Population pyramids: Powerful predictors of the future - Kim Preshoff

2,706,367 views ใƒป 2014-05-05

TED-Ed


ืื ื ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ืœืžื˜ื” ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ.

00:00
Transcriber: Jessica Ruby Reviewer: Caroline Cristal
0
0
7000
ืชืจื’ื•ื: Yifat Adler ืขืจื™ื›ื”: Ido Dekkers
00:07
Russia, with the largest territory in the world,
1
7161
3375
ืจื•ืกื™ื”, ื”ืžื“ื™ื ื” ื”ื’ื“ื•ืœื” ื‘ืขื•ืœื,
00:10
has roughly the same total population as Nigeria,
2
10536
3215
ื“ื•ืžื” ืžื‘ื—ื™ื ืช ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœื” ืœืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ื ื™ื’ืจื™ื”,
00:13
a country 1/16 its size.
3
13751
2504
ืžื“ื™ื ื” ืฉืฉื˜ื—ื” ืงื˜ืŸ ืคื™ 16 ืžืžื ื”.
00:16
But this similarity won't last long.
4
16255
2114
ืืš ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื•ืช ืœื ื™ื™ืฉืืจ ื“ื•ืžื” ืœืื•ืจืš ื–ืžืŸ.
00:18
One of the populations is rapidly growing,
5
18369
2640
ืื—ืช ืžื”ืŸ ื’ื“ืœื” ื‘ืžื”ื™ืจื•ืช,
00:21
while the other is slowly declining.
6
21009
2418
ื•ืื™ืœื• ื”ืฉื ื™ื™ื” ืงื˜ื ื” ืื˜-ืื˜.
00:23
What can this tell us about the two countries?
7
23427
2189
ืžื” ื ื•ื›ืœ ืœืœืžื•ื“ ืžื›ืš ืขืœ ืฉืชื™ ื”ืžื“ื™ื ื•ืช?
00:25
Population statistics are some of the most important data
8
25616
4025
ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ืฉืœ ืื•ื›ืœื•ืกื™ื•ืช ื”ืŸ ื‘ื™ืŸ ื”ื ืชื•ื ื™ื ื”ื—ืฉื•ื‘ื™ื ื‘ื™ื•ืชืจ
00:29
social scientists and policy experts have to work with.
9
29641
3726
ืฉื‘ื”ื ืขื•ืกืงื™ื ืื ืฉื™ ืžื“ืขื™ ื”ื—ื‘ืจื” ื•ืžื•ืžื—ื™ ืžื“ื™ื ื™ื•ืช.
00:33
But understanding a country's situation
10
33367
1834
ืืš ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžื” ืžืฆื‘ ื”ืžื“ื™ื ื”
00:35
and making accurate predictions
11
35201
1865
ื•ืœืขืฉื•ืช ืชื—ื–ื™ื•ืช ืžื“ื•ื™ืงื•ืช,
00:37
requires knowing not just the total size of the population
12
37066
3217
ื™ืฉ ืœื“ืขืช ืœื ืจืง ืืช ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื™ื”
00:40
but its internal characteristics,
13
40283
2120
ืืœื ื’ื ืืช ื”ืžืืคื™ื™ื ื™ื ื”ืคื ื™ืžื™ื™ื ืฉืœื”,
00:42
such as age and gender distribution.
14
42403
2837
ื›ื’ื•ืŸ ื”ืชืคืœื’ื•ืช ื”ื’ื™ืœื™ื ื•ื”ืžื™ื ื™ื.
00:45
So, how can we keep track of all that data
15
45240
1804
ืื™ืš ื ื•ื›ืœ ืœืขืงื•ื‘ ืื—ืจื™ ื›ืœ ื”ื ืชื•ื ื™ื ื”ืืœื”
00:47
in a way that makes it easy to comprehend?
16
47044
2823
ื‘ืฆื•ืจื” ืงืœื” ืœื”ื‘ื ื”?
00:49
Complex data is more easily interpreted
17
49867
2129
ืงืœ ื™ื•ืชืจ ืœื”ื‘ื™ืŸ ื ืชื•ื ื™ื ืžื•ืจื›ื‘ื™ื
00:51
through visualization,
18
51996
1503
ื›ืฉื”ื ืžื•ืฆื’ื™ื ื‘ืื•ืคืŸ ื—ื–ื•ืชื™.
