The last banana: A thought experiment in probability - Leonardo Barichello

最後的香蕉:機率實驗 - 李奧那多.貝里伽

1,670,176 views

2015-02-23 ・ TED-Ed


New videos

The last banana: A thought experiment in probability - Leonardo Barichello

最後的香蕉:機率實驗 - 李奧那多.貝里伽

1,670,176 views ・ 2015-02-23

TED-Ed


請雙擊下方英文字幕播放視頻。

譯者: Greg Hsiao 審譯者: 呈政 顏
00:06
You and a fellow castaway are stranded on a desert island
0
6412
4146
你和你的同伴流落荒島
00:10
playing dice for the last banana.
1
10558
3052
玩骰子決定誰拿走最後一根香蕉
00:13
You've agreed on these rules:
2
13610
1994
你們都同意這些規則
00:15
You'll roll two dice,
3
15604
1542
你們將擲兩個骰子
00:17
and if the biggest number is one, two, three or four,
4
17146
3923
如果最大的數字是 1到4
00:21
player one wins.
5
21069
2284
第一名玩家獲勝
00:23
If the biggest number is five or six, player two wins.
6
23353
4973
如果最大的數定提5 或6 第二名玩家獲勝
00:28
Let's try twice more.
7
28326
1828
咱們多試兩次
00:30
Here, player one wins,
8
30154
3093
這裡,第一名玩家獲勝
00:33
and here it's player two.
9
33247
2724
而這裡,則是第二名玩家獲勝
00:35
So who do you want to be?
10
35971
1770
那你想當哪一個玩家呢?
00:37
At first glance, it may seem like player one has the advantage
11
37741
4466
第一印象, 似乎是第一名玩家佔優勢
00:42
since she'll win if any one of four numbers is the highest,
12
42207
4015
因為如果四個數字的任一個為最大,她將獲勝
00:46
but actually,
13
46222
1014
但,事實上
00:47
player two has an approximately 56% chance of winning each match.
14
47236
6383
第二名玩家有56%的機率會獲勝
00:53
One way to see that is to list all the possible combinations you could get
15
53619
3908
用一種方法,來看看你所能得到的所有組合
00:57
by rolling two dice,
16
57527
2000
從擲兩個骰子的活動中
00:59
and then count up the ones that each player wins.
17
59527
3147
然後計算每個玩家獲勝的次數
01:02
These are the possibilities for the yellow die.
18
62674
2634
這些是黃骰子可能的結果
01:05
These are the possibilities for the blue die.
19
65308
2476
這些是藍骰子可能的結果
01:07
Each cell in the chart shows a possible combination when you roll both dice.
20
67784
5430
表中的每個格子 代表擲兩個骰子的可能組合
01:13
If you roll a four and then a five,
21
73214
2055
若你擲出一個4 和一個5
01:15
we'll mark a player two victory in this cell.
22
75269
2176
我們就註記第二名玩家 在這格獲勝
01:17
A three and a one gives player one a victory here.
23
77445
5051
一個3 和一個1 代表第一名玩家獲勝
01:22
There are 36 possible combinations,
24
82496
2321
總共有36種組合
01:24
each with exactly the same chance of happening.
25
84817
3274
每一種發生的機率都一樣
01:28
Mathematicians call these equiprobable events.
26
88091
3145
在數學中稱為 相等機率事件
01:31
Now we can see why the first glance was wrong.
27
91236
3565
現在我們可以看到 為何第一印象是錯的
01:34
Even though player one has four winning numbers,
28
94801
2665
即使第一名玩家有4個獲勝數字
01:37
and player two only has two,
29
97466
2094
而第二名玩家只有2個獲勝數字
01:39
the chance of each number being the greatest is not the same.
30
99560
4144
每個數字成為最大值的機率都一樣
01:43
There is only a one in 36 chance that one will be the highest number.
31
103704
4977
在36種組合中 只有一種組合的最大值是1
01:48
But there's an 11 in 36 chance that six will be the highest.
32
108681
4176
但在36種組合中 有11種組合的最大值是6
01:52
So if any of these combinations are rolled,
33
112857
2729
所以,若擲出這些組合的任一種
