The last banana: A thought experiment in probability - Leonardo Barichello

1,651,703 views ・ 2015-02-23

TED-Ed


Please double-click on the English subtitles below to play the video.

Prevodilac: Marija Kojić Lektor: Jelena Kovačević
00:06
You and a fellow castaway are stranded on a desert island
0
6412
4146
Vi i još jedan brodolomnik ste se nasukali na pusto ostrvo
00:10
playing dice for the last banana.
1
10558
3052
i bacate kockice za poslednju bananu.
00:13
You've agreed on these rules:
2
13610
1994
Dogovorili ste se oko ovih pravila:
00:15
You'll roll two dice,
3
15604
1542
Bacaćete dve kockice,
i ako je najveći broj jedan, dva, tri ili četiri,
00:17
and if the biggest number is one, two, three or four,
4
17146
3923
Prvi igrač pobeđuje.
00:21
player one wins.
5
21069
2284
00:23
If the biggest number is five or six, player two wins.
6
23353
4973
Ako je najveći broj pet ili šest, drugi igrač pobeđuje.
00:28
Let's try twice more.
7
28326
1828
Hajde još dvaput da pokušamo,
Ovde, prvi igrač pobeđuje,
00:30
Here, player one wins,
8
30154
3093
00:33
and here it's player two.
9
33247
2724
a ovde, drugi igrač.
00:35
So who do you want to be?
10
35971
1770
Dakle, ko vi želite da budete?
00:37
At first glance, it may seem like player one has the advantage
11
37741
4466
Na prvi pogled, možda se čini da prvi igrač ima prednost
budući da će ona pobediti ako je ijedan od četiri broja najveći,
00:42
since she'll win if any one of four numbers is the highest,
12
42207
4015
ali zapravo,
00:46
but actually,
13
46222
1014
00:47
player two has an approximately 56% chance of winning each match.
14
47236
6383
drugi igrač ima otprilike 56% šanse da pobedi u svakoj partiji.
00:53
One way to see that is to list all the possible combinations you could get
15
53619
3908
Jedan način da to uvidimo je da izlistamo sve moguće kombinacije
00:57
by rolling two dice,
16
57527
2000
bacanja dve kockice,
00:59
and then count up the ones that each player wins.
17
59527
3147
i onda da izbrojimo one koje donose pobedu svakom igraču.
01:02
These are the possibilities for the yellow die.
18
62674
2634
Ovo su mogućnosti za žutu kockicu.
01:05
These are the possibilities for the blue die.
19
65308
2476
Ovo su mogućnosti za plavu kockicu.
01:07
Each cell in the chart shows a possible combination when you roll both dice.
20
67784
5430
Svaka ćelija u tabeli pokazuje moguću kombinaciju
bacanja obe kockice.
Ako bacite četvorku, pa onda peticu,
01:13
If you roll a four and then a five,
21
73214
2055
01:15
we'll mark a player two victory in this cell.
22
75269
2176
označićemo drugom igraču pobedu u ćeliji.
01:17
A three and a one gives player one a victory here.
23
77445
5051
Trojka i jedinica donose prvom igraču ovde pobedu.
01:22
There are 36 possible combinations,
24
82496
2321
Postoji 36 mogućih kombinacija,
01:24
each with exactly the same chance of happening.
25
84817
3274
sve imaju podjednake šanse da se dese.
Matematičari ovo nazivaju jednako verovatnim događajima.
01:28
Mathematicians call these equiprobable events.
26
88091
3145
01:31
Now we can see why the first glance was wrong.
27
91236
3565
Sada možemo da vidimo zašto je prvi utisak bio pogrešan.
01:34
Even though player one has four winning numbers,
28
94801
2665
Iako prvi igrač ima četiri pobednička broja,
01:37
and player two only has two,
29
97466
2094
a drugi igrač ima samo dva,
01:39
the chance of each number being the greatest is not the same.
30
99560
4144
šanse da svaki od brojeva bude najveći nisu jednake.
01:43
There is only a one in 36 chance that one will be the highest number.
31
103704
4977
Postoji šansa samo 1 u 36 da će broj 1 biti najveći.
01:48
But there's an 11 in 36 chance that six will be the highest.
32
108681
4176
Međutim, šanse su 11 u 36 da će broj 6 biti najveći.
01:52
So if any of these combinations are rolled,
33
112857
2729
Dakle, ako se bilo koja od ovih kombinacija dogodi,
01:55
player one will win.
34
115586
1887
prvi igrač pobeđuje.
A ako se bilo koja od ovih kombinacija dogodi,