00:53
and one of the ways that demographers represent
19
53499
1876
ืื—ืช ื”ื“ืจื›ื™ื ืฉื‘ื”ืŸ ืžืฉืชืžืฉื™ื ื“ืžื•ื’ืจืคื™ื ื›ื“ื™ ืœื™ื™ืฆื’
00:55
the internal distribution of a population
20
55375
2544
ืืช ื”ื”ืชืคืœื’ื•ืช ื”ืคื ื™ืžื™ืช ืฉืœ ืื•ื›ืœื•ืกื™ื™ื”
00:57
is the population pyramid.
21
57919
2259
ื”ื™ื ืคื™ืจืžื™ื“ืช ื”ืื•ื›ืœื•ืกื™ื™ื”.
01:00
Here, the data is divided by gender
22
60178
2273
ื›ืืŸ ื”ื ืชื•ื ื™ื ืžื—ื•ืœืงื™ื ืœืคื™ ืžื™ืŸ -
01:02
with females on one side and males on the other.
23
62451
3059
ื ืงื‘ื•ืช ื‘ืฆื“ ืื—ื“ ื•ื–ื›ืจื™ื ื‘ืฆื“ ื”ืฉื ื™.
01:05
The population numbers are shown
24
65510
1545
ื’ื•ื“ืœ ื”ืื•ื›ืœื•ืกื™ื™ื” ืžื•ืฆื’
01:07
for each five-year age interval,
25
67055
2061
ื‘ื—ืœื•ืงื” ืœื˜ื•ื•ื—ื™ื ืฉืœ ื—ืžืฉ ืฉื ื™ื.
01:09
starting from 0-4
26
69116
1858
ื”ื˜ื•ื•ื— ื”ืจืืฉื•ืŸ ื”ื•ื 4-0
01:10
and continuing up to 100 and up.
27
70974
2003
ื•ื›ืš ื”ืœืื”, ืขื“ 100 ื•ืžืขืœื”.
01:12
These intervals are grouped together
28
72977
1836
ื”ื˜ื•ื•ื—ื™ื ืžืงื•ื‘ืฆื™ื ื›ืš:
01:14
into pre-reproductive (0-14),
29
74813
2757
ื’ื™ืœืื™ ื˜ืจื•ื-ืคืจื™ื•ืŸ (14-0),
01:17
reproductive (15-44),
30
77570
2581
ื’ื™ืœืื™ ื”ืคืจื™ื•ืŸ (44-15)
01:20
and post-reproductive years (45 and up).
31
80151
3218
ื•ื’ื™ืœืื™ ืื—ืจื™-ื”ืคืจื™ื•ืŸ (45 ื•ืžืขืœื”).
01:23
Such a population pyramid can be a powerful predictor
32
83369
2757
ืคื™ืจืžื™ื“ืช ืื•ื›ืœื•ืกื™ื™ื” ื›ื–ื• ื”ื™ื ื›ืœื™ ืจื‘ ืขื•ืฆืžื”
01:26
of future population trends.
33
86126
1991
ืœื‘ื—ื™ื ืช ืžื’ืžื•ืช ื”ืื•ื›ื•ืœื•ืกื™ืŸ ื”ืขืชื™ื“ื™ื•ืช.
01:28
For example,
34
88117
1459
ืœื“ื•ื’ืžื”,
01:29
Rwanda's population pyramid shows it to be a fast-growing country,
35
89576
3503
ืคื™ืจืžื™ื“ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ืจื•ืื ื“ื” ืžืจืื” ืฉื–ื• ืžื“ื™ื ื” ืฉื’ื“ืœื” ื‘ืžื”ื™ืจื•ืช -
01:33
with most of the population
36
93079
1591
ืจื•ื‘ ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœื” ื ืžืฆืืช
01:34
being in the youngest age groups at the bottom of the pyramid.
37
94670
2780
ื‘ืงื‘ื•ืฆื•ืช ื”ื’ื™ืœ ื”ืฆืขื™ืจื•ืช ื‘ื™ื•ืชืจ ื‘ืชื—ืชื™ืช ื”ืคื™ืจืžื™ื“ื”.
01:37
The number will grow rapidly in the coming years.