01:55
player one will win.
34
115586
1887
第一名玩家獲勝
01:57
And if any of these combinations are rolled,
35
117473
2195
若擲出這些組合的任一種
01:59
player two will win.
36
119668
1729
第二名玩家獲勝
02:01
Out of the 36 possible combinations,
37
121397
2322
在36種可能的組合中
02:03
16 give the victory to player one, and 20 give player two the win.
38
123719
6100
16種由第一名玩家獲勝 20種由第二名玩家獲勝
02:09
You could think about it this way, too.
39
129819
2344
你也可以用這個方法思考
02:12
The only way player one can win
40
132163
2196
第一名玩家僅會在這樣的時候獲勝
02:14
is if both dice show a one, two, three or four.
41
134359
4280
當兩個骰子都擲出1到4
02:18
A five or six would mean a win for player two.
42
138639
2957
任一個5 或 6 代表第二名玩家獲勝
02:21
The chance of one die showing one, two, three or four is four out of six.
43
141596
5109
一個骰子出現1到4的機率是 六分之四 (4/6)
02:26
The result of each die roll is independent from the other.
44
146705
3851
個別骰子都是獨立事件
02:30
And you can calculate the joint probability of independent events
45
150556
3313
你可以計算這些獨立事件的聯合機率
02:33
by multiplying their probabilities.
46
153869
2517
經由 他們的機率的相乘
02:36
So the chance of getting a one, two, three or four on both dice
47
156386
4436
所以 兩個骰子都擲出 1,2,3,或4的機率是
02:40
is 4/6 times 4/6, or 16/36.
48
160822
5457
六分之四 乘以 六分之四 (4/6 * 4/6)
02:46
Because someone has to win,
49
166279
2188
因為總有人要獲勝
02:48
the chance of player two winning is 36/36 minus 16/36,
50
168467
6035
第二名玩家獲勝的機率是 三十六分之三十六 減去 三十六分之十六 (36/36 - 16/36)
02:54
or 20/36.
51
174502
2801
即 三十六分之二十 (20/36)
02:57
Those are the exact same probabilities we got by making our table.
52
177303
4106
這跟表格算出來的機率正好相同
03:01
But this doesn't mean that player two will win,
53
181409
2636
但這不代表第二名玩家會贏
03:04
or even that if you played 36 games as player two, you'd win 20 of them.
54
184045
5368
也不代表第二名玩家在36次比賽中會贏20次
03:09
That's why events like dice rolling are called random.
55
189413
3211
這就是為何擲骰子被稱為 隨機事件
03:12
Even though you can calculate the theoretical probability
56
192624
3279
即使你可以算出理論上的機率值
03:15
of each outcome,
57
195903
1512
每個結果的機率值
03:17
you might not get the expected results if you examine just a few events.
58
197415
4655
你可能得不到預期的結果 如果你只試驗了幾次的話
03:22
But if you repeat those random events many, many, many times,
59
202070
4347
但你若重複隨機事件 很多、更多、超多次的話
03:26
the frequency of a specific outcome, like a player two win,
60
206417
3940
特定結果出現的頻率 例如第二名玩家獲勝
03:30
will approach its theoretical probability,
61
210357
3061
將會接近理論上的機率值
03:33
that value we got by writing down all the possibilities
62
213418
2954
那就是我們列出所有可能組合
03:36
and counting up the ones for each outcome.
63
216372
2667
再把各種結果的機率值加總所得到的值
03:39
So, if you sat on that desert island playing dice forever,
64
219039
3955
所以,如果你在荒島上 持續不斷的擲骰子
03:42
player two would eventually win 56% of the games,
65
222994
3919
第二名玩家會贏得百分之五十六 (56%) 的比賽
03:46
and player one would win 44%.
66
226913
3082
而第一名玩家會贏得百分之四十四 (44%) 的比賽
03:49
But by then, of course, the banana would be long gone.
67
229995
3569
但屆時,當然,香蕉早就消失了
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog