
95
277968
3547
1976, ืื™ืจ ืคืจืื ืก ื ื—ื˜ืฃ,
04:41
taken to Entebbe,
96
281515
1498
ื•ื ืœืงื— ืœืื ื˜ื‘ื”,
04:43
and the Israelis not only did an extraordinary rescue,
97
283013
5057
ื•ื”ื™ืฉืจืืœื™ื ืœื ืจืง ืขืฉื• ื—ื™ืœื•ืฅ ืžื“ื”ื™ื,
04:48
they did it partly because they had practiced
98
288070
1963
ื”ื ืขืฉื• ืืช ื–ื” ื—ืœืงื™ืช ื‘ื’ืœืœ ืฉื”ื ื”ืชืืžื ื•
04:50
on a physical model of the airport,
99
290033
2495
ืขืœ ืžื•ื“ืœ ืคื™ืกื™ ืฉืœ ืฉื“ื” ื”ืชืขื•ืคื”,
04:52
because they had built the airport,
100
292528
1156
ืžืคื ื™ ืฉื”ื ื‘ื ื• ืืช ืฉื“ื” ื”ืชืขื•ืคื”,
04:53
so they built a model in the desert,
101
293684
1733
ืื– ื”ื ื‘ื ื• ืžื•ื“ืœ ื‘ืžื“ื‘ืจ,
04:55
and when they arrived at Entebbe,
102
295417
1716
ื•ื›ืฉื”ื ื”ื’ื™ืขื• ืœืื ื˜ื‘ื”,
04:57
they knew where to go because they had actually been there.
103
297133
2920
ื”ื ื™ื“ืขื• ืœืืŸ ืœืœื›ืช ืžืคื ื™ ืฉื”ื ืœืžืขืฉื” ื”ื™ื• ืฉื.
05:00
The U.S. government asked some of us, '76,
104
300053
3252
ื”ืžืžืฉืœ ื”ืืžืจื™ืงืื™ ื‘ื™ืงืฉ ืžื—ืœืงื ื•, 76,
05:03
if we could replicate that computationally,
105
303305
2775
ืื ื ื•ื›ืœ ืœืฉื—ื–ืจ ืืช ื–ื” ืžื—ืฉื•ื‘ื™ืช,
05:06
and of course somebody like myself says yes.
106
306080
2189
ื•ื›ืžื•ื‘ืŸ ืžื™ืฉื”ื• ื›ืžื•ื ื™ ืืžืจ ื›ืŸ.
05:08
Immediately, you get a contract,
107
308269
2026
ืžื™ื™ื“, ืืชื ืžืงื‘ืœื™ื ื—ื•ื–ื”,
05:10
Department of Defense,
108
310295
1485
ืžื—ืœืงืช ื”ื”ื’ื ื”,
05:11
and we built this truck and this rig.
109
311780
2688
ื•ื‘ื ื™ื ื• ืืช ื”ืžืฉืื™ืช ื•ื”ืžืชืงืŸ ื”ืืœื”.
05:14
We did sort of a simulation,
110
314468
2520
ืขืฉื™ื ื• ืกื•ื’ ืฉืœ ื”ื“ืžื™ื”,
05:16
because you had video discs,
111
316988
1826
ืžืคื ื™ ืฉื”ื™ื” ืœื›ื ื•ื™ื“ืื• ื“ื™ืกืง,
05:18
and again, this is '76.
112
318814
2328
ื•ืฉื•ื‘, ื–ื” 76.
05:21
And then many years later,
113
321142
2697
ื•ืื– ื”ืจื‘ื” ืฉื ื™ื ืžืื•ื—ืจ ื™ื•ืชืจ,
05:23
you get this truck,
114
323839
1469
ืืชื ืžืงื‘ืœื™ื ืืช ื”ืžืฉืื™ืช ื”ื–ื•,
05:25
and so you have Google Maps.
115
325308
2958
ื•ื›ื›ื” ื™ืฉ ืœื›ื ืืช ืžืคื•ืช ื’ื•ื’ืœ.
05:28
Still people thought,
116
328266
1520
ืขื“ื™ื™ืŸ ืื ืฉื™ื ื—ืฉื‘ื•,
05:29
no, that was not serious computer science,
117
329786
4020
ืœื, ื–ื” ืœื ืžื“ืขื™ ืžื—ืฉื‘ ืจืฆื™ื ื™ื™ื,
05:33
and it was a man named Jerry Wiesner,
118
333806
2059
ื•ื–ื” ื”ื™ื” ืื™ืฉ ื‘ืฉื ื’'ืจื™ ื•ื•ื™ืกื ืจ,
05:35
who happened to be the president of MIT,
119
335865
2407
ืฉื‘ืžืงืจื” ื”ื™ื” ื ืฉื™ื MIT,
05:38
who did think it was computer science.
120
338272
2348
ืฉื—ืฉื‘ ื‘ืืžืช ืฉื–ื” ืžื“ืขื™ ืžื—ืฉื‘.
05:40
And one of the keys for anybody
121
340620
2637
ื•ืื—ื“ ื”ืžืคืชื—ื•ืช ืœื›ืœ ืžื™
05:43
who wants to start something in life:
122
343257
3384
ืฉืจื•ืฆื” ืœื”ืชื—ื™ืœ ืžืฉื”ื• ื‘ื—ื™ื™ื:
05:46
Make sure your president is part of it.
123
346641
3269
ืชื“ืื’ื• ืฉื”ื ืฉื™ื ืฉืœื›ื ื”ื•ื ื—ืœืง ืžื–ื”.
05:49
So when I was doing the Media Lab,
124
349910
3020
ืื– ื›ืฉื™ืฆืจืชื™ ืืช ืžืขื‘ื“ืช ื”ืžื“ื™ื”,
05:52
it was like having a gorilla in the front seat.
125
352930
3157
ื–ื” ื”ื™ื” ื›ืžื• ืฉื™ืฉ ื’ื•ืจื™ืœื” ื‘ื›ื™ืกื ื”ืงื“ืžื™.
05:56
If you were stopped for speeding
126
356087
2185
ืื ื ืขืฆืจืชื ืขืœ ืžื”ื™ืจื•ืช
05:58
and the officer looked in the window
127
358272
2240
ื•ื”ืฉื•ื˜ืจ ื”ื‘ื™ื˜ ื‘ื—ืœื•ืŸ
06:00
and saw who was in the passenger seat,
128
360512
2009
ื•ืจืื” ืžื™ ื‘ืžื•ืฉื‘ ื”ื ื•ืกืข,
06:02
then, "Oh, continue on, sir."
129
362521
1962
ืื–, "ืื•ื”, ืชืžืฉื™ืš ืื“ื•ื ื™."
06:04
And so we were able,
130
364483
1685
ืื– ื”ื™ื™ื ื• ืžืกื•ื’ืœื™ื,
06:06
and this is a cute, actually, device, parenthetically.
131
366168
3793
ื•ื–ื” ื—ื™ื•ื ื™, ืœืžืขืฉื”, ืžื›ืฉื™ืจ, ื‘ืžืืžืจ ืžื•ืกื’ืจ,
06:09
This was a lenticular photograph of Jerry Wiesner
132
369961
3049
ื–ื• ื”ื™ืชื” ืชืžื•ื ื” ืขื“ืฉืชื™ืช ืฉืœ ื’'ืจื™ ื•ื•ื™ืกื ืจ
06:13
where the only thing that changed in the photograph
133
373010
2363
ื‘ื” ื”ื“ื‘ืจ ื”ื™ื—ื™ื“ื™ ืฉื”ืฉืชื ื” ื‘ืชืžื•ื ื”
06:15
were the lips.
134
375373
1343
ื”ื™ื• ื”ืฉืคืชื™ื™ื ืฉืœื•.
06:16
So when you oscillated that little piece
135
376716
2976
ืื– ื›ืฉื”ืจืขื“ืชื ืืช ื”ืคื™ืกื” ื”ืงื˜ื ื” ื”ื–ื•
06:19
of lenticular sheet with his photograph,
136
379692
3230
ืฉืœ ื“ืฃ ืขื“ืฉืชื™ ืขื ื”ืชืžื•ื ื” ืฉืœื•,
06:22
it would be in lip sync
137
382922
2013
ื–ื” ื™ื”ื™ื” ื‘ืกื ื›ืจื•ืŸ ืฉืคืชื™ื™ื
06:24
with zero bandwidth.
138
384935
2239
ืขื ืืคืก ืจื•ื—ื‘ ืคืก.
06:27
It was a zero-bandwidth teleconferencing system
139
387174
2711
ื–ื• ื”ื™ืชื” ืžืขืจื›ืช ืชืงืฉื•ืจืช ืขื ืืคืก ืจื•ื—ื‘ ืคืก
06:29
at the time.
