How to make applying for jobs less painful | The Way We Work, a TED series

161,760 views ・ 2019-02-09

TED


請雙擊下方英文字幕播放視頻。

00:00
Applying for jobs online
0
141
1416
譯者: Sailin Lu 審譯者: Bruce Sung
00:01
is one of the worst digital experiences of our time.
1
1581
2616
00:04
And applying for jobs in person really isn't much better.
2
4221
2696
00:06
[The Way We Work]
3
6942
1720
00:11
Hiring as we know it is broken on many fronts.
4
11181
2456
網路上求職
00:13
It's a terrible experience for people.
5
13661
1856
是現代最糟糕的一種數位體驗,
00:15
About 75 percent of people
6
15541
1816
但親自求職也好不了多少。
00:17
who applied to jobs using various methods in the past year
7
17381
2856
【我們的工作方式】
00:20
said they never heard anything back from the employer.
8
20261
2656
00:22
And at the company level it's not much better.
9
22941
2176
我們所知的招聘方式 在很多方面存在缺陷,
00:25
46 percent of people get fired or quit
10
25141
2776
對很多人來說都是難受的體驗。
00:27
within the first year of starting their jobs.
11
27941
2176
過去一年中,
以不同方式找工作的求職者裡面
00:30
It's pretty mind-blowing.
12
30141
1216
00:31
It's also bad for the economy.
13
31381
1456
00:32
For the first time in history,
14
32861
1456
有 75% 的人表示從未得到雇主回覆。
00:34
we have more open jobs than we have unemployed people,
15
34341
2856
而對招聘的公司來說, 情況也沒好到哪裡。
00:37
and to me that screams that we have a problem.
16
37221
2176
任職不到一年
00:39
I believe that at the crux of all of this is a single piece of paper: the résumé.
17
39421
3976
就被解聘或辭職的人也高達 46%,
實在令人震驚,
00:43
A résumé definitely has some useful pieces in it:
18
43421
2336
也不利於經濟發展。
00:45
what roles people have had, computer skills,
19
45781
2096
第一次在歷史上出現了
職位空缺多於失業人數的現象,
00:47
what languages they speak,
20
47901
1256
00:49
but what it misses is what they have the potential to do
21
49181
3056
這是個令人不容小覷的問題。
我認為所有問題的關鍵在於 那一張紙——也就是履歷表。
00:52
that they might not have had the opportunity to do in the past.
22
52261
2976
00:55
And with such a quickly changing economy where jobs are coming online
23
55261
3256
履歷表固然有不少有用訊息:
00:58
that might require skills that nobody has,
24
58541
2056
例如求職者曾經擔任的職位、 他們的電腦技能,
01:00
if we only look at what someone has done in the past,
25
60621
2776
及他們會的語言。
但履歷表無法顯示求職者的潛能,
01:03
we're not going to be able to match people to the jobs of the future.
26
63421
3256
因為他們過去沒有機會 去擔任能展現長才的工作。
01:06
So this is where I think technology can be really helpful.
27
66701
2736
隨着經濟急促轉型, 網上湧現大批職缺
01:09
You've probably seen that algorithms have gotten pretty good
28
69461
2856
需要一些無前例可循的技能。
01:12
at matching people to things,
29
72341
1536
01:13
but what if we could use that same technology
30
73901
2256
如果我們單看求職者過去的成就,
則無法為未來的職位找到合適人才。
01:16
to actually help us find jobs that we're really well-suited for?
31
76181
3096
因此我認為科技在這方面能幫上很多忙。
01:19
But I know what you're thinking.
32
79301
1576
01:20
Algorithms picking your next job sounds a little bit scary,
33
80901
2776
大家或許見識過演算法能針對需求
01:23
but there is one thing that has been shown
34
83701
2056
為人們找到適合的東西。
01:25
to be really predictive of someone's future success in a job,
35
85781
2896
那麼是否我們可以將相同的技術
01:28
and that's what's called a multimeasure test.
36
88701
2136
應用在尋找適合的職缺呢?
01:30
Multimeasure tests really aren't anything new,
37
90861
2176
我知道大家在想什麼,
用演算法來媒合工作聽起來有點可怕,
01:33
but they used to be really expensive
38
93061
1736
01:34
and required a PhD sitting across from you
39
94821
2016
但有一項技術能夠預測
01:36
and answering lots of questions and writing reports.
40
96861
2456
求職者在新工作上的成就,
01:39
Multimeasure tests are a way
41
99341
1696
那就是所謂的「多元測試」。
01:41
to understand someone's inherent traits --
42
101061
2456
多元測試並不是什麼新玩意兒,
01:43
your memory, your attentiveness.
43
103541
1776
以前它的成本很高,
01:46
What if we could take multimeasure tests
44
106255
1942
需要一位博士坐在你面前,
01:48
and make them scalable and accessible,
45
108221
2536
回答一大堆問題、寫一堆報告。
01:50
and provide data to employers about really what the traits are
46
110781
3376
多元測試能了解
一個人與生俱有的特色,
01:54
of someone who can make them a good fit for a job?
47
114181
2896
例如:你的記憶力、注意力。
01:57
This all sounds abstract.
48
117101
1296
01:58
Let's try one of the games together.
49
118421
1735
如果我們可以運用多元測試,
02:00
You're about to see a flashing circle,
50
120180
1857
讓它可量身訂做、普及,
02:02
and your job is going to be to clap when the circle is red
51
122061
2960
並將這些數據提供給雇主, 以個人特質來篩選
02:05
and do nothing when it's green.
52
125878
1496
真的適合這項工作的人選呢?
02:07
[Ready?]
53
127399
1376
02:08
[Begin!]
54
128800
1360
這聽起來很抽象。
不如,我們來玩個小遊戲。
02:11
[Green circle]
55
131301
1000
遊戲中你會看到一個圓圈閃過,
02:13
[Green circle]
56
133301
1040
如果你看到紅色圓圈, 就要立刻拍手,
02:15
[Red circle]
57
135301
1000
02:17
[Green circle]
58
137301
1080
如果是綠的,就不要做任何動作。
02:19
[Red circle]
59
139301
1000
[準備好了沒?]
02:21
Maybe you're the type of person
60
141521
1596
[開始!]
02:23
who claps the millisecond after a red circle appears.
61
143141
2496
[綠色圓圈]
02:25
Or maybe you're the type of person
62
145661
1656
[綠色圓圈]
02:27
who takes just a little bit longer to be 100 percent sure.
63
147341
2735
[紅色圓圈]
[綠色圓圈]
02:30
Or maybe you clap on green even though you're not supposed to.
64
150101
2936
[紅色圓圈]
02:33
The cool thing here is that this isn't like a standardized test
65
153061
2976
或許你可以在紅色圈圈出現的
千分之一秒內拍手,
02:36
where some people are employable and some people aren't.
66
156061
2656
02:38
Instead it's about understanding the fit between your characteristics
67
158741
3256
也或許你是那種寧可多花點時間
百分百肯定後才出手的人。
02:42
and what would make you good a certain job.
68
162021
2016
又或許你在綠色圈出現 就拍手,違反了規則。
02:44
We found that if you clap late on red and you never clap on the green,
69
164061
3736
最棒的一點在於這個測驗 和一般的測試不同,
02:47
you might be high in attentiveness and high in restraint.
70
167821
3176
一般測試會區分某些人適合 這工作,而某些人不是。
但多元測試卻是去辨別 你的特質適合什麼,
02:51
People in that quadrant tend to be great students, great test-takers,
71
171021
3576
以及你能勝任某項工作的特長為何。
02:54
great at project management or accounting.
72
174621
2136
研究顯示如果你在出現紅圈時拍手, 而從沒在綠圈時誤拍,
02:56
But if you clap immediately on red and sometimes clap on green,
73
176781
3336
03:00
that might mean that you're more impulsive and creative,
74
180141
2656
那麼你有著相當高的 專注力及自制力,
03:02
and we've found that top-performing salespeople often embody these traits.
75
182821
3875
這類的人通常會是好學生, 測試也能得到好成績,
03:06
