How to make applying for jobs less painful | The Way We Work, a TED series

158,093 views ・ 2019-02-09

TED


Sila klik dua kali pada sari kata Inggeris di bawah untuk memainkan video.

00:00
Applying for jobs online
0
141
1416
Translator: Rusazziana Ahmad Reviewer: Aiman Manap
00:01
is one of the worst digital experiences of our time.
1
1581
2616
00:04
And applying for jobs in person really isn't much better.
2
4221
2696
00:06
[The Way We Work]
3
6942
1720
00:11
Hiring as we know it is broken on many fronts.
4
11181
2456
Memohon kerja secara online
00:13
It's a terrible experience for people.
5
13661
1856
adalah antara pengalaman pahit, permohonan
00:15
About 75 percent of people
6
15541
1816
kerja secara berhadapan juga taklah begitu bagus.
00:17
who applied to jobs using various methods in the past year
7
17381
2856
[Cara Kita Bekerja]
00:20
said they never heard anything back from the employer.
8
20261
2656
00:22
And at the company level it's not much better.
9
22941
2176
Pengkaderan dipecahkan kepada beberapa peringkat.
00:25
46 percent of people get fired or quit
10
25141
2776
Ia menggerunkan ramai orang.
00:27
within the first year of starting their jobs.
11
27941
2176
Sekitar 75 peratus pemohon yang
mengguna pelbagai cara pada tahun lepas
00:30
It's pretty mind-blowing.
12
30141
1216
00:31
It's also bad for the economy.
13
31381
1456
00:32
For the first time in history,
14
32861
1456
mendakwa ketiadaan maklum balas majikan.
00:34
we have more open jobs than we have unemployed people,
15
34341
2856
Situasi di syarikat juga tak begitu baik.
00:37
and to me that screams that we have a problem.
16
37221
2176
46 peratus pekerja dipecat atau berhenti
00:39
I believe that at the crux of all of this is a single piece of paper: the résumé.
17
39421
3976
dalam tempoh tahun pertama bekerja.
Ini amat mengejutkan.
00:43
A résumé definitely has some useful pieces in it:
18
43421
2336
Ia tak bagus untuk ekonomi.
00:45
what roles people have had, computer skills,
19
45781
2096
Pertama kali dalam sejarah,
pekerjaan melebihi penggangur,
00:47
what languages they speak,
20
47901
1256
00:49
but what it misses is what they have the potential to do
21
49181
3056
petanda wujudnya masalah.
Saya yakin punca utama isu ini adalah resume.
00:52
that they might not have had the opportunity to do in the past.
22
52261
2976
00:55
And with such a quickly changing economy where jobs are coming online
23
55261
3256
Resume pasti mempunyai maklumat berguna seperti:
00:58
that might require skills that nobody has,
24
58541
2056
jawatan terdahulu, kemahiran komputer,
01:00
if we only look at what someone has done in the past,
25
60621
2776
penguasaan bahasa,
tapi ia terlepas pandang akan potensi pemohon
01:03
we're not going to be able to match people to the jobs of the future.
26
63421
3256
yakni peluang penambahbaikan yang mereka terlepas.
01:06
So this is where I think technology can be really helpful.
27
66701
2736
Kepesatan perubahan ekonomi melahirkan kerjaya online yang
01:09
You've probably seen that algorithms have gotten pretty good
28
69461
2856
perlukan skil baru
01:12
at matching people to things,
29
72341
1536
01:13
but what if we could use that same technology
30
73901
2256
namun calon pekerja sukar didapati jika
pengalaman kerja yang lalu menjadi ukuran.
01:16
to actually help us find jobs that we're really well-suited for?
31
76181
3096
01:19
But I know what you're thinking.
32
79301
1576
Di sinilah teknologi akan sangat membantu.
01:20
Algorithms picking your next job sounds a little bit scary,
33
80901
2776
Kita sedia maklum bahawa sistem algoritma semakin mahir
01:23
but there is one thing that has been shown
34
83701
2056
memadankan citarasa pengguna.
01:25
to be really predictive of someone's future success in a job,
35
85781
2896
Mengapa tidak kita gunakan teknologi yang sama
01:28
and that's what's called a multimeasure test.
36
88701
2136
untuk membantu kita mencari kerjaya yang bersesuaian?
01:30
Multimeasure tests really aren't anything new,
37
90861
2176
Saya tahu kerisauan anda.
01:33
but they used to be really expensive
38
93061
1736
Algoritma menentukan kerjaya anda? Kedengaran menakutkan,
01:34
and required a PhD sitting across from you
39
94821
2016
01:36