140
389885
1842
ื‘ืื•ืชื• ื–ืžืŸ.
06:31
So this was the Media Lab's โ€”
141
391727
3981
ืื– ื–ื• ื”ื™ืชื” ืžืขื‘ื“ืช ื”ืžื“ื™ื” --
06:35
this is what we said we'd do,
142
395708
1693
ื–ื” ืžื” ืฉืืžืจืชื™ ืฉื ืขืฉื”,
06:37
that the world of computers, publishing,
143
397401
2575
ืฉืขื•ืœื ื”ืžื—ืฉื•ื‘, ื”ื”ื•ืฆืื” ืœืื•ืจ,
06:39
and so on would come together.
144
399976
2688
ื•ื›ืš ื”ืœืื” ื™ืชื—ื‘ืจื•.
06:42
Again, not generally accepted,
145
402664
2104
ืฉื•ื‘, ืœื ืžืงื•ื‘ืœ ื‘ืื•ืคืŸ ื›ืœืœื™,
06:44
but very much part of TED in the early days.
146
404768
4972
ืื‘ืœ ื“ื™ ื—ืœืง ืž TEDื‘ื™ืžื™ื ื”ืจืืฉื•ื ื™ื.
06:49
And this is really where we were headed.
147
409740
3206
ื•ื–ื” ื‘ืืžืช ื”ื›ื™ื•ื•ืŸ ืืœื™ื• ื”ืœื›ื ื•.
06:52
And that created the Media Lab.
148
412946
1687
ื•ื–ื” ื™ืฆืจ ืืช ืžืขื‘ื“ืช ื”ืžื“ื™ื”,
06:54
One of the things about age
149
414633
4251
ืื—ื“ ื”ื“ื‘ืจื™ื ื‘ื ื•ื’ืข ืœื’ื™ืœ
06:58
is that I can tell you with great confidence,
150
418884
4267
ื”ื•ื ืฉืื ื™ ื™ื›ื•ืœ ืœืกืคืจ ืœื›ื ื‘ื‘ื™ื˜ื—ื•ืŸ ื’ื“ื•ืœ,
07:03
I've been to the future.
151
423151
2464
ื”ื™ื™ืชื™ ื‘ืขืชื™ื“.
07:05
I've been there, actually, many times.
152
425615
3284
ื”ื™ื™ืชื™ ืฉื, ืœืžืขืฉื”, ื”ืจื‘ื” ืคืขืžื™ื.
07:08
And the reason I say that is,
153
428899
1508
ื•ื”ืกื™ื‘ื” ืฉืื ื™ ืื•ืžืจ ืืช ื–ื” ื”ื™ื,
07:10
how many times in my life have I said,
154
430407
2441
ื›ืžื” ืคืขืžื™ื ื‘ื—ื™ื™ ืืžืจืชื™,
07:12
"Oh, in 10 years, this will happen,"
155
432848
1777
"ืื•ื”, ื‘ืขื•ื“ 10 ืฉื ื™ื, ื–ื” ื™ืงืจื”,"
07:14
and then 10 years comes.
156
434625
2048
ื•ืื– 10 ืฉื ื™ื ืขื•ื‘ืจื•ืช.
07:16
And then you say, "Oh, in five years, this will happen."
157
436673
1758
ื•ืื– ืืชื ืื•ืžืจื™ื, "ืื•ื”, ื‘ืขื•ื“ ื—ืžืฉ ืฉื ื™ื, ื–ื” ื™ืงืจื”."
07:18
And then five years comes.
158
438431
1684
ื•ืื– ื—ืžืฉ ืฉื ื™ื ืขื•ื‘ืจื•ืช.
07:20
So I say this a little bit with having felt
159
440115
3758
ืื– ืื ื™ ืื•ืžืจ ืืช ื–ื” ืžืขื˜ ื›ืฉื”ืจื’ืฉืชื™
07:23
that I'd been there a number of times,
160
443873
2337
ืฉื”ื™ื™ืชื™ ืฉื ืžืกืคืจ ืคืขืžื™ื,
07:26
and one of the things that is most quoted
161
446210
3640
ื•ืื—ื“ ื”ื“ื‘ืจื™ื ืฉื”ื›ื™ ืžืฆื•ื˜ื˜
07:29
that I've ever said
162
449850
1149
ืฉืืžืจืชื™ ืื™ ืคืขื
07:30
is that computing is not about computers,
163
450999
2383
ื–ื” ืฉืžื—ืฉื•ื‘ ืœื ื ื•ื’ืข ืœืžื—ืฉื‘ื™ื,
07:33
and that didn't quite get enough traction,
164
453382
3556
ื•ื–ื” ืœื ื‘ื“ื™ื•ืง ืงื™ื‘ืœ ืžืกืคื™ืง ืžืฉื™ื›ื”,
07:36
and then it started to.
165
456938
1519
ื•ืื– ื–ื” ื”ืชื—ื™ืœ.
07:38
It started to because people caught on
166
458457
3695
ื–ื” ื”ืชื—ื™ืœ ืžืคื ื™ ืฉืื ืฉื™ื ืชืคืฉื•
07:42
that the medium wasn't the message.
167
462152
3138
ืฉื”ืžื“ื™ื•ื ืœื ื”ื™ื” ื”ืžืกืจ.
07:45
And the reason I show this car
168
465290
2645
ื•ื”ืกื™ื‘ื” ืฉืื ื™ ืžืจืื” ืืช ื”ืžื›ื•ื ื™ืช ื”ื–ื•
07:47
in actually a rather ugly slide
169
467935
2328
ื‘ืฉืงื•ืคื™ืช ื“ื™ ืžื›ื•ืขืจืช ืœืžืขืฉื”
07:50
is just again to tell you the kind of story
170
470263
2504
ื”ื™ื ืคืฉื•ื˜ ืฉื•ื‘ ื›ื“ื™ ืœืกืคืจ ืœื›ื ืืช ืกื•ื’ ื”ืกื™ืคื•ืจ
07:52
that characterized a little bit of my life.
171
472767
2828
ืฉืžืืคื™ื™ืŸ ืžืขื˜ ืžื—ื™ื™.
07:55
This is a student of mine
172
475595
2014
ื–ื” ืกื˜ื•ื“ื ื˜ ืฉืœื™
07:57
who had done a Ph.D. called "Backseat Driver."
173
477609
3551
ืฉืขืฉื” ื“ื•ืงื˜ื•ืจื˜ ืฉื ืงืจื "ื ื”ื’ ืžื”ืžื•ืฉื‘ ื”ืื—ื•ืจื™."
08:01
It was in the early days of GPS,
174
481160
2082
ื•ื–ื” ื”ื™ื” ื”ื™ืžื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ ื” GPS,
08:03
the car knew where it was,
175
483242
1566
ื”ืžื›ื•ื ื™ืช ื™ื“ืขื” ืื™ืคื” ื”ื™ื,
08:04
and it would give audio instructions
176
484808
1915
ื•ื”ื™ื ื”ื™ืชื” ื ื•ืชื ืช ื”ื•ืจืื•ืช ืงื•ืœื™ื•ืช
08:06
to the driver, when to turn right, when to turn left and so on.
177
486723
3427
ืœื ื”ื’, ืžืชื™ ืœืคื ื•ืช ื™ืžื™ื ื”, ืžืชื™ ืœืคื ื•ืช ืฉืžืืœื” ื•ื›ืš ื”ืœืื”.
08:10
Turns out, there are a lot of things
178
490150
1611
ืžืกืชื‘ืจ, ืฉื™ืฉ ื”ืจื‘ื” ื“ื‘ืจื™ื
08:11
in those instructions that back in that period
179
491761
3035
ื‘ื”ื•ืจืื•ืช ื”ืืœื• ืฉื‘ืชืงื•ืคื” ื”ื”ื™ื
08:14
were pretty challenging,
180
494796
1250
ื”ื™ื• ื“ื™ ืžืืชื’ืจื•ืช,
08:16
like what does it mean, take the next right?
181
496046
3228
ื›ืžื• ืžื” ื–ื” ืื•ืžืจ ืœืคื ื•ืช ื™ืžื™ื ื” ื‘ืคื ื™ื” ื”ื‘ืื”?
08:19
Well, if you're coming up on a street,
182
499274
1900
ื•ื‘ื›ืŸ, ืื ืืชื ืžื’ื™ืขื™ื ืœืจื—ื•ื‘,
08:21
the next right's probably the one after,
183
501174
2183
ื”ืคื ื™ื” ื”ื‘ืื” ื™ืžื™ื ื” ื”ื™ื ื›ื ืจืื” ื”ื‘ืื”,
08:23
and there are lots of issues,
184
503357
1231
ื•ื™ืฉ ื”ืจื‘ื” ื ื•ืฉืื™ื,
08:24
and the student did a wonderful thesis,
185
504588
2245
ื•ื”ืกื˜ื•ื“ื ื˜ ืขืฉื” ืชื–ื” ื ืคืœืื”,
08:26
and the MIT patent office said "Don't patent it.
