How to make applying for jobs less painful | The Way We Work, a TED series

157,830 views ・ 2019-02-09

TED


Please double-click on the English subtitles below to play the video.

00:00
Applying for jobs online
0
141
1416
Prevodilac: Ivana Krivokuća Lektor: Dragana Savanovic
00:01
is one of the worst digital experiences of our time.
1
1581
2616
00:04
And applying for jobs in person really isn't much better.
2
4221
2696
00:06
[The Way We Work]
3
6942
1720
00:11
Hiring as we know it is broken on many fronts.
4
11181
2456
Konkurisanje za poslove onlajn
00:13
It's a terrible experience for people.
5
13661
1856
je jedno od najgorih digitalnih iskustava našeg vremena.
00:15
About 75 percent of people
6
15541
1816
A ni konkurisanje uživo zapravo nije mnogo bolje.
00:17
who applied to jobs using various methods in the past year
7
17381
2856
[Način na koji radimo]
00:20
said they never heard anything back from the employer.
8
20261
2656
00:22
And at the company level it's not much better.
9
22941
2176
Zapošljavanje kakvo poznajemo je manjkavo na više načina.
00:25
46 percent of people get fired or quit
10
25141
2776
To je grozno iskustvo za ljude.
00:27
within the first year of starting their jobs.
11
27941
2176
Oko 75 posto ljudi koji su se prijavljivali za poslove
00:30
It's pretty mind-blowing.
12
30141
1216
pomoću različitih metoda prošle godine
00:31
It's also bad for the economy.
13
31381
1456
00:32
For the first time in history,
14
32861
1456
reklo je da nikad nisu ništa čuli od poslodavca.
00:34
we have more open jobs than we have unemployed people,
15
34341
2856
Na nivou kompanije nije ništa bolje.
00:37
and to me that screams that we have a problem.
16
37221
2176
Četrdeset šest posto ljudi dobije ili da otkaz
00:39
I believe that at the crux of all of this is a single piece of paper: the résumé.
17
39421
3976
u prvoj godini zaposlenja.
To je prilično zapanjujuće.
00:43
A résumé definitely has some useful pieces in it:
18
43421
2336
Takođe je loše za ekonomiju.
00:45
what roles people have had, computer skills,
19
45781
2096
Prvi put u istoriji,
imamo više slobodnih radnih mesta nego nezaposlenih ljudi,
00:47
what languages they speak,
20
47901
1256
00:49
but what it misses is what they have the potential to do
21
49181
3056
i to po meni jasno govori da imamo problem.
Smatram da je u srži svega ovoga jedan papir: biografija.
00:52
that they might not have had the opportunity to do in the past.
22
52261
2976
00:55
And with such a quickly changing economy where jobs are coming online
23
55261
3256
Biografija definitivno sadrži neke korisne informacije:
00:58
that might require skills that nobody has,
24
58541
2056
koje poslove su ljudi obavljali, veštine na računaru, koje jezike govore,
01:00
if we only look at what someone has done in the past,
25
60621
2776
ali izostavlja njihov potencijal da urade nešto
01:03
we're not going to be able to match people to the jobs of the future.
26
63421
3256
što možda nisu imali priliku da urade u prošlosti.
01:06
So this is where I think technology can be really helpful.
27
66701
2736
Sa ekonomijom koja se tako brzo menja i u kojoj se pojavljuju poslovi
01:09
You've probably seen that algorithms have gotten pretty good
28
69461
2856
koji mogu zahtevati veštine koje niko nema,
01:12
at matching people to things,
29
72341
1536
01:13
but what if we could use that same technology
30
73901
2256
ako samo gledamo šta je neko radio u prošlosti,
nećemo moći da povežemo ljude sa poslovima budućnosti.
01:16
to actually help us find jobs that we're really well-suited for?
31
76181
3096
Mislim da bi tu tehnologija mogla bila od velike pomoći.
01:19
But I know what you're thinking.
32
79301
1576
01:20
Algorithms picking your next job sounds a little bit scary,
33
80901
2776
Verovatno ste videli da su algoritmi postali prilično dobri
01:23
but there is one thing that has been shown
34
83701
2056
u povezivanju ljudi sa raznim stvarima,
01:25
to be really predictive of someone's future success in a job,
35
85781
2896
ali šta ako bismo mogli da upotrebimo tu istu tehnologiju
01:28
and that's what's called a multimeasure test.
36
88701
2136
da nam pomogne da nađemo poslove za koje smo zaista podesni?
01:30
Multimeasure tests really aren't anything new,
37
90861
2176
Znam šta mislite.
Zvuči pomalo zastrašujuće da algoritmi biraju vaš sledeći posao,