and answering lots of questions and writing reports.
40
96861
2456
namun ada satu kaedah yang terbukti
mampu menilai bakal kejayaan seseorang dalam pekerjaan.
01:39
Multimeasure tests are a way
41
99341
1696
01:41
to understand someone's inherent traits --
42
101061
2456
Kaedah ini dinamakan ujian aneka ukuran
01:43
your memory, your attentiveness.
43
103541
1776
Ujian ini bukanlah sesuatu yang baru
tapi kosnya agak mahal. Ia perlu
01:46
What if we could take multimeasure tests
44
106255
1942
pemilik PhD menyelia ujian anda,
01:48
and make them scalable and accessible,
45
108221
2536
menjawab banyak soalan dan menulis laporan.
01:50
and provide data to employers about really what the traits are
46
110781
3376
Ujian aneka ukuran adalah satu cara
untuk memahami perwatakan, daya ingatan,
01:54
of someone who can make them a good fit for a job?
47
114181
2896
& daya perhatian seseorang.
01:57
This all sounds abstract.
48
117101
1296
01:58
Let's try one of the games together.
49
118421
1735
Mengapa tidak kita memanfaatkan ujian
02:00
You're about to see a flashing circle,
50
120180
1857
ini, meluaskan penggunaannya,
02:02
and your job is going to be to clap when the circle is red
51
122061
2960
dan menyediakan data kepada majikan tentang perwatakan yang sesuai
02:05
and do nothing when it's green.
52
125878
1496
bagi seseorang yang bakal mengisi jawatan itu?
02:07
[Ready?]
53
127399
1376
02:08
[Begin!]
54
128800
1360
Semua kedengaran abstrak?
Mari kita cuba satu permainan.
02:11
[Green circle]
55
131301
1000
Anda akan melihat bulatan berkelip.
02:13
[Green circle]
56
133301
1040
Tugas anda, tepuk tangan tika bulatan berwarna merah & berdiam
02:15
[Red circle]
57
135301
1000
02:17
[Green circle]
58
137301
1080
diri tika bulatan hijau.
02:19
[Red circle]
59
139301
1000
[Sedia?]
02:21
Maybe you're the type of person
60
141521
1596
[Mula!]
02:23
who claps the millisecond after a red circle appears.
61
143141
2496
[Bulatan hijau]
02:25
Or maybe you're the type of person
62
145661
1656
[Bulatan hijau]
02:27
who takes just a little bit longer to be 100 percent sure.
63
147341
2735
[Bulatan merah]
[Bulatan hijau]
02:30
Or maybe you clap on green even though you're not supposed to.
64
150101
2936
[Bulatan merah]
02:33
The cool thing here is that this isn't like a standardized test
65
153061
2976
Mungkin anda seorang yang menepuk
tangan selepas beberapa detik bulatan merah muncul.
02:36
where some people are employable and some people aren't.
66
156061
2656
02:38
Instead it's about understanding the fit between your characteristics
67
158741
3256
Mungkin juga anda seorang yang
mengambil sedikit masa untuk 100 peratus yakin. Mungkin
02:42
and what would make you good a certain job.
68
162021
2016
juga anda bertepuk tangan tika bulatan hijau walau tak boleh.
02:44
We found that if you clap late on red and you never clap on the green,
69
164061
3736
Yang menariknya, ini bukan ujian standard yang menentukan
02:47
you might be high in attentiveness and high in restraint.
70
167821
3176
kelayakan seseorang untuk pekerjaan atau tidak.
02:51
People in that quadrant tend to be great students, great test-takers,
71
171021
3576
Sebaliknya ia mengenai pemahaman tentang kepadananan perwatakan anda
02:54
great at project management or accounting.
72
174621
2136
dan kerjaya yang bersesuaian.
02:56
But if you clap immediately on red and sometimes clap on green,
73
176781
3336
Menurut ujian ini jika anda lambat tepuk tika merah dan tak tepuk tika hijau,
03:00
that might mean that you're more impulsive and creative,
74
180141
2656
anda mungkin mempunyai daya perhatian & kekangan yang tinggi.
03:02
and we've found that top-performing salespeople often embody these traits.
75
182821
3875
Orang dalam kelompok ini bakal menjadi pelajar dan calon ujian yang hebat,
03:06
The way we actually use this in hiring
76
186721
2016
pakar menguruskan projek atau perakaunan.
03:08
is we have top performers in a role go through neuroscience exercises
77
188761
3696
Namun jika anda tepuk cepat tika merah & kadang-kala tepuk tika hijau
03:12
like this one.
78
192481
1216
kemungkinan anda lebih mengikut gerak hati & kreatif.
03:13
Then we develop an algorithm
79
193721
1376
03:15
that understands what makes those top performers unique.
80
195121
2656