38
97450
2254
ื‘ืฉื ื™ื ื”ื‘ืื•ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ืชื’ื“ืœ ื‘ืžื”ื™ืจื•ืช,
01:39
As today's children reach their reproductive years
39
99704
2833
ืžื›ื™ื•ื•ืŸ ืฉื”ื™ืœื“ื™ื ืฉืœ ื”ื™ื•ื ื™ื’ื™ืขื• ืœื’ื™ืœ ื”ืคืจื™ื•ืŸ
01:42
and have children of their own,
40
102537
1580
ื•ื™ื•ืœื™ื“ื• ื™ืœื“ื™ื.
01:44
the total population is almost certain to double
41
104117
2893
ืงืจื•ื‘ ืœื•ื•ื“ืื™ ืฉื”ืื•ื›ืœื•ืกื™ื™ื” ื”ื›ืœืœื™ืช ืฉื ืชื•ื›ืคืœ
01:47
within the next few decades.
42
107010
1607
ื‘ืขืฉื•ืจื™ื ื”ืงืจื•ื‘ื™ื.
01:48
For our second example,
43
108617
1749
ื”ื“ื•ื’ืžื” ื”ืฉื ื™ื™ื” ืฉืœื ื•
01:50
let's look at Canada,
44
110366
1500
ื”ื™ื ืงื ื“ื”.
01:51
where most of the population is clustered
45
111866
1776
ืจื•ื‘ ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœื” ืžืงื•ื‘ืฆืช
01:53
around the middle of the graph.
46
113642
1752
ื‘ืืžืฆืข ื”ื’ืจืฃ.
01:55
Because there are less people
47
115394
1417
ืžื›ื™ื•ื•ืŸ ืฉื™ืฉ ืคื—ื•ืช ืื ืฉื™ื
01:56
in the pre-reproductive age groups
48
116811
1877
ื‘ืงื‘ื•ืฆื•ืช ื”ื’ื™ืœ ืฉืœ ื˜ืจื•ื-ืคืจื™ื•ืŸ
01:58
than there are in the reproductive ones,
49
118688
1878
ืžืืฉืจ ื‘ืงื‘ื•ืฆื•ืช ื’ื™ืœืื™ ื”ืคืจื™ื•ืŸ -
02:00
the population will grow more slowly,
50
120566
2672
ื”ืื•ื›ืœื•ืกื™ื™ื” ื”ืงื ื“ื™ืช ืชื’ื“ืœ ื‘ืงืฆื‘ ืื˜ื™ ื™ื•ืชืจ,
02:03
as the number of people reaching their reproductive years decreases.
51
123238
3294
ืžืื—ืจ ืฉืžืกืคืจ ื”ืื ืฉื™ื ืฉืžืชื—ื™ืœื™ื ืืช ืฉื ื•ืช ื”ืคืจื™ื•ืŸ ืฉืœื”ื ื™ื•ืจื“.
02:06
Finally, let's look at Japan.
52
126532
2629
ื•ืœื‘ืกื•ืฃ, ื”ื‘ื” ื ื‘ื“ื•ืง ืžื” ืงื•ืจื” ื‘ื™ืคืŸ.
02:09
Because the majority of its population
53
129161
1997
ืจื•ื‘ ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ื™ืคืŸ
02:11
is in its post-reproductive years
54
131158
2004
ื ืžืฆืืช ืื—ืจื™ ื’ื™ืœ ื”ืคืจื™ื•ืŸ
02:13
and the number of people is smaller
55
133162
2206
ื•ืžืกืคืจ ื”ืื ืฉื™ื ืงื˜ืŸ ื™ื•ืชืจ
02:15
at each younger interval,
56
135368
1505
ื‘ื›ืœ ืงื‘ื•ืฆื•ืช ื”ื’ื™ืœ ื”ื ืžื•ื›ื•ืช ื™ื•ืชืจ.
02:16
this means that at current rates of reproduction
57
136873
1996
ืžืฉืžืขื•ืช ื”ื“ื‘ืจ ื”ื™ื ืฉื‘ืงืฆื‘ ื”ื™ืœื•ื“ื” ื”ื ื•ื›ื—ื™
02:18
the population will begin to decline
58
138869
1913
ื”ืื•ื›ืœื•ืกื™ื™ื” ืชืชื—ื™ืœ ืœื”ืชืžืขื˜,
02:20
as fewer and fewer people reach reproductive age.