01:57
And if any of these combinations are rolled,
35
117473
2195
01:59
player two will win.
36
119668
1729
drugi igrač pobeđuje.
02:01
Out of the 36 possible combinations,
37
121397
2322
Od 36 mogućih kombinacija,
02:03
16 give the victory to player one, and 20 give player two the win.
38
123719
6100
16 obezbeđuje pobedu prvom igraču, 20 obezbeđuje pobedu drugom igraču.
02:09
You could think about it this way, too.
39
129819
2344
Možete to i ovako da posmatrate, takođe:
02:12
The only way player one can win
40
132163
2196
Jedini način da prvi igrač pobedi
02:14
is if both dice show a one, two, three or four.
41
134359
4280
je da obe kockice pokažu jedinicu, dvojku, trojku ili četvorku.
02:18
A five or six would mean a win for player two.
42
138639
2957
Petica ili šestica znače pobedu drugog igrača.
02:21
The chance of one die showing one, two, three or four is four out of six.
43
141596
5109
Šanse da će jedna kockica pokazati
jedinicu, dvojku ili četvorku je četiri u šest.
02:26
The result of each die roll is independent from the other.
44
146705
3851
Rezultat svakog bacanja kockice
je nezavisan od rezultata drugog bacanja.
02:30
And you can calculate the joint probability of independent events
45
150556
3313
Možete izračunati zajedničku verovatnoću
nezavisnih događaja
02:33
by multiplying their probabilities.
46
153869
2517
ako pomnožite njihove verovatnoće,
02:36
So the chance of getting a one, two, three or four on both dice
47
156386
4436
Dakle, šansa da dobijete jedinicu, dvojku, trojku ili četvorku na obe kockice
02:40
is 4/6 times 4/6, or 16/36.
48
160822
5457
je 4/6 puta 4/6, ili 16/36.
02:46
Because someone has to win,
49
166279
2188
Budući da neko mora da pobedi,
02:48
the chance of player two winning is 36/36 minus 16/36,
50
168467
6035
šanse da drugi igrač pobedi su 36/36 minus 16/36
02:54
or 20/36.
51
174502
2801
ili 20/36.
02:57
Those are the exact same probabilities we got by making our table.
52
177303
4106
To su potpuno iste verovatnoće
koje smo dobili kada smo pravili našu tabelu.
03:01
But this doesn't mean that player two will win,
53
181409
2636
Međutim, to ne znači da će drugi igrač pobediti,
niti da ćete, ako odigrate 36 partija kao drugi igrač, pobediti u njih 20.
03:04
or even that if you played 36 games as player two, you'd win 20 of them.
54
184045
5368
03:09
That's why events like dice rolling are called random.
55
189413
3211
Zato se događaji poput bacanja kockice nazivaju nasumičnim.
03:12
Even though you can calculate the theoretical probability
56
192624
3279
Iako možete da izračunate teorijsku verovatnoću
03:15
of each outcome,
57
195903
1512
svakog ishoda,
03:17
you might not get the expected results if you examine just a few events.
58
197415
4655
možda nećete dobiti očekivane rezultate ako ispitate samo par događaja.
03:22
But if you repeat those random events many, many, many times,
59
202070
4347
Međutim, ako ponovite te nasumične radnje mnogo, mnogo, mnogo puta,
03:26
the frequency of a specific outcome, like a player two win,
60
206417
3940
učestalost određenog ishoda, kao što je pobeda drugog igrača,
03:30
will approach its theoretical probability,
61
210357
3061
približiće se svojoj teoretskoj verovatnoći -
03:33
that value we got by writing down all the possibilities
62
213418
2954
vrednosti koju smo dobili, kada smo zapisivali sve mogućnosti
03:36
and counting up the ones for each outcome.
63
216372
2667
i izbrojali one koje određuju svaki ishod.
03:39
So, if you sat on that desert island playing dice forever,
64
219039
3955
Dakle, da sedite na pustom ostrvu bacajući kockice zauvek,
03:42
player two would eventually win 56% of the games,
65
222994
3919
drugi igrač bi na kraju pobedio u 56% svih partija,
03:46
and player one would win 44%.
66
226913
3082
a prvi igrač bi pobedio u 44%.
03:49
But by then, of course, the banana would be long gone.
67
229995
3569
Međutim, do tada, naravno, banane već odavno ne bi bilo.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7