186
506833
4847
ื•ืžืฉืจื“ ื”ืคื˜ื ื˜ื™ื ืฉืœ MIT ืืžืจ "ืืœ ืชื•ืฆื™ื ืคื˜ื ื˜ ืขืœ ื–ื”.
08:31
It'll never be accepted.
187
511680
1940
ื–ื” ืœืขื•ืœื ืœื ื™ืชืงื‘ืœ.
08:33
The liabilities are too large.
188
513620
2310
ื”ืื—ืจื™ื•ืช ื’ื“ื•ืœื” ืžื“ื™.
08:35
There will be insurance issues.
189
515930
1391
ื™ื”ื™ื• ื‘ืขื™ื•ืช ื‘ื™ื˜ื•ื—ื™ื•ืช.
08:37
Don't patent it."
190
517321
1644
ืืœ ืชื•ืฆื™ื ืขืœ ื–ื” ืคื˜ื ื˜."
08:38
So we didn't,
191
518965
1093
ืื– ืœื ื”ื•ืฆืื ื•,
08:40
but it shows you how people, again, at times,
192
520058
3638
ืื‘ืœ ื–ื” ืžืจืื” ืœื›ื ืื™ืš ืื ืฉื™ื, ืฉื•ื‘, ื‘ื–ืžื ื™ื ืžืกื•ื™ื™ืžื™ื,
08:43
don't really look at what's happening.
193
523696
4199
ืœื ื‘ืืžืช ืžืกืชื›ืœื™ื ืขืœ ืžื” ืงื•ืจื”.
08:47
Some work, and I'll just go through these very quickly,
194
527895
2895
ื—ืชื™ื›ืช ืขื‘ื•ื“ื”, ื•ืื ื™ ืคืฉื•ื˜ ืืขื‘ื•ืจ ืขืœ ืืœื‘ ื‘ืžื”ื™ืจื•ืช,
08:50
a lot of sensory stuff.
195
530790
1605
ื”ืจื‘ื” ื“ื‘ืจื™ื ืชื—ื•ืฉื ื™ื™ื.
08:52
You might recognize a young Yo-Yo Ma
196
532395
2475
ืืชื ืื•ืœื™ ืžื–ื”ื™ื ืืช ื™ื• ื™ื• ืžื” ื”ืฆืขื™ืจ
08:54
and tracking his body for playing
197
534870
3970
ื•ืขื•ืงื‘ื™ื ืื—ืจื™ ื”ื’ื•ืฃ ืฉืœื• ื‘ื ื’ื™ื ื”
08:58
the cello or the hypercello.
198
538840
2348
ื‘ืฆ'ืœื• ืื• ื‘ื”ื™ื™ืคืจืฆ'ืœื•.
09:01
These fellows literally walked around like that at the time.
199
541188
3977
ื”ืขืžื™ืชื™ื ื”ืืœื” ื”ืœื›ื• ืžืžืฉ ื›ื›ื” ื‘ื–ืžื ื•.
09:05
It's now a little bit more discreet
200
545165
2635
ื–ื” ืขื›ืฉื™ื• ืžืขื˜ ื™ื•ืชืจ ื“ื™ืกืงืจื˜ื™
09:07
and more commonplace.
201
547800
2041
ื•ื™ื•ืชืจ ื ืคื•ืฅ.
09:09
And then there are at least three heroes
202
549841
2269
ื•ืื– ื™ืฉ ืœืคื—ื•ืช ืฉืœื•ืฉื” ื’ื™ื‘ื•ืจื™ื
09:12
I want to quickly mention.
203
552110
1129
ืฉืื ื™ ืจื•ืฆื” ืœื”ื–ื›ื™ืจ ื‘ืžื”ื™ืจื•ืช.
09:13
Marvin Minsky, who taught me a lot
204
553239
2478
ืžืจื•ื•ื™ืŸ ืžื™ื ืกืงื™, ืฉืœื™ืžื“ ืื•ืชื™ ื”ืจื‘ื”
09:15
about common sense,
205
555717
1387
ืขืœ ื”ื’ื™ื•ืŸ ืคืฉื•ื˜,
09:17
and I will talk briefly about Muriel Cooper,
206
557104
3441
ื•ืื ื™ ืื“ื‘ืจ ื‘ื–ืจื™ื–ื•ืช ืขืœ ืžื™ื•ืจื™ืืœ ืงื•ืคืจ,
09:20
who was very important to Ricky Wurman
207
560545
2618
ืฉื”ื™ืชื” ืžืื•ื“ ื—ืฉื•ื‘ื” ืœืจื™ืงื™ ื•ื•ืจืžืŸ
09:23
and to TED, and in fact, when she got onstage,
208
563163
3735
ื•ืœ TED, ื•ืœืžืขืฉื”, ื›ืฉื”ื™ื ืขืœืชื” ืœื‘ืžื”,
09:26
she said, the first thing she said was,
209
566898
1947
ื”ื™ื ืืžืจื”, ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉื”ื™ื ืืžืจื” ื”ื™ื”,
09:28
"I introduced Ricky to Nicky."
210
568845
2154
"ืื ื™ ื”ื›ืจืชื™ ืืช ืจื™ืงื™ ืœื ื™ืงื™,"
09:30
And nobody calls me Nicky
211
570999
1700
ื•ืืฃ ืื—ื“ ืœื ืงื•ืจื ืœื™ ื ื™ืงื™
09:32
and nobody calls Richard Ricky,
212
572699
1759
ื•ืืฃ ืื—ื“ ืœื ืงื•ืจื ืœืจื™ืฆ'ืืจื“ ืจื™ืงื™,
09:34
so nobody knew who she was talking about.
213
574458
3402
ืื– ืืฃ ืื—ื“ ืœื ื™ื“ืข ืขืœ ืžื™ ื”ื™ื ืžื“ื‘ืจืช.
09:37
And then, of course, Seymour Papert,
214
577860
2397
ื•ืื–, ื›ืžื•ื‘ืŸ, ืกื™ืžื•ืจ ืคืคืจื˜,
09:40
who is the person who said,
215
580257
1505
ืฉื”ื•ื ื”ืื“ื ืฉืืžืจ,
09:41
"You can't think about thinking
216
581762
1415
"ืืชื ืœื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ื—ืฉื™ื‘ื”
09:43
unless you think about thinking about something."
217
583177
2415
ืืœื ืื ืืชื ื—ื•ืฉื‘ื™ื ืขืœ ื—ืฉื™ื‘ื” ืขืœ ืžืฉื”ื•."
09:45
And that's actually โ€” you can unpack that later.
218
585592
5663
ื•ื–ื” ืœืžืขืฉื” -- ืืชื ื™ื›ื•ืœื™ื ืœืคืชื•ื— ืืช ื–ื” ืื—ืจ ื›ืš.
09:51
It's a pretty profound statement.
219
591255
4106
ื–ื• ื”ืฆื”ืจื” ื“ื™ ืขืžื•ืงื”.
09:55
I'm showing some slides
220
595361
1740
ืื ื™ ืžืจืื” ื›ืžื” ืฉืงื•ืคื™ื•ืช
09:57
that were from TED 2,
221
597101
2086
ืž TED 2,
09:59
a little silly as slides, perhaps.
222
599187
3742
ืžืขื˜ ื˜ื™ืคืฉื™ ื›ืฉืงื•ืคื™ื•ืช, ืื•ืœื™.
10:02
Then I felt television really was about displays.
223
602929
5341
ืื– ื”ืจื’ืฉืชื™ ืฉื˜ืœื•ื•ื™ื–ื™ื” ื‘ืืžืช ื ื•ื’ืขืช ืœืžืกื›ื™ื.