59
140782
3808
ืžื›ื™ื•ื•ืŸ ืฉืคื—ื•ืช ื•ืคื—ื•ืช ืื ืฉื™ื ื™ื’ื™ืขื• ืœื’ื™ืœ ื”ืคืจื™ื•ืŸ.
02:24
Comparing these three population pyramids
60
144590
1861
ื›ืฉืื ื—ื ื• ืžืฉื•ื•ื™ื ืืช ืฉืœื•ืฉ ืคื™ืจืžื™ื“ื•ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ื”ืืœื”
02:26
side by side
61
146451
1184
ื•ืžืฆื™ื‘ื™ื ืื•ืชืŸ ื–ื• ืœืฆื“ ื–ื•
02:27
shows us three different stages
62
147635
1585
ืื ื• ืจื•ืื™ื ืฉืœื•ืฉื” ืฉืœื‘ื™ื ืฉื•ื ื™ื
02:29
in a demographic transition,
63
149220
1480
ื‘ืฉื™ื ื•ื™ ื“ืžื•ื’ืจืคื™,
02:30
as a country moves from a pre-industrial society
64
150700
2565
ื›ืฉืžื“ื™ื ื” ืขื•ื‘ืจืช ืžื—ื‘ืจื” ื˜ืจื•ื-ืชืขืฉื™ื™ืชื™ืช
02:33
to one with an industrial
65
153265
1435
ืœื—ื‘ืจื” ืชืขืฉื™ื™ืชื™ืช
02:34
or post-industrial economy.
66
154700
2069
ื•ืžืžื ื” ืœื›ืœื›ืœื” ืคื•ืกื˜-ืชืขืฉื™ื™ืชื™ืช.
02:36
Countries that have only recently begun
67
156769
1598
ื‘ืžื“ื™ื ื•ืช ืฉื”ื—ืœื• ืจืง ืœืื—ืจื•ื ื”
02:38
the process of industrialization
68
158367
1780
ืืช ืชื”ืœื™ืš ื”ืชื™ืขื•ืฉ,
02:40
typically see an increase in life expectancy
69
160147
2753
ืื ื—ื ื• ืจื•ืื™ื ื‘ื“ืจืš ื›ืœืœ ื’ื™ื“ื•ืœ ื‘ืชื•ื—ืœืช ื”ื—ื™ื™ื
02:42
and a fall in child mortality rates
70
162900
2174
ื•ื™ืจื™ื“ื” ื‘ืฉื™ืขื•ืจื™ ืชืžื•ืชืช ื”ื™ืœื“ื™ื
02:45
as a result of improvements
71
165074
1580
ื›ืชื•ืฆืื” ืžืฉื™ืคื•ืจ
02:46
in medicine, sanitation, and food supply.
72
166654
3003
ื‘ืจืžืช ื”ืจืคื•ืื”, ื”ืชื‘ืจื•ืื” ื•ืืกืคืงืช ื”ืžื–ื•ืŸ.
02:49
While birth rates remain constant,
73
169657
1918
ื‘ืขื•ื“ ืฉื™ืขื•ืจื™ ื”ื™ืœื•ื“ื” ื ืฉืืจื™ื ืงื‘ื•ืขื™ื,
02:51
leading to a population boom.
74
171575
1917
ื•ื›ืš ื ื•ืฆืจ ื’ื™ื“ื•ืœ ืขืฆื•ื ืฉืœ ื”ืื•ื›ืœื•ืกื™ื™ื”.