The way we actually use this in hiring
76
186721
2016
適合當專案管理者或從事會計工作。
03:08
is we have top performers in a role go through neuroscience exercises
77
188761
3696
如果你在紅圈圈出現時立即拍手, 偶爾在綠色出現時也不小心拍手,
03:12
like this one.
78
192481
1216
表示你有可能比較 隨興而為,也較有創意,
03:13
Then we develop an algorithm
79
193721
1376
03:15
that understands what makes those top performers unique.
80
195121
2656
我們發現頂尖業務 通常具有這些特徵。
03:17
And then when people apply to the job,
81
197801
1936
03:19
we're able to surface the candidates who might be best suited for that job.
82
199761
4136
我們之所以能將 這項測試運用在聘僱上,
是因為我們讓在該領域表現傑出的人 實際做過神經科學的測驗,
03:23
So you might be thinking there's a danger in this.
83
203921
2376
就像這個。
03:26
The work world today is not the most diverse
84
206321
2136
根據結果,我們發展出一套演算公式
以了解是哪一項特質 讓優秀的人才脫穎而出。
03:28
and if we're building algorithms based on current top performers,
85
208481
3096
因而人們在求職時,
03:31
how do we make sure
86
211601
1216
03:32
that we're not just perpetuating the biases that already exist?
87
212841
2976
我們才能篩選出最適任的人。
03:35
For example, if we were building an algorithm based on top performing CEOs
88
215841
4056
也許你在想:這樣的測試也有風險,
因為今日的職場並沒有太多元化,
03:39
and use the S&P 500 as a training set,
89
219921
3216
如果只針對現有優秀的工作者 特質來設計演算公式,
03:43
you would actually find
90
223161
1256
03:44
that you're more likely to hire a white man named John than any woman.
91
224441
3816
那麼要如何確保
我們不會讓現有的偏差 一再地重複發生?
03:48
And that's the reality of who's in those roles right now.
92
228281
2696
假設我們的演算法是以 頂尖執行長為設計基礎,
03:51
But technology actually poses a really interesting opportunity.
93
231001
3376
並以標準普爾 500 家公司為訓練集,
03:54
We can create algorithms that are more equitable
94
234401
2256
則會發現
03:56
and more fair than human beings have ever been.
95
236681
2256
選出來的人大概都會是叫做 約翰的白人男性而少有女性,
03:58
Every algorithm that we put into production has been pretested
96
238961
3696
那是因為在現實職場中, 擔任該職位的都是這類型的人。
04:02
to ensure that it doesn't favor any gender or ethnicity.
97
242681
3096
在這裡科技就能提供 另一個有趣的機會,
04:05
And if there's any population that's being overfavored,
98
245801
2736
我們可以做出一套更公正,
04:08
we can actually alter the algorithm until that's no longer true.
99
248561
3120
而且比人類更公平的演算系統。
每套演算法在實際應用前 都需經過前置測試,
04:12
When we focus on the inherent characteristics
100
252041
2216
04:14
that can make somebody a good fit for a job,
101
254281
2096
以確保不會偏好某性別或種族。
04:16
we can transcend racism, classism, sexism, ageism --
102
256401
3576
如果系統真有偏重某些族群,
04:20
even good schoolism.
103
260001
1416
那麼我們可以改變演算方法, 直到情況改善。
04:21
Our best technology and algorithms shouldn't just be used
104
261441
2896
04:24
for helping us find our next movie binge or new favorite Justin Bieber song.
105
264361
3736
當我們著重在發掘某人與生俱來、
使他在職場上適任的人格特質,
04:28
Imagine if we could harness the power of technology
106
268121
2656
我們就能夠超越種族、 階級、性別、年齡,
04:30
to get real guidance on what we should be doing
107
270801
2296
甚至名校的偏見。
04:33
based on who we are at a deeper level.
108
273121
1936
我們這樣棒的科技 和演算法不應該只用在
追電影或尋找小賈斯汀的新歌上面。
而是應該要駕馭科技,
並根據我們的內在潛質
來引導我們要追求的目標。
關於本網站

本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隱私政策

eng.lish.video

Developer's Blog