10:08
Again, now we're past TED 1,
224
608273
3063
ืฉื•ื‘, ืขื›ืฉื™ื• ืื ื—ื ื• ืื—ืจื™ TED 1,
10:11
but just around the time of TED 2,
225
611336
3026
ื•ืžืžืฉ ื‘ืื–ื•ืจ ืฉืœ TED 2,
10:14
and what I'd like to mention here is,
226
614362
2149
ื•ืžื” ืฉื”ื™ื™ืชื™ ืจื•ืฆื” ืœื”ื–ื›ื™ืจ ืคื” ื–ื”,
10:16
even though you could imagine
227
616511
2115
ืœืžืจื•ืช ืฉืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ
10:18
intelligence in the device,
228
618626
2054
ืชื‘ื•ื ื” ื‘ืžื›ืฉื™ืจ,
10:20
I look today at some of the work
229
620680
1432
ื”ื‘ื˜ืชื™ ื”ื™ื•ื ื‘ื—ืœืง ืžื”ืขื‘ื•ื“ื”
10:22
being done about the Internet of Things,
230
622112
2438
ืฉื ืขืฉืชื” ืขืœ ื”ืื™ื ื˜ืจื ื˜ ืฉืœ ื”ื“ื‘ืจื™ื,
10:24
and I think it's kind of tragically pathetic,
231
624550
2940
ื•ืื ื™ ื—ื•ืฉื‘ ืฉื–ื” ืกื•ื’ ืฉืœ ืคื˜ืชื™ ื˜ืจืื’ื™,
10:27
because what has happened is people take
232
627490
2430
ืžืคื ื™ ืฉืžื” ืฉืงืจื” ื–ื” ืฉืื ืฉื™ื ืœืงื—ื•
10:29
the oven panel and put it on your cell phone,
233
629920
3498
ืืช ื”ืคืื ืœ ืฉืœ ื”ืชื ื•ืจ ื•ืฉืžื• ืื•ืชื• ืขืœ ื”ืกืœื•ืœืจื™ ืฉืœื›ื,
10:33
or the door key onto your cell phone,
234
633418
1789
ืื• ืžืคืชื— ื“ืœืช ื‘ืกืœื•ืœืจื™,
10:35
just taking it and bringing it to you,
235
635207
2173
ืคืฉื•ื˜ ืœื•ืงื—ื™ื ืืช ื–ื” ื•ืžื‘ื™ืื™ื ืืช ื–ื” ืืœื™ื›ื,
10:37
and in fact that's actually what you don't want.
236
637380
2721
ื•ืœืžืขืฉื” ื–ื” ื‘ืขืฆื ืžื” ืฉืืชื ืœื ืจื•ืฆื™ื.
10:40
You want to put a chicken in the oven,
237
640101
2058
ืืชื ืจื•ืฆื™ื ืœืฉื™ื ืขื•ืฃ ื‘ืชื ื•ืจ,
10:42
and the oven says, "Aha, it's a chicken,"
238
642159
2328
ื•ื”ืชื ื•ืจ ื™ื’ื™ื“, "ืื”, ื–ื” ืขื•ืฃ,"
10:44
and it cooks the chicken.
239
644487
1149
ื•ื”ื•ื ื™ืืคื” ืืช ื”ืขื•ืฃ.
10:45
"Oh, it's cooking the chicken for Nicholas,
240
645636
1766
"ืื•ื”, ื”ื•ื ืžื‘ืฉืœ ืืช ื”ืขื•ืฃ ืœื ื™ืงื•ืœืืก,
10:47
and he likes it this way and that way."
241
647402
1834
ื•ื”ื•ื ืื•ื”ื‘ ืื•ืชื• ื‘ื“ืจืš ื”ื–ื•."
10:49
So the intelligence, instead of being in the device,
242
649236
3053
ืื– ื”ืื™ื ื˜ื™ืœื™ื’ื ืฆื™ื”, ื‘ืžืงื•ื ืœื”ื™ื•ืช ื‘ืžื›ืฉื™ืจ,
10:52
we have started today
243
652289
1709
ื”ืชื—ืœื ื• ื”ื™ื•ื
10:53
to move it back onto the cell phone
244
653998
2112
ืœื”ืขื‘ื™ืจ ืื•ืชื” ื—ื–ืจื” ืœืกืœื•ืœืจื™
10:56
or closer to the user,
245
656110
2370
ืื• ืงืจื•ื‘ ื™ื•ืชืจ ืœืžืฉืชืžืฉ,
10:58
not a particularly enlightened view
246
658480
2188
ืœื ื“ืจืš ืžืžืฉ ืื™ื ื˜ื™ืœื™ื’ื ื˜ื™ืช
11:00
of the Internet of Things.
247
660668
2741
ืฉืœ ืื™ื ื˜ืจื ื˜ ืฉืœ ื“ื‘ืจื™ื.
11:03
Television, again, television what I said today,
248
663409
3464
ื˜ืœื•ื•ื™ื–ื™ื”, ืฉื•ื‘, ื˜ืœื•ื•ื™ื–ื™ื” ืžื” ืฉืืžืจืชื™ ื”ื™ื•ื,
11:06
that was back in 1990,
249
666873
2622
ื–ื” ื”ื™ื” ื‘ 1990,
11:09
and the television of tomorrow
250
669495
1470
ื•ื”ื˜ืœื•ื•ื™ื–ื™ื” ืฉืœ ืžื—ืจ
11:10
would look something like that.
251
670965
2323
ืชืจืื” ืžืฉื”ื• ื›ื–ื”.
11:13
Again, people, but they laughed cynically,
252
673288
3544
ืฉื•ื‘, ืื ืฉื™ื, ืื‘ืœ ื”ื ืฆื•ื—ืงื™ื ื‘ืฆื™ื ื™ื•ืช,
11:16
they didn't laugh with much appreciation.
253
676832
5251
ื”ื ืœื ืฆื—ืงื• ืขื ื”ืจื‘ื” ื”ืขืจื›ื”.
11:22
Telecommunications in the 1990s,
254
682083
2650
ื˜ืœืงื•ืžื•ื ื™ืงืฆื™ื” ื‘ืฉื ื•ืช ื” 90,
11:24
George Gilder decided that he would call this diagram
255
684733
5700
ื’'ื•ืจื’' ื’ื™ืœื“ืจ ื”ื—ืœื™ื˜ ืฉื”ื•ื ื™ืงืจื ืœื“ื™ืื’ืจืžื” ื”ื–ื•
11:30
the Negroponte switch.
256
690433
2429
ืžืชื’ ื ื’ืจื•ืคื•ื ื˜ื”.
11:32
I'm probably much less famous than George,
257
692862
2006
ืื ื™ ื›ื ืจืื” ื”ืจื‘ื” ืคื—ื•ืช ืžืคื•ืจืกื ืžื’'ื•ืจื’',
11:34
so when he called it the Negroponte switch, it stuck,
258
694868
3607
ืื– ื›ืฉื”ื•ื ืงืจื ืœื–ื” ืžืชื’ ื ื’ืจื•ืคื•ื ื˜ื”, ื–ื” ื ื“ื‘ืง,
11:38
but the idea of things that came in the ground
259
698475
2665
ืื‘ืœ ื”ืจืขื™ื•ืŸ ืฉืœ ื“ื‘ืจื™ื ืฉื”ื’ื™ืขื• ื‘ืงืจืงืข
11:41
would go in the air and stuff in the air
260
701140
1715
ื™ืขื‘ืจื• ืœืื•ื™ืจ ื•ื“ื‘ืจื™ื ื‘ืื•ื™ืจ
11:42
would go into the ground
261
702855
1459
ื™ื›ื ืกื• ืœืงืจืงืข
11:44
has played itself out.
262
704314
1885
ืฉื™ื—ืง ืืช ืขืฆืžื•.
11:46
That is the original slide from that year,
263
706199
4745
ื–ื• ื”ืฉืงื•ืคื™ืช ื”ืžืงื•ืจื™ืช ืžื”ืฉื ื” ื”ื”ื™ื,
11:50
and it has worked in lockstep obedience.
264
710944
3375
ื•ื–ื” ืขื‘ื“ ื‘ืฆื™ื™ืชื ื•ืช ืœืœื ื’ืžื™ืฉื•ืช.
11:54
We started Wired magazine.
265
714319
2167
ื”ืชื—ืœื ื• ืืช ืžื’ื–ื™ืŸ ื•ื•ื™ื™ืจื“.
11:56
Some people, I remember we shared
266
716486
3736
ื›ืžื” ืื ืฉื™ื, ืื ื™ ื–ื•ื›ืจ ืฉื—ืœืงื ื•
12:00
the reception desk periodically,
267
720222
2722
ืืช ืฉื•ืœื—ืŸ ื”ืงื‘ืœื” ืชืงื•ืคืชื™ืช,
12:02
and some parent called up irate that his son
268
722944
4058
ื•ืื™ื–ื” ื”ื•ืจื” ื”ืชืงืฉืจ ืขืฆื‘ื ื™ ืฉื”ื‘ืŸ ืฉืœื•
12:07
had given up Sports Illustrated
269
727002
2229
ื•ื•ื™ืชืจ ืขืœ ืกืคื•ืจื˜ืก ืื™ืœื•ืกื˜ืจื™ื™ื˜ื“
12:09
to subscribe for Wired,
270
729231
1879
ื›ื“ื™ ืœืขืฉื•ืช ืžื ื•ื™ ืœื•ื•ื™ืจื“,
12:11
and he said, "Are you some porno magazine or something?"