02:53
Developing countries that are farther along
75
173492
1878
ื‘ืžื“ื™ื ื•ืช ืžืชืคืชื—ื•ืช ืฉื ืžืฆืื•ืช ื‘ืฉืœื‘ื™ื ืžืชืงื“ืžื™ื ื™ื•ืชืจ
02:55
in the industrialization process
76
175370
1832
ื‘ืชื”ืœื™ืš ื”ืชื™ืขื•ืฉ,
02:57
begin to see a fall in birth rates,
77
177202
2168
ืžืชื—ื™ืœ ืชื”ืœื™ืš ืฉืœ ื™ืจื™ื“ื” ื‘ืฉื™ืขื•ืจื™ ื”ื™ืœื•ื“ื”
02:59
due to factors such as
78
179370
1299
ื‘ืขืงื‘ื•ืช ื’ื•ืจืžื™ื ื›ืžื•
03:00
increased education and opportunities for women outside of child-rearing
79
180669
3780
ื—ื™ื ื•ืš ืžืฉื•ืคืจ, ื”ืจื—ื‘ืช ืืคืฉืจื•ื™ื•ืช ื”ืชืขืกื•ืงื” ืœื ืฉื™ื ืžืขื‘ืจ ืœืขืฆื ื’ื™ื“ื•ืœ ื”ื™ืœื“ื™ื
03:04
and a move from rural to urban living
80
184449
3002
ื•ืžืขื‘ืจ ืžืกื‘ื™ื‘ืช ืžื’ื•ืจื™ื ื›ืคืจื™ืช ืœืขื™ืจื•ื ื™ืช,
03:07
that makes having large families
81
187451
1683
ืฉื‘ื’ืœืœื• ื”ื—ื–ืงืช ืžืฉืคื—ื•ืช ื’ื“ื•ืœื•ืช
03:09
less economically advantageous.
82
189134
2399
ืื™ื ื” ื›ื“ืื™ืช ื‘ืื•ืชื” ืžื™ื“ื” ืžื‘ื—ื™ื ื” ื›ืœื›ืœื™ืช.
03:11
Finally, countries in advanced stages of industrialization
83
191533
3149
ื•ืœื‘ืกื•ืฃ, ื‘ืฉืœื‘ื™ื ื”ืžืชืงื“ืžื™ื ืฉืœ ื”ืชื™ืขื•ืฉ
03:14
reach a point
84
194682
1041
ืžื’ื™ืขื•ืช ืœื ืงื•ื“ื”
03:15
where both birth and death rates are low,
85
195723
2728
ืฉื‘ื” ืฉื™ืขื•ืจื™ ื”ื™ืœื•ื“ื” ื•ื”ืชืžื•ืชื” ื ืžื•ื›ื™ื
03:18
and the population remains stable
86
198451
1778
ื•ื”ืื•ื›ืœื•ืกื™ื™ื” ื™ืฆื™ื‘ื”,
03:20
or even begins to decline.
87
200229
1751
ืื• ืืคื™ืœื• ืžืชื—ื™ืœื” ืœื”ืชืžืขื˜.
03:21
Now, let's take a look at the projected population pyramids
88
201980
2670
ื”ื‘ื” ื ื‘ื“ื•ืง ืื™ืš ื ืจืื•ืช ืคื™ืจืžื™ื“ื•ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ื”ืฆืคื•ื™ื•ืช
03:24
for the same three countries in 2050.
89
204650
3223
ื‘ืฉืœื•ืฉ ื”ืžื“ื™ื ื•ืช ื”ืืœื” ื‘ืฉื ืช 2050.
03:27
What do these tell us
90
207873
1199
ืžื” ื”ืŸ ืžืกืคืจื•ืช ืœื ื•
03:29
about the expected changes
91
209072
1544
ืขืœ ื”ืฉื™ื ื•ื™ื™ื ื”ืฆืคื•ื™ื™ื
03:30
in each country's population,
92
210616
1755
ื‘ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ื›ืœ ืžื“ื™ื ื”,
03:32
and what kinds of factors
93
212371
1414
ื•ืืœื• ืกื•ื’ื™ื ืฉืœ ื’ื•ืจืžื™ื
03:33
can alter the shape of these future pyramids?
94
213785
2794
ื™ื›ื•ืœื™ื ืœืฉื ื•ืช ืืช ืฆื•ืจืช ื”ืคื™ืจืžื™ื“ื•ืช ื”ืขืชื™ื“ื™ื•ืช.
03:36
A population pyramid can be useful
95
216579
1928
ืคื™ืจืžื™ื“ืช ืื•ื›ืœื•ืกื™ื™ื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™ืช
03:38
not only as a predictor of a country's future
96
218507
2242
ืœื ืจืง ื›ื“ื™ ืœื—ื–ื•ืช ืืช ืขืชื™ื“ื” ืฉืœ ืžื“ื™ื ื”,
03:40
but as a record of its past.
97
220749
2202
ืืœื ื’ื ื›ืชื™ืขื•ื“ ืฉืœ ืขื‘ืจื”.