01:33
but they used to be really expensive
38
93061
1736
01:34
and required a PhD sitting across from you
39
94821
2016
ali postoji nešto što se pokazalo
01:36
and answering lots of questions and writing reports.
40
96861
2456
da dobro predviđa budući uspeh osobe na poslu,
01:39
Multimeasure tests are a way
41
99341
1696
a to nešto se zove test višestrukih merila.
01:41
to understand someone's inherent traits --
42
101061
2456
Testovi višestrukih merila nisu ništa novo,
01:43
your memory, your attentiveness.
43
103541
1776
ali ranije su bili jako skupi
01:46
What if we could take multimeasure tests
44
106255
1942
i zahtevali su da doktor nauka sedi naspram vas,
01:48
and make them scalable and accessible,
45
108221
2536
odgovaranje na mnogo pitanja i pisanje izveštaja.
01:50
and provide data to employers about really what the traits are
46
110781
3376
Testovi višestrukih merila su način
za razumevanje nečijih unutrašnjih osobina -
01:54
of someone who can make them a good fit for a job?
47
114181
2896
vašeg pamćenja, pažljivosti.
01:57
This all sounds abstract.
48
117101
1296
01:58
Let's try one of the games together.
49
118421
1735
Šta ako bismo testove višestrukih merila
02:00
You're about to see a flashing circle,
50
120180
1857
učinili prilagodljivim i pristupačnim
02:02
and your job is going to be to clap when the circle is red
51
122061
2960
i obezbedili podatke poslodavcima o tome koje su to karakteristike
02:05
and do nothing when it's green.
52
125878
1496
osobe koja bi odgovarala nekom poslu?
02:07
[Ready?]
53
127399
1376
02:08
[Begin!]
54
128800
1360
Sve ovo zvuči apstraktno.
Hajde da probamo jednu igru zajedno.
02:11
[Green circle]
55
131301
1000
Videćete krug koji treperi
02:13
[Green circle]
56
133301
1040
i vaš zadatak će biti da udarite dlanom o dlan kada je krug crven,
02:15
[Red circle]
57
135301
1000
02:17
[Green circle]
58
137301
1080
a ne uradite ništa kada je zelen.
02:19
[Red circle]
59
139301
1000
[Spremni?]
02:21
Maybe you're the type of person
60
141521
1596
[Počnite!]
02:23
who claps the millisecond after a red circle appears.
61
143141
2496
[Zeleni krug]
02:25
Or maybe you're the type of person
62
145661
1656
[Zeleni krug]
02:27
who takes just a little bit longer to be 100 percent sure.
63
147341
2735
[Crveni krug]
[Zeleni krug]
02:30
Or maybe you clap on green even though you're not supposed to.
64
150101
2936
[Crveni krug]
02:33
The cool thing here is that this isn't like a standardized test
65
153061
2976
Možda ste tip osobe
koja pljesne milisekundu nakon što se crveni krug pojavi.
02:36
where some people are employable and some people aren't.
66
156061
2656
02:38
Instead it's about understanding the fit between your characteristics
67
158741
3256
Ili ste možda tip osobe
koja čeka malo više da bi bila 100 posto sigurna.
02:42
and what would make you good a certain job.
68
162021
2016
Ili možda tapšete na zeleno iako ne bi trebalo.
02:44
We found that if you clap late on red and you never clap on the green,
69
164061
3736
Ovde je zanimljivo da to nije kao standardizovan test
02:47
you might be high in attentiveness and high in restraint.
70
167821
3176
gde su neki ljudi podobni za zaposlenje, a neki nisu.
Umesto toga, radi se o razumevanju uklapanja vaših karakteristika
02:51
People in that quadrant tend to be great students, great test-takers,
71
171021
3576
i onog zbog čega biste bili dobri na izvesnom poslu.
02:54
great at project management or accounting.
72
174621
2136
02:56
But if you clap immediately on red and sometimes clap on green,
73
176781
3336
Otkrili smo da, ako pljesnete kasno na crveno i ne pljesnete na zeleno,
03:00
that might mean that you're more impulsive and creative,
74
180141
2656
možete biti veoma pažljivi i uzdržani.
03:02
and we've found that top-performing salespeople often embody these traits.
75
182821
3875
Ljudi u tom kvadrantu su često dobri učenici, dobro prolaze na testovima,
03:06
The way we actually use this in hiring
76
186721
2016
odlični u upravljanju projektima ili u računovodstvu.
03:08
is we have top performers in a role go through neuroscience exercises
77
188761
3696
Ali ako odmah pljesnete na crveno i ponekad na zeleno,
03:12
like this one.
78
192481
1216
to može značiti da ste više impulsivni i kreativni,
03:13
Then we develop an algorithm
79
193721
1376
03:15