271
731110
3197
ื•ื”ื•ื ืืžืจ, "ืืชื ืื™ื–ื” ืžื’ื–ื™ืŸ ืคื•ืจื ื• ืื• ืžืฉื”ื•?"
12:14
and couldn't understand why his son
272
734307
2584
ื•ืœื ื™ื›ืœ ืœื”ื‘ื™ืŸ ืœืžื” ื”ื‘ืŸ ืฉืœื•
12:16
would be interested in Wired, at any rate.
273
736891
3899
ื™ื”ื™ื” ืžืขื•ื ื™ื™ืŸ ื‘ื•ื•ื™ืจื“, ื‘ื›ืœ ืžืงืจื”.
12:20
I will go through this a little quicker.
274
740790
2604
ืื ื™ ืืขื‘ื•ืจ ืขืœ ื–ื” ืžืขื˜ ืžื”ืจ ื™ื•ืชืจ.
12:23
This is my favorite, 1995,
275
743394
3499
ื–ื” ื”ืื”ื•ื‘ ืขืœื™, 1995,
12:26
back page of Newsweek magazine.
276
746893
3037
ื”ื–ืฃ ื”ืื—ื•ืจื™ ืฉืœ ืžื’ื–ื™ืŸ ื ื™ื•ื–ื•ื•ื™ืง.
12:29
Okay. Read it. (Laughter)
277
749930
1969
ืื•ืงื™ื™, ืงืจืื• ืืช ื–ื”. (ืฆื—ื•ืง)
12:31
["Nicholas Negroponte, director of the MIT Media Lab, predicts that we'll soon buy books and newspapers straight over the Internet. Uh, sure." โ€”Clifford Stoll, Newsweek, 1995]
278
751899
1901
["ื ื™ืงื•ืœืก ื ื’ืจื•ืคื•ื ื˜ื”, ืžื ื”ืœ ืžืขื‘ื“ื•ืช ื”ืžื“ื™ื” ืฉืœ MIT, ื—ื•ื–ื” ืฉื‘ืงืจื•ื‘ ื ืงื ื” ืกืคืจื™ื ื•ืขื™ืชื•ื ื™ื ื™ืฉื™ืจื•ืช ืžื”ืื™ื ื˜ืจื ื˜, ื”ื, ื‘ื˜ื—." -- ืงืœื™ืคื•ืจื“ ืกื˜ื•ืœ, ื ื™ื•ื–ื•ื•ื™ืง, 1995]
12:33
You must admit that gives you,
279
753800
1645
ืืชื ื—ื™ื™ื™ื‘ื™ื ืœื”ื•ื“ื•ืช ืฉื–ื” ื’ื•ืจื ืœื›ื,
12:35
at least it gives me pleasure
280
755445
2227
ืœืคื—ื•ืช ื–ื” ื’ื•ืจื ืœื™ ื”ื ืื”
12:37
when somebody says how dead wrong you are.
281
757672
3758
ื›ืฉืžื™ืฉื”ื• ืื•ืžืจ ื›ืžื” ืืชื ื˜ื•ืขื™ื.
12:41
"Being Digital" came out.
282
761430
2146
"ืœื”ื™ื•ืช ื“ื™ื’ื™ื˜ืœื™" ื™ืฆื.
12:43
For me, it gave me an opportunity
283
763576
2641
ื‘ืฉื‘ื™ืœื™, ื–ื” ื ืชืŸ ืœื™ ื”ื–ื“ืžื ื•ืช
12:46
to be more in the trade press
284
766217
2202
ืœื”ื™ื•ืช ื™ื•ืชืจ ื‘ืขื™ืชื•ื ื•ืช ื”ืกื—ืจ
12:48
and get this out to the public,
285
768419
3271
ื•ืœื”ื•ืฆื™ื ืืช ื–ื” ืœืฆื™ื‘ื•ืจ,
12:51
and it also allowed us to build the new Media Lab,
286
771690
3015
ื•ื–ื” ื’ื ืืคืฉืจ ืœื ื• ืœื‘ื ื•ืช ืืช ืžืขื‘ื“ืช ื”ืžื“ื™ื” ื”ื—ื“ืฉื”,
12:54
which if you haven't been to, visit,
287
774705
1933
ืฉืื ืœื ื”ื™ื™ืชื ืฉื, ื‘ืงืจื•,
12:56
because it's a beautiful piece of architecture
288
776638
3019
ืžืคื ื™ ืฉื–ื• ืคื™ืกื” ื™ืคื™ืคื™ื” ืฉืœ ืืจื›ื™ื˜ืงื˜ื•ืจื”
12:59
aside from being a wonderful place to work.
289
779657
2825
ื—ื•ืฅ ืžืœื”ื™ื•ืช ืžืงื•ื ื ืคืœื ืœืขื‘ื•ื“.
13:02
So these are the things we were saying in those TEDs.
290
782482
2695
ืื– ืืœื” ื”ื“ื‘ืจื™ื ืฉืื ื—ื ื• ืื•ืžืจื™ื ื‘TED ื”ืืœื•.
13:05
[Today, multimedia is a desktop or living room experience, because the apparatus is so clunky. This will change dramatically with small, bright, thin, high-resolution displays. โ€” 1995]
291
785177
1567
[ื”ื™ื•ื, ืžื•ืœื˜ื™ืžื“ื™ื” ื”ื™ื ื—ื•ื•ื™ื” ื‘ืžื—ืฉื‘ ืื• ื‘ืกืœื•ืŸ, ืžืคื ื™ ืฉื”ืžื›ืฉื•ืจ ื›ืœ ื›ืš ืžืกื•ืจื‘ืœ. ื–ื” ื™ืฉืชื ื” ื“ืจืžื˜ื™ืช ืขื ืžืกื›ื™ื ืงื˜ื ื™ื, ื‘ื•ื”ืงื™ื, ื“ืงื™ื ื‘ืจื–ื•ืœื•ืฆื™ื” ื’ื‘ื•ื”ื”. -- 1995]
13:06
We came to them.
292
786744
1492
ื”ื’ืขื ื• ืืœื™ื”ื.
13:08
I looked forward to it every year.
293
788236
1992
ืฆื™ืคื™ืชื™ ืœื–ื” ื›ืœ ืฉื ื”.
13:10
It was the party that Ricky Wurman never had
294
790228
3052
ื–ื• ื”ืžืกื™ื‘ื” ืฉืžืขื•ืœื ืœื ื”ื™ืชื” ืœืจื™ืง ื•ื•ืจืžืŸ
13:13
in the sense that he invited many of his old friends,
295
793280
2909
ื‘ืžื•ื‘ืŸ ืฉื”ื•ื ื”ื–ืžื™ืŸ ื”ืจื‘ื” ืžื”ื—ื‘ืจื™ื ื”ื•ื•ืชื™ืงื™ื ืฉืœื•,
13:16
including myself.
296
796189
1659
ื›ื•ืœืœ ืื•ืชื™.
13:17
And then something for me changed
297
797848
2392
ื•ืื– ืžืฉื”ื• ื”ืฉืชื ื” ื‘ืฉื‘ื™ืœื™
13:20
pretty profoundly.
298
800240
1469
ื“ื™ ืžืฉืžืขื•ืชื™ืช.
13:21
I became more involved with computers and learning
299
801709
3953
ื”ืคื›ืชื™ ืœื™ื•ืชืจ ืžืขื•ืจื‘ ื‘ืžื—ืฉื‘ื™ื ื•ืœืžื™ื“ื”
13:25
and influenced by Seymour,
300
805662
2462
ื•ื”ื•ืฉืคืขืชื™ ืžืกื™ืžื•ืจ,
13:28
but particularly looking at learning
301
808124
2615
ืื‘ืœ ื‘ืขื™ืงืจ ื‘ื—ื ืชื™ ืืช ื”ืœืžื™ื“ื”
13:30
as something that is best approximated
302
810739
3910
ื›ืžืฉื”ื• ืฉื‘ืงืจื•ื‘ ื”ื›ื™ ื˜ื•ื‘
13:34
by computer programming.
303
814649
1754
ื“ื•ืžื” ืœืชื›ื ื•ืช.