Kami mendapati jurujual yang cemerlang sering memiliki sifat ini.
03:17
And then when people apply to the job,
81
197801
1936
03:19
we're able to surface the candidates who might be best suited for that job.
82
199761
4136
Ujian ini diguna dalam pengkaderan dengan
memberi ujian neurosains kepada calon terhebat
03:23
So you might be thinking there's a danger in this.
83
203921
2376
seperti ini.
03:26
The work world today is not the most diverse
84
206321
2136
Kemudian kita bina algoritma
yang memahami faktor yang menjadikan mereka unik.
03:28
and if we're building algorithms based on current top performers,
85
208481
3096
Kemudian tika individu memohon kerja,
03:31
how do we make sure
86
211601
1216
03:32
that we're not just perpetuating the biases that already exist?
87
212841
2976
kita dapat menapis calon yang sesuai untuk kerja itu.
03:35
For example, if we were building an algorithm based on top performing CEOs
88
215841
4056
Mungkin anda khuatir kemungkinan bahayanya.
Dunia kerjaya kini taklah terlalu pelbagai.
03:39
and use the S&P 500 as a training set,
89
219921
3216
Jika algoritma dibina berdasarkan prestasi calon terhebat,
03:43
you would actually find
90
223161
1256
03:44
that you're more likely to hire a white man named John than any woman.
91
224441
3816
bagaimana cara memastikan
bahawa kita tidak meneruskan prasangka yang sudah wujud?
03:48
And that's the reality of who's in those roles right now.
92
228281
2696
Contoh, jika kita membina algoritma berdasarkan para CEO terhebat
03:51
But technology actually poses a really interesting opportunity.
93
231001
3376
dan menggunakan S&P 500 sebagai set latihan,
03:54
We can create algorithms that are more equitable
94
234401
2256
anda akan mendapati wujud
03:56
and more fair than human beings have ever been.
95
236681
2256
kecenderungan untuk melantik lelaki mat saleh berbanding wanita.
03:58
Every algorithm that we put into production has been pretested
96
238961
3696
Itu gambaran realiti semasa jawatan tersebut.
04:02
to ensure that it doesn't favor any gender or ethnicity.
97
242681
3096
Begitupun teknologi sebenarnya mempunyai potensi yang menarik.
04:05
And if there's any population that's being overfavored,
98
245801
2736
Kita boleh cipta algoritma yang lebih saksama
04:08
we can actually alter the algorithm until that's no longer true.
99
248561
3120
dan lebih adil daripada manusia.
Setiap algoritma yang kami hasilkan telah diprauji untuk kepastian bahawa
04:12
When we focus on the inherent characteristics
100
252041
2216
04:14
that can make somebody a good fit for a job,
101
254281
2096
ia tak memilih kasih terhadap mana-mana jantina atau etnik.
04:16
we can transcend racism, classism, sexism, ageism --
102
256401
3576
Sekiranya ada kelompok yang lebih disukai,
04:20
even good schoolism.
103
260001
1416
kami boleh mengubah algoritma itu sehingga ia tak lagi benar.
04:21
Our best technology and algorithms shouldn't just be used
104
261441
2896
04:24
for helping us find our next movie binge or new favorite Justin Bieber song.
105
264361
3736
Apabila kita mengutamakan perwatakan yang
sesuai untuk jawatan kosong tersebut, kita
04:28
Imagine if we could harness the power of technology
106
268121
2656
boleh mengatasi prejudis kaum, kasta kelas,jantina, umur --
04:30
to get real guidance on what we should be doing
107
270801
2296
bahkan sekolah yang bagus.
04:33
based on who we are at a deeper level.
108
273121
1936
Teknologi & algoritma terbaik tak sepatutnya hanya digunakan
untuk mencari filem seterusnya atau lagu kegemaran Justin Bieber yang terbaru.
Bayangkan jika kita dapat memanfaatkan potensi teknologi
bagi mendapatkan petunjuk untuk tindakan yang
bersesuaian dengan perwatakan sebenar kita.
Mengenai laman web ini

Laman web ini akan memperkenalkan anda kepada video YouTube yang berguna untuk belajar bahasa Inggeris. Anda akan melihat pelajaran Bahasa Inggeris yang diajar oleh guru terkemuka dari seluruh dunia. Klik dua kali pada sari kata bahasa Inggeris yang dipaparkan pada setiap halaman video untuk memainkan video dari sana. Sari kata tatal selari dengan main balik video. Jika anda mempunyai sebarang komen atau permintaan, sila hubungi kami menggunakan borang hubungan ini.

https://forms.gle/WvT1wiN1qDtmnspy7