03:42
Russia's population pyramid
98
222951
1751
ืคื™ืจืžื™ื“ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ืจื•ืกื™ื”
03:44
still bears the scars of World War II,
99
224702
2747
ืขื“ื™ื™ืŸ ื ื•ืฉืืช ืืช ื”ืฆืœืงื•ืช ืฉืœ ืžืœื—ืžืช ื”ืขื•ืœื ื”ืฉื ื™ื™ื”
03:47
which explains both the fewer numbers of elderly men
100
227449
2894
ื•ื‘ื›ืš ื™ืฉ ื”ืกื‘ืจ ืœืžืกืคืจื ื”ื ืžื•ืš ืฉืœ ื’ื‘ืจื™ื ืงืฉื™ืฉื™ื
03:50
compared to elderly women
101
230343
1750
ื‘ื™ื—ืก ืœื ืฉื™ื ืงืฉื™ืฉื•ืช,
03:52
and the relatively sudden population increase
102
232093
2045
ื•ืœื’ื™ื“ื•ืœ ื”ืคืชืื•ืžื™ ื‘ืื•ื›ืœื•ืกื™ื™ื”
03:54
as soldiers returned from the war
103
234138
2043
ืื—ืจื™ ืฉื”ื—ื™ื™ืœื™ื ื—ื–ืจื• ืžื”ืžืœื—ืžื”
03:56
and normal life resumed.
104
236181
1961
ื•ื”ื—ื™ื™ื ืฉื‘ื• ืœืžืกืœื•ืœื.
03:58
China's population pyramid
105
238142
1641
ืคื™ืจืžื™ื“ืช ื”ืื•ื›ืœื•ืกื™ื™ื” ืฉืœ ืกื™ืŸ
03:59
reflects the establishment of the one child policy
106
239783
3001
ืžืฉืงืคืช ืืช ื”ืžื“ื™ื ื™ื•ืช ืฉืœ ื™ืœื“ ืื—ื“ ืœืžืฉืคื—ื”
04:02
35 years before,
107
242784
1614
ืฉื”ื—ืœื” ืœืคื ื™ 35 ืฉื ื™ื.
04:04
which prevented a population boom
108
244398
1886
ื”ืžื“ื™ื ื™ื•ืช ื”ื–ื• ืžื ืขื” ื’ื™ื“ื•ืœ ืขืฆื•ื ื‘ืื•ื›ืœื•ืกื™ื™ื”
04:06
such as that of Rwanda
109
246284
1700
ื›ืžื• ืฉืงืจื” ื‘ืจื•ืื ื“ื”,
04:07
but also led to sex-selective abortions,
110
247984
2089
ืื‘ืœ ื’ื ื”ืชื‘ื˜ืื” ื‘ื”ืคืœื•ืช ื‘ื”ืฉืคืขืช ืžื™ืŸ ื”ืขื•ื‘ืจ,
04:10
resulting in more male children than female children.
111
250073
3882
ืฉื’ืจืžื• ืœื›ืš ืฉื ื•ืœื“ื• ื™ื•ืชืจ ืชื™ื ื•ืงื•ืช ื–ื›ืจื™ื ืžืืฉืจ ื ืงื‘ื•ืช.
04:13
Finally, the pyramid for the United States
112
253955
2286
ื•ืœื‘ืกื•ืฃ, ื”ืคื™ืจืžื™ื“ื” ืฉืœ ืืจืฆื•ืช ื”ื‘ืจื™ืช
04:16
shows the baby boom that followed World War II.
113
256241
3194
ืžืฉืงืคืช ืืช ื”"ื‘ื™ื™ื‘ื™ ื‘ื•ื" ืฉืœ ืื—ืจื™ ืžืœื—ืžืช ื”ืขื•ืœื ื”ืฉื ื™ื™ื”.
04:19
As you can see,
114
259435
1269
ื›ืคื™ ืฉืจืื™ื ื•,
04:20
population pyramids tell us far more
115
260704
2081
ืคื™ืจืžื™ื“ื•ืช ืื•ื›ืœื•ืกื™ื™ื” ืžืกืคืงื•ืช ืœื ื• ื”ืจื‘ื” ื™ื•ืชืจ ืžื™ื“ืข
04:22
about a country
116
262785
1134
ืขืœ ืžื“ื™ื ื•ืช
04:23
than just a set of numbers,
117
263919
1416
ืžืืฉืจ ืจืฉื™ืžื•ืช ืฉืœ ืžืกืคืจื™ื.