13:36
When you write a computer program,
304
816403
2014
ื›ืฉืืชื ื›ื•ืชื‘ื™ื ืชื•ื›ื ืช ืžื—ืฉื‘,
13:38
you've got to not just list things out
305
818417
2795
ืืชื ืฆืจื™ื›ื™ื ืœื ืจืง ืœืจืฉื•ื ืืช ื”ื“ื‘ืจื™ื
13:41
and sort of take an algorithm
306
821212
1728
ื•ืกื•ื’ ืฉืœ ืœืงื—ืช ืืœื’ื•ืจื™ืชื
13:42
and translate it into a set of instructions,
307
822940
2876
ื•ืœืชืจื’ื ืื•ืชื• ืœื”ื•ืจืื•ืช,
13:45
but when there's a bug, and all programs have bugs,
308
825816
2683
ืืœื ื›ืฉื™ืฉ ื‘ืื’, ื•ืœื›ืœ ื”ืชื•ื›ื ื•ืช ื™ืฉ ื‘ืื’ื™ื,
13:48
you've got to de-bug it.
309
828499
1709
ืืชื ืฆืจื™ื›ื™ื ืœื“ื‘ื’ ืื•ืชื•.
13:50
You've got to go in, change it,
310
830208
1990
ืืชื ืฆื™ืจื™ื ืœื”ื™ื›ื ืก, ืœืฉื ื•ืช ืื•ืชื•,
13:52
and then re-execute,
311
832198
1622
ื•ืื– ืœื”ืจื™ืฅ ืžื—ื“ืฉ,
13:53
and you iterate,
312
833820
1804
ื•ืืชื ื—ื•ื–ืจื™ื ืขืœ ื–ื”.
13:55
and that iteration is really
313
835624
2907
ื•ื”ื—ื–ืจื” ื”ื–ื• ื”ื™ื ืœืžืขืฉื”
13:58
a very, very good approximation of learning.
314
838531
2903
ืงื™ืจื•ื‘ ืžืื•ื“ ืžืื•ื“ ื˜ื•ื‘ ืฉืœ ืœืžื™ื“ื”.
14:01
So that led to my own work with Seymour
315
841434
3667
ืื– ื–ื” ื”ื•ื‘ื™ืœ ืื•ืชื™ ืœืขื‘ื•ื“ื” ืฉืœื™ ืขื ืกื™ืžื•ืจ
14:05
in places like Cambodia
316
845101
2358
ื‘ืžืงื•ืžื•ืช ื›ืžื• ืงืžื‘ื•ื“ื™ื”
14:07
and the starting of One Laptop per Child.
317
847459
2904
ื•ื”ื”ืชื—ืœื” ืฉืœ ืœืคื˜ื•ืค ืื—ื“ ืœื›ืœ ื™ืœื“.
14:10
Enough TED Talks on One Laptop per Child,
318
850363
2814
ืžืกืคื™ืง ื”ืจืฆืื•ืช TED ืขืœ ืžื—ืฉื‘ ืœื›ืœ ื™ืœื“,
14:13
so I'll go through it very fast,
319
853177
1761
ืื– ืื ื™ ืืขื‘ื•ืจ ืขืœ ื–ื” ืžืžืฉ ืžื”ืจ,
14:14
but it did give us the chance
320
854938
3925
ืื‘ืœ ื–ื” ื ืชืŸ ืœื ื• ื”ื–ื“ืžื ื•ืช
14:18
to do something at a relatively large scale
321
858863
3506
ืœืขื•ืฉืช ืžืฉื”ื• ื‘ืงื ื” ืžื™ื“ื” ืžืžืฉ ื’ื“ื•ืœ
14:22
in the area of learning, development and computing.
322
862369
3993
ื‘ืชื—ื•ื ืคื™ืชื•ื— ื”ื—ื™ื ื•ืš ื•ืžื—ืฉื•ื‘.
14:26
Very few people know that One Laptop per Child
323
866362
2817
ืžืขื˜ ืžืื•ื“ ืื ืฉื™ื ื™ื•ื“ืขื™ื ืฉืœืคื˜ื•ืค ืœื›ืœ ื™ืœื“
14:29
was a $1 billion project,
324
869179
2635
ื”ื™ื” ืคืจื•ื™ื™ืงื˜ ืฉืœ ืžื™ืœื™ืืจื“ ื“ื•ืœืจ,
14:31
and it was, at least over the seven years I ran it,
325
871814
2647
ื•ื–ื” ื”ื™ื”, ืœืคื—ื•ืช ื‘ืฉื‘ืข ื”ืฉื ื™ื ืฉืื ื™ ื ื™ื”ืœืชื™ ืื•ืชื•,
14:34
but even more important, the World Bank
326
874461
2146
ืื‘ืœ ืืคื™ืœื• ื™ื•ืชืจ ื—ืฉื•ื‘, ื”ื‘ื ืง ื”ืขื•ืœืžื™
14:36
contributed zero, USAID zero.
327
876607
3115
ืชืจื ืืคืก, USAID ืืคืก.
14:39
It was mostly the countries using their own treasuries,
328
879722
4155
ื–ื” ื”ื™ื” ื‘ืขื™ืงืจ ืžื“ื™ื ื•ืช ืฉื”ืฉืชืžืฉื• ื‘ืื•ืฆืจ ืฉืœื”ืŸ,
14:43
which is very interesting,
329
883877
1603
ืžื” ืฉื”ื™ื” ืžืื•ื“ ืžืขื ื™ื™ืŸ,
14:45
at least to me it was very interesting
330
885480
1356
ืœืคื—ื•ืช ื‘ืฉื‘ื™ืœื™ ื–ื” ื”ื™ื” ืžืื•ื“ ืžืขื ื™ื™ืŸ
14:46
in terms of what I plan to do next.
331
886836
3144
ื‘ืžื•ื ื—ื™ื ืฉืœ ืžื” ืื ื™ ืžืชื›ื ืŸ ืœืขืฉื•ืช ืื—ืจื™ ื–ื”.
14:49
So these are the various places it happened.
332
889980
3025
ืื– ืืœื” ื”ืžืงื•ืžื•ืช ื”ืฉื•ื ื™ื ืฉื–ื” ืงืจื”.
14:53
I then tried an experiment,
333
893005
2902
ืื– ืขืฉื™ืชื™ ื ื™ืกื•ื™,
14:55
and the experiment happened in Ethiopia.
334
895907
4281
ื•ื”ื ื™ืกื•ื™ ื”ืชืจื—ืฉ ื‘ืืชื™ื•ืคื™ื”,
15:00
And here's the experiment.
335
900188
2642
ื•ื”ื ื” ื”ื ื™ืกื•ื™.
15:02
The experiment is,
336
902830
1631
ื”ื ื™ืกื•ื™ ื”ื•ื,
15:04
can learning happen where there are no schools.
337
904461
3780
ื”ืื ืœืžื™ื“ื” ื™ื›ื•ืœื” ืœื”ืชืจื—ืฉ ื‘ืžืงื•ื ื‘ื• ืื™ืŸ ื‘ืชื™ ืกืคืจ.
15:08
And we dropped off tablets
338
908241
2530
ื•ื”ื‘ืื ื• ื˜ื‘ืœื˜ื™ื
15:10
with no instructions
339
910771
2243
ื‘ืœื™ ื”ื•ืจืื•ืช
15:13
and let the children figure it out.
340
913014
3273
ื•ื ืชื ื• ืœื™ืœื“ื™ื ืœื”ื‘ื™ืŸ ืœื‘ื“.
15:16
And in a short period of time,
341
916287
3647
ื•ืชื•ืš ื–ืžืŸ ืงืฆืจ,
15:19
they not only
342
919934
2098
ื”ื ืœื ืจืง
15:22
turned them on and were using 50 apps per child
343
922032
3072
ื”ื“ืœื™ืงื• ืื•ืชื ื•ื”ืฉืชืžืฉื• ื‘ 50 ืืคืœื™ืงืฆื™ื•ืช ืœื™ืœื“
15:25
within five days,
344
925104
2102
ืชื•ืš ื—ืžื™ืฉื” ื™ืžื™ื,
15:27
they were singing "ABC" songs within two weeks,
345
927206
2934
ื”ื ืฉืจื• ืฉื™ืจื™ "ABC" ืชื•ืš ืฉื‘ื•ืขื™ื™ื,
15:30
but they hacked Android within six months.
346
930140
3893
ื•ื”ื ืคืจืฆื• ืืช ืื ื“ืจื•ืื™ื“ ืชื•ืš ืฉื™ืฉื” ื—ื•ื“ืฉื™ื.
15:34
And so that seemed sufficiently interesting.
347
934033
3518
ื•ื–ื” ื ืจืื” ืžืกืคื™ืง ืžืขื ื™ื™ืŸ.
15:37
This is perhaps the best picture I have.
348
937551
2559
ื–ื• ืื•ืœื™ ื”ืชืžื•ื ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืฉื™ืฉ ืœื™.
15:40
The kid on your right
349
940110
4151
ื”ื™ืœื“ ื”ื–ื” ืžื™ืžื™ื ื›ื
15:44
has sort of nominated himself as teacher.