that understands what makes those top performers unique.
80
195121
2656
i otkrili smo da vrhunski prodavci često poseduju ove osobine.
03:17
And then when people apply to the job,
81
197801
1936
03:19
we're able to surface the candidates who might be best suited for that job.
82
199761
4136
Ovo koristimo u zapošljavanju
tako što ljude koji su se istakli na poslu podvrgnemo neuronaučnim vežbama
03:23
So you might be thinking there's a danger in this.
83
203921
2376
kao što je ova.
03:26
The work world today is not the most diverse
84
206321
2136
Zatim razvijemo algoritam
koji razume šta te odlične radnike čini jedinstvenim.
03:28
and if we're building algorithms based on current top performers,
85
208481
3096
A onda, kada ljudi konkurišu za posao,
03:31
how do we make sure
86
211601
1216
03:32
that we're not just perpetuating the biases that already exist?
87
212841
2976
možemo da iznedrimo kandidate
koji bi mogli biti najpogodniji za taj posao.
03:35
For example, if we were building an algorithm based on top performing CEOs
88
215841
4056
Možda mislite da se u ovome krije opasnost.
Svet rada danas nije baš najraznovrsniji
03:39
and use the S&P 500 as a training set,
89
219921
3216
i ako ćemo stvarati algoritme na osnovu trenutno najboljih radnika,
03:43
you would actually find
90
223161
1256
kako da budemo sigurni
03:44
that you're more likely to hire a white man named John than any woman.
91
224441
3816
da time nećemo samo održavati predrasude koje već postoje?
Na primer, ako pravimo algoritam zasnovan na vrhunskim direktorima
03:48
And that's the reality of who's in those roles right now.
92
228281
2696
03:51
But technology actually poses a really interesting opportunity.
93
231001
3376
i koristimo indeks S&P 500 kao početni skup podataka,
03:54
We can create algorithms that are more equitable
94
234401
2256
otkrili bismo
03:56
and more fair than human beings have ever been.
95
236681
2256
da je verovatnije da ćete zaposliti belca po imenu Džon nego neku ženu.
03:58
Every algorithm that we put into production has been pretested
96
238961
3696
To je stvarna slika toga ko se sada nalazi na tim poslovima.
04:02
to ensure that it doesn't favor any gender or ethnicity.
97
242681
3096
Ali tehnologija zapravo predstavlja zaista zanimljivu priliku.
04:05
And if there's any population that's being overfavored,
98
245801
2736
Možemo napraviti algoritme koji su pravedniji
04:08
we can actually alter the algorithm until that's no longer true.
99
248561
3120
i pošteniji od ljudskih bića.
Svaki algoritam koji smo stavili u upotrebu je prethodno testiran
04:12
When we focus on the inherent characteristics
100
252041
2216
04:14
that can make somebody a good fit for a job,
101
254281
2096
da bi se osiguralo da ne favorizuje jedan pol ili etničku pripadnost.
04:16
we can transcend racism, classism, sexism, ageism --
102
256401
3576
A ako postoji neka populacija koja je više favorizovana,
04:20
even good schoolism.
103
260001
1416
možemo da izmenimo algoritam da više ne bude tako.
04:21
Our best technology and algorithms shouldn't just be used
104
261441
2896
04:24
for helping us find our next movie binge or new favorite Justin Bieber song.
105
264361
3736
Kada se fokusiramo na unutrašnje osobine
zbog kojih je neko dobra osoba za neki posao,
04:28
Imagine if we could harness the power of technology
106
268121
2656
možemo prevazići rasizam, klasizam, seksizam, starosnu diskriminaciju -
04:30
to get real guidance on what we should be doing
107
270801
2296
čak i obrazovnu diskriminaciju.
04:33
based on who we are at a deeper level.
108
273121
1936
Naša najbolja tehnologija i algoritmi ne bi trebalo da se samo koriste
za pomoć u pronalaženju narednog filma ili nove omiljene pesme Džastina Bibera.
Zamislite ako bismo iskoristili moć tehnologije
da dobijemo stvarne smernice za ono što treba da radimo
na osnovu onoga što jesmo na dubljem nivou.
About this website

This site will introduce you to YouTube videos that are useful for learning English. You will see English lessons taught by top-notch teachers from around the world. Double-click on the English subtitles displayed on each video page to play the video from there. The subtitles scroll in sync with the video playback. If you have any comments or requests, please contact us using this contact form.

https://forms.gle/WvT1wiN1qDtmnspy7