04:25
by showing both where it's been
118
265335
1616
ื”ืŸ ืžืฆื™ื’ื•ืช ื‘ืคื ื™ื ื• ื‘ืชืžื•ื ื” ืื—ืช ื”ื™ื›ืŸ ื”ื™ืชื”
04:26
and where it's headed
119
266951
1304
ื•ืœืืŸ ืคื ื™ื” ืžื•ืขื“ื•ืช.
04:28
within a single image.
120
268255
1418
ื‘ืชืžื•ื ื” ื™ื—ื™ื“ื”
04:29
And in today's increasingly interconnected world,
121
269673
2278
ื‘ื™ืžื™ื ื•, ื›ืฉื”ืขื•ืœื ื”ื•ืคืš ืœื™ื•ืชืจ ื•ื™ื•ืชืจ ืžืงื•ืฉืจ,
04:31
facing issues such as food shortages,
122
271951
2019
ื•ืขืœื™ื ื• ืœื”ืชืžื•ื“ื“ ืขื ืกื•ื’ื™ื•ืช ื›ืžื• ืžื—ืกื•ืจ ื‘ืžื–ื•ืŸ,
04:33
ecological threats, and economic disparities,
123
273970
3002
ืื™ื•ืžื™ื ืืงื•ืœื•ื’ื™ื™ื ื•ืคืขืจื™ื ื›ืœื›ืœื™ื™ื,
04:36
it is increasingly important
124
276972
1503
ื’ื•ื‘ืจืช ื”ื—ืฉื™ื‘ื•ืช ืœื›ืš
04:38
for both scientists and policy makers
125
278475
2227
ืฉืžื“ืขื ื™ื ื•ืงื•ื‘ืขื™ ืžื“ื™ื ื™ื•ืช
04:40
to have a rich and complex understanding
126
280702
2443
ื™ื‘ื™ื ื• ื‘ืฆื•ืจื” ืขืฉื™ืจื” ื•ืžื•ืจื›ื‘ืช
04:43
of populations and the factors affecting them.
127
283145
3758
ืืช ื ื•ืฉื ื”ืื•ื›ืœื•ืกื™ื•ืช ื•ืืช ื”ื’ื•ืจืžื™ื ื”ืžืฉืคื™ืขื™ื ืขืœื™ื”ืŸ.
ืขืœ ืืชืจ ื–ื”

ืืชืจ ื–ื” ื™ืฆื™ื’ ื‘ืคื ื™ื›ื ืกืจื˜ื•ื ื™ YouTube ื”ืžื•ืขื™ืœื™ื ืœืœื™ืžื•ื“ ืื ื’ืœื™ืช. ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืขื•ืจื™ ืื ื’ืœื™ืช ื”ืžื•ืขื‘ืจื™ื ืขืœ ื™ื“ื™ ืžื•ืจื™ื ืžื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ืžืจื—ื‘ื™ ื”ืขื•ืœื. ืœื—ืฅ ืคืขืžื™ื™ื ืขืœ ื”ื›ืชื•ื‘ื™ื•ืช ื‘ืื ื’ืœื™ืช ื”ืžื•ืฆื’ื•ืช ื‘ื›ืœ ื“ืฃ ื•ื™ื“ืื• ื›ื“ื™ ืœื”ืคืขื™ืœ ืืช ื”ืกืจื˜ื•ืŸ ืžืฉื. ื”ื›ืชื•ื‘ื™ื•ืช ื’ื•ืœืœื•ืช ื‘ืกื ื›ืจื•ืŸ ืขื ื”ืคืขืœืช ื”ื•ื•ื™ื“ืื•. ืื ื™ืฉ ืœืš ื”ืขืจื•ืช ืื• ื‘ืงืฉื•ืช, ืื ื ืฆื•ืจ ืื™ืชื ื• ืงืฉืจ ื‘ืืžืฆืขื•ืช ื˜ื•ืคืก ื™ืฆื™ืจืช ืงืฉืจ ื–ื”.

https://forms.gle/WvT1wiN1qDtmnspy7