350
944261
2475
ืกื•ื’ ืฉืœ ืžื™ื ื” ืืช ืขืฆืžื• ืœืžื•ืจื”.
15:46
Look at the kid on the left, and so on.
351
946736
2520
ืชืจืื• ืืช ื”ื™ืœื“ ืžืฉืžืืœ, ื•ื›ืš ื”ืœืื”.
15:49
There are no adults involved in this at all.
352
949256
3150
ืื™ืŸ ืžื‘ื•ื’ืจื™ื ืžืขื•ืจื‘ื™ื ื‘ื›ืœืœ.
15:52
So I said, well can we do this
353
952406
1424
ืื– ืืžืจืชื™, ื•ื‘ื›ืŸ ื”ืื ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื–ื”
15:53
at a larger scale?
354
953830
1597
ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ?
15:55
And what is it that's missing?
355
955427
2481
ื•ืžื” ื—ืกืจ?
15:57
The kids are giving a press conference at this point,
356
957908
2269
ื”ื™ืœื“ื™ื ืขื•ืฉื™ื ืžืกื™ื‘ืช ืขื™ืชื•ื ืื™ื ื‘ืฉืœื‘ ื”ื–ื”,
16:00
and sort of writing in the dirt.
357
960177
2685
ื•ืกื•ื’ ืฉืœ ื›ื•ืชื‘ื™ื ื‘ืขืคืจ.
16:02
And the answer is, what is missing?
358
962862
3445
ื•ื”ืชืฉื•ื‘ื” ื”ื™ื, ืžื” ื—ืกืจ?
16:06
And I'm going to skip over my prediction, actually,
359
966307
2536
ื•ืื ื™ ืื“ืœื’ ืขืœ ื”ืชื—ื–ื™ื•ืช, ืœืžืขืฉื”,
16:08
because I'm running out of time,
360
968843
1528
ืžืคื ื™ ืฉื ื’ืžืจ ืœื™ ื”ื–ืžืŸ,
16:10
and here's the question, is what's going to happen?
361
970371
3968
ื•ื”ื ื” ื”ืฉืืœื”, ืžื” ื™ืงืจื”?
16:14
I think the challenge
362
974339
1487
ืื ื™ ื—ื•ืฉื‘ ืฉื”ืืชื’ืจ
16:15
is to connect the last billion people,
363
975826
2628
ื”ื•ื ืœื—ื‘ืจ ืืช ืžื™ืœื™ืืจื“ ื”ืื ืฉื™ื ื”ืื—ืจื•ื ื™ื,
16:18
and connecting the last billion
364
978454
2651
ื•ื—ื™ื‘ื•ืจ ื”ืžื™ืœื™ืืจื“ ื”ืื—ืจื•ืŸ
16:21
is very different than connecting the next billion,
365
981105
3397
ื–ื” ืžืื•ื“ ืฉื•ื ื” ืžืœื—ื‘ืจ ืืช ื”ืžื™ืœื™ืืจื“ ื”ื‘ืื™ื,
16:24
and the reason it's different
366
984502
1394
ื•ื”ืกื™ื‘ื” ืฉื–ื” ืฉื•ื ื”
16:25
is that the next billion
367
985896
1864
ื”ื™ื ืฉื”ืžื™ืœื™ืืจื“ ื”ื‘ืื™ื
16:27
are sort of low-hanging fruit,
368
987760
1950
ื”ื ืกื•ื’ ืฉืœ ืคื™ืจื•ืช ื‘ืฉืœื™ื,
16:29
but the last billion are rural.
369
989710
3367
ืื‘ืœ ื”ืžื™ืœื™ืืจื“ ื”ืื—ืจื•ืŸ ื”ื ื›ืคืจื™ื™ื.
16:33
Being rural and being poor
370
993077
3752
ืœื”ื™ื•ืช ื›ืคืจื™ ื•ืขื ื™
16:36
are very different.
371
996829
1132
ื–ื” ืžืื•ื“ ืฉื•ื ื”.
16:37
Poverty tends to be created by our society,
372
997961
3633
ืขื•ื ื™ ื ื•ื˜ื” ืœื”ื•ื•ืฆืจ ืขืœ ื™ื“ื™ ื”ื—ื‘ืจื” ืฉืœื ื•,
16:41
and the people in that community are not poor
373
1001594
5450
ื•ื”ืื ืฉื™ื ื‘ืงื”ื™ืœื” ื”ื–ื• ืื™ื ื ืขื ื™ื™ื
16:47
in the same way at all.
374
1007044
1909
ื‘ืื•ืชื” ื“ืจืš ื‘ื›ืœืœ.
16:48
They may be primitive,
375
1008953
1405
ื”ื ืื•ืœื™ ืคืจื™ืžื™ื˜ื™ื‘ื™ื,
16:50
but the way to approach it and to connect them,
376
1010358
4044
ืื‘ืœ ื”ื“ืจืš ืœื’ืฉืช ืœื–ื” ื•ืœื—ื‘ืจ ืื•ืชื,
16:54
the history of One Laptop per Child,
377
1014402
2531
ื”ื”ืกื˜ื•ืจื™ื” ืฉืœ ืœืคื˜ื•ืค ืœื›ืœ ืœื™ืœื“,
16:56
and the experiment in Ethiopia,
378
1016933
3656
ื•ื”ื ื™ืกื•ื™ ื‘ืืชื™ื•ืคื™ื”,
17:00
lead me to believe that we can in fact
379
1020589
3275
ืžื•ื‘ื™ืœื™ื ืื•ืชื™ ืœื”ืืžื™ืŸ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœืžืขืฉื”
17:03
do this in a very short period of time.
380
1023864
2801
ืœืขืฉื•ืช ืืช ื–ื” ื‘ืชืงื•ืคืช ื–ืžืŸ ืงืฆืจื” ืžืื•ื“.
17:06
And so my plan,
381
1026665
1841
ื•ื›ืš ื”ืชื•ื›ื ื™ืช ืฉืœื™,
17:08
and unfortunately I haven't been able
382
1028506
2234
ื•ืœืฆืขืจื™ ืœื ื”ื™ื™ืชื™ ืžืกื•ื’ืœ
17:10
to get my partners at this point
383
1030740
2868
ืœื’ืจื•ื ืœืฉื•ืชืคื™ื ืฉืœื™ ื‘ื ืงื•ื“ื” ื”ื–ื•
17:13
to let me announce them,
384
1033608
1291
ืœืืคืฉืจ ืœื™ ืœื”ื•ื“ื™ืข ืขืœื™ื”ื,
17:14
but is to do this with a stationary satellite.
385
1034899
4907
ื”ื™ื ืœืขืฉื•ืช ืืช ื–ื” ืขื ืœื•ื•ื™ืŸ ื ื™ื™ื—.
17:19
There are many reasons
386
1039806
2459
ื™ืฉ ื”ืจื‘ื” ืกื™ื‘ื•ืช
17:22
that stationary satellites aren't the best things,
387
1042265
4515
ืฉืœื•ื•ื™ื ื™ื ื ื™ื™ื—ื™ื ื”ื ืœื ื”ื“ื‘ืจ ื”ื›ื™ ื˜ื•ื‘,
17:26
but there are a lot of reasons why they are,
388
1046780
2937
ืื‘ืœ ื™ืฉ ื”ืจื‘ื” ืกื™ื‘ื•ืช ืœืžื” ื”ื ื›ืŸ,
17:29
and for two billion dollars,
389
1049717
3095
ื•ืขื‘ื•ืจ ืฉื ื™ ืžื™ืœื™ืืจื“ ื“ื•ืœืจ,
17:32
you can connect a lot more than 100 million people,
390
1052812
3684
ืืชื ื™ื›ื•ืœื™ื ืœื—ื‘ืจ ื™ื•ืชืจ ืž 100 ืžื™ืœื™ื•ืŸ ืื ืฉื™ื,
17:36
but the reason I picked two,
391
1056496
2661
ืื‘ืœ ื”ืกื™ื‘ื” ืฉื‘ื—ืจืชื™ ื‘ืฉื ื™ื™ื,
17:39
and I will leave this as my last slide,
392
1059157
3383
ื•ืื ื™ ืืฉืื™ืจ ืืช ื–ื” ื›ืฉืงื•ืคื™ืช ื”ืื—ืจื•ื ื” ืฉืœื™,
17:42
is two billion dollars
393
1062540
1784
ื”ื™ื ืฉืฉื ื™ ืžื™ืœื™ืืจื“ ื“ื•ืœืจ
17:44
is what we were spending
394
1064324
2919
ื–ื” ืžื” ืฉืื ื—ื ื• ืžื•ืฆื™ืื™ื
17:47
in Afghanistan
395
1067243
2093
ื‘ืืคื’ื ื™ืกื˜ืืŸ
17:49
every week.
396
1069336
1912
ื‘ืฉื‘ื•ืข.
17:51
So surely if we can connect
397
1071248
3307
ืื– ื‘ืจื•ืจ ืฉืื ื ื•ื›ืœ ืœื—ื‘ืจ
17:54
Africa and the last billion people
398
1074555
2700
ืืช ืืคืจื™ืงื” ื•ืžื™ืœื™ืืจื“ ื”ืื ืฉื™ื ื”ืื—ืจื•ื ื™ื
17:57
for numbers like that,
399
1077255
1554
ื‘ืžืกืคืจื™ื ื›ืืœื”,
17:58
we should be doing it.
400
1078809
1313
ืื ื—ื ื• ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ืืช ื–ื”.
18:00
Thank you very much.
401
1080122
2297
ืชื•ื“ื” ืจื‘ื” ืœื›ื.
18:02
(Applause)
402
1082419
3529
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
18:05
Chris Anderson: Stay up there. Stay up there.
403
1085948
4330
ื›ืจื™ืก ืื ื“ืจืกื•ืŸ: ืชืฉืืจ ืฉื, ืชืฉืืจ ืฉื.
18:10
NN: You're going to give me extra time?
404
1090278
2030
ื .ื : ืืชื” ืชื™ืชืŸ ืœื™ ื–ืžืŸ ื ื•ืกืฃ?
18:12
CA: No. That was wickedly clever, wickedly clever.
405
1092308
2362
ื›.ื: ืœื, ื–ื” ื”ื™ื” ืžืื•ื“ ืžืชื—ื›ื, ืžืื•ื“ ืžืชื—ื›ื.
18:14
You gamed it beautifully.
406
1094670
1865
ืฉื™ื—ืงืช ืืช ื–ื” ื™ืคื”.
18:16
Nicholas, what is your prediction?
407
1096535
2630
ื ื™ืงื•ืœืืก, ืžื” ื”ืชื—ื–ื™ืช ืฉืœืš?
18:19
(Laughter)
408
1099165
2026
(ืฆื—ื•ืง)
18:21
NN: Thank you for asking.
409
1101191
2436
ื .ื : ืชื•ื“ื” ืฉืฉืืœืช.
18:23
I'll tell you what my prediction is,
410
1103627
2773
ืื ื™ ืื’ื™ื“ ืœืš ืžื” ื”ืชื—ื–ื™ืช ืฉืœื™,
18:26
and my prediction, and this is a prediction,
411
1106400
2700
ื•ื”ืชื—ื–ื™ืช ืฉืœื™, ื•ื–ื• ืชื—ื–ื™ืช,
18:29
because it'll be 30 years. I won't be here.
412
1109100
2662
ืžืคื ื™ ืฉื™ืขื‘ืจื• 30 ืฉื ื”. ืื ื™ ืœื ืื”ื™ื” ืคื”.
18:31
But one of the things about learning how to read,
413
1111762
4728
ืื‘ืœ ืื—ื“ ื”ื“ื‘ืจื™ื ื‘ื ื•ื’ืข ืœืœื™ืžื•ื“ ืงืจื™ืื”,
18:36
we have been doing a lot of consuming
414
1116490
2849
ืขืฉื™ื ื• ื”ืจื‘ื” ืฆืจื™ื›ื”
18:39
of information going through our eyes,
415
1119339
2285
ืฉืœ ืžื™ื“ืข ืฉืขื•ื‘ืจ ื“ืจืš ื”ืขื™ื ื™ื™ื ื•,
18:41
and so that may be a very inefficient channel.
416
1121624
3076
ื•ื›ืš ื–ื” ืื•ืœื™ ืขืจื•ืฅ ืžืื•ื“ ืœื ื™ืขื™ืœ.
18:44
So my prediction is that we are going to ingest information
417
1124700
5085
ืื– ื”ืชื—ื–ื™ืช ืฉืœื™ ื”ื™ื ืฉืื ื—ื ื• ื ืขื›ืœ ืžื™ื“ืข
18:49
You're going to swallow a pill and know English.
418
1129785
3197
ืืชื ืชื‘ืœืขื• ื’ืœื•ืœื” ื•ืชื“ืขื• ืื ื’ืœื™ืช.
18:52
You're going to swallow a pill and know Shakespeare.
419
1132982
2692
ืืชื ืชื‘ืœืขื• ื’ืœื•ืœื” ื•ืชื“ืขื• ืขืœ ืฉื™ื™ืงืกืคื™ืจ.
18:55
And the way to do it is through the bloodstream.
420
1135674
2609
ื•ื”ื“ืจืš ืœืขืฉื•ืช ืืช ื–ื” ื”ื™ื ื“ืจืš ืžื—ื–ื•ืจ ื”ื“ื.
18:58
So once it's in your bloodstream,
421
1138283
1857
ืื– ื‘ืจื’ืข ืฉื–ื” ื™ื”ื™ื” ื‘ืชื•ืš ืžื—ื–ื•ืจ ื”ื“ื ืฉืœื›ื,
19:00
it basically goes through it and gets into the brain,
422
1140140
2218
ื”ื•ื ื‘ืขื™ืงืจื•ืŸ ืขื•ื‘ืจ ื•ืžืžืฉื™ืš ืœืชื•ืš ื”ืžื•ื—,
19:02
and when it knows that it's in the brain
423
1142358
2182
ื•ื›ืฉื”ื•ื ื™ื•ื“ืข ืฉื”ื•ื ื‘ืชื•ืš ื”ืžื•ื—
19:04
in the different pieces,
424
1144540
1322
ื‘ืžืงื•ืžื•ืช ืฉื•ื ื™ื,
19:05
it deposits it in the right places.
425
1145862
2625
ื”ื•ื ืžื•ืคืงื“ ื‘ืžืงื•ืžื•ืช ื”ื ื›ื•ื ื™ื.
19:08
So it's ingesting.
426
1148487
1332
ืื– ื–ื” ืขื™ื›ื•ืœ.
19:09
CA: Have you been hanging out with Ray Kurzweil by any chance?
427
1149819
2520
ื›.ื: ื”ืื ื‘ื™ืœื™ืช ืขื ืจื™ื™ ืงื•ืจืฆื•ื•ื™ืœ ื‘ืžืงืจื”?
19:12
NN: No, but I've been hanging around with Ed Boyden
428
1152339
3213
ื .ื : ืœื, ืื‘ืœ ื‘ื™ืœื™ืชื™ ืขื ืื“ ื‘ื•ื™ื“ืŸ
19:15
and hanging around with one of the speakers
429
1155552
1845
ื•ื‘ื™ืœื™ืชื™ ืขื ืื—ื“ ื”ื“ื•ื‘ืจื™ื
19:17
who is here, Hugh Herr,
430
1157397
1813
ืฉืคื”, ื”ื™ื• ื”ืจ,
19:19
and there are a number of people.
431
1159210
1897
ื•ื™ืฉ ืžืกืคืจ ืื ืฉื™ื.
19:21
This isn't quite as far-fetched,
432
1161107
1397
ื–ื” ืœื ื›ืœ ื›ืš ื—ืกืจ ื‘ืกื™ืก,
19:22
so 30 years from now.
433
1162504
2945
ืื– ื‘ืขื•ื“ 30 ืฉื ื” ืžืขื›ืฉื™ื•.
19:25
CA: We will check it out.
434
1165449
1742
ื›.ื: ืื ื—ื ื• ื ื‘ื“ื•ืง ืืช ื–ื”.
19:27
We're going to be back and we're going to play this clip 30 years from now,
435
1167191
2302
ืื ื—ื ื• ื ื—ื–ื•ืจ ื•ื ืงืจื™ืŸ ืืช ื”ืกืจื˜ื•ืŸ ื”ื–ื” ืขื•ื“ 30 ืฉื ื”,
19:29
and then all eat the red pill.
436
1169493
3031
ื•ืื– ื›ื•ืœื ื• ื ื‘ืœืข ืืช ื”ื’ืœื•ืœื” ื”ืื“ื•ืžื”.
19:32
Well thank you for that.
437
1172524
2185
ื•ื‘ื›ืŸ ืชื•ื“ื” ืœืš ืขืœ ื–ื”.
19:34
Nicholas Negroponte.
438
1174709
1444
ื ื™ืงื•ืœืืก ื ื’ืจื•ืคื•ื ื˜ื”.
19:36
NN: Thank you.
439
1176153
1348
ื .ื : ืชื•ื“ื” ืœื›ื.
19:37
(Applause)
440
1177501
814
(ืžื—ื™ืื•ืช ื›ืคื™ื™ื)
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7