How to make applying for jobs less painful | The Way We Work, a TED series
158,924 views ・ 2019-02-09
請雙擊下方英文字幕播放視頻。
00:00
Applying for jobs online
0
141
1416
譯者: Sailin Lu
審譯者: Bruce Sung
00:01
is one of the worst
digital experiences of our time.
1
1581
2616
00:04
And applying for jobs in person
really isn't much better.
2
4221
2696
00:06
[The Way We Work]
3
6942
1720
00:11
Hiring as we know it
is broken on many fronts.
4
11181
2456
網路上求職
00:13
It's a terrible experience for people.
5
13661
1856
是現代最糟糕的一種數位體驗,
00:15
About 75 percent of people
6
15541
1816
但親自求職也好不了多少。
00:17
who applied to jobs
using various methods in the past year
7
17381
2856
【我們的工作方式】
00:20
said they never heard anything back
from the employer.
8
20261
2656
00:22
And at the company level
it's not much better.
9
22941
2176
我們所知的招聘方式
在很多方面存在缺陷,
00:25
46 percent of people get fired or quit
10
25141
2776
對很多人來說都是難受的體驗。
00:27
within the first year
of starting their jobs.
11
27941
2176
過去一年中,
以不同方式找工作的求職者裡面
00:30
It's pretty mind-blowing.
12
30141
1216
00:31
It's also bad for the economy.
13
31381
1456
00:32
For the first time in history,
14
32861
1456
有 75% 的人表示從未得到雇主回覆。
00:34
we have more open jobs
than we have unemployed people,
15
34341
2856
而對招聘的公司來說,
情況也沒好到哪裡。
00:37
and to me that screams
that we have a problem.
16
37221
2176
任職不到一年
00:39
I believe that at the crux of all of this
is a single piece of paper: the résumé.
17
39421
3976
就被解聘或辭職的人也高達 46%,
實在令人震驚,
00:43
A résumé definitely has
some useful pieces in it:
18
43421
2336
也不利於經濟發展。
00:45
what roles people have had,
computer skills,
19
45781
2096
第一次在歷史上出現了
職位空缺多於失業人數的現象,
00:47
what languages they speak,
20
47901
1256
00:49
but what it misses is
what they have the potential to do
21
49181
3056
這是個令人不容小覷的問題。
我認為所有問題的關鍵在於
那一張紙——也就是履歷表。
00:52
that they might not have had
the opportunity to do in the past.
22
52261
2976
00:55
And with such a quickly changing economy
where jobs are coming online
23
55261
3256
履歷表固然有不少有用訊息:
00:58
that might require skills that nobody has,
24
58541
2056
例如求職者曾經擔任的職位、
他們的電腦技能,
01:00
if we only look at what someone
has done in the past,
25
60621
2776
及他們會的語言。
但履歷表無法顯示求職者的潛能,
01:03
we're not going to be able
to match people to the jobs of the future.
26
63421
3256
因為他們過去沒有機會
去擔任能展現長才的工作。
01:06
So this is where I think technology
can be really helpful.
27
66701
2736
隨着經濟急促轉型,
網上湧現大批職缺
01:09
You've probably seen
that algorithms have gotten pretty good
28
69461
2856
需要一些無前例可循的技能。
01:12
at matching people to things,
29
72341
1536
01:13
but what if we could use
that same technology
30
73901
2256
如果我們單看求職者過去的成就,
則無法為未來的職位找到合適人才。
01:16
to actually help us find jobs
that we're really well-suited for?
31
76181
3096
因此我認為科技在這方面能幫上很多忙。
01:19
But I know what you're thinking.
32
79301
1576
01:20
Algorithms picking your next job
sounds a little bit scary,
33
80901
2776
大家或許見識過演算法能針對需求
01:23
but there is one thing that has been shown
34
83701
2056
為人們找到適合的東西。
01:25
to be really predictive
of someone's future success in a job,
35
85781
2896
那麼是否我們可以將相同的技術
01:28
and that's what's called
a multimeasure test.
36
88701
2136
應用在尋找適合的職缺呢?
01:30
Multimeasure tests
really aren't anything new,
37
90861
2176
我知道大家在想什麼,
用演算法來媒合工作聽起來有點可怕,
01:33
but they used to be really expensive
38
93061
1736
01:34
and required a PhD sitting across from you
39
94821
2016
但有一項技術能夠預測
01:36
and answering lots of questions
and writing reports.
40
96861
2456
求職者在新工作上的成就,
01:39
Multimeasure tests are a way
41
99341
1696
那就是所謂的「多元測試」。
01:41
to understand someone's inherent traits --
42
101061
2456
多元測試並不是什麼新玩意兒,
01:43
your memory, your attentiveness.
43
103541
1776
以前它的成本很高,
01:46
What if we could take multimeasure tests
44
106255
1942
需要一位博士坐在你面前,
01:48
and make them scalable and accessible,
45
108221
2536
回答一大堆問題、寫一堆報告。
01:50
and provide data to employers
about really what the traits are
46
110781
3376
多元測試能了解
一個人與生俱有的特色,
01:54
of someone who can make
them a good fit for a job?
47
114181
2896
例如:你的記憶力、注意力。
01:57
This all sounds abstract.
48
117101
1296
01:58
Let's try one of the games together.
49
118421
1735
如果我們可以運用多元測試,
02:00
You're about to see a flashing circle,
50
120180
1857
讓它可量身訂做、普及,
02:02
and your job is going to be
to clap when the circle is red
51
122061
2960
並將這些數據提供給雇主,
以個人特質來篩選
02:05
and do nothing when it's green.
52
125878
1496
真的適合這項工作的人選呢?
02:07
[Ready?]
53
127399
1376
02:08
[Begin!]
54
128800
1360
這聽起來很抽象。
不如,我們來玩個小遊戲。
02:11
[Green circle]
55
131301
1000
遊戲中你會看到一個圓圈閃過,
02:13
[Green circle]
56
133301
1040
如果你看到紅色圓圈,
就要立刻拍手,
02:15
[Red circle]
57
135301
1000
02:17
[Green circle]
58
137301
1080
如果是綠的,就不要做任何動作。
02:19
[Red circle]
59
139301
1000
[準備好了沒?]
02:21
Maybe you're the type of person
60
141521
1596
[開始!]
02:23
who claps the millisecond
after a red circle appears.
61
143141
2496
[綠色圓圈]
02:25
Or maybe you're the type of person
62
145661
1656
[綠色圓圈]
02:27
who takes just a little bit longer
to be 100 percent sure.
63
147341
2735
[紅色圓圈]
[綠色圓圈]
02:30
Or maybe you clap on green
even though you're not supposed to.
64
150101
2936
[紅色圓圈]
02:33
The cool thing here is that
this isn't like a standardized test
65
153061
2976
或許你可以在紅色圈圈出現的
千分之一秒內拍手,
02:36
where some people are employable
and some people aren't.
66
156061
2656
02:38
Instead it's about understanding
the fit between your characteristics
67
158741
3256
也或許你是那種寧可多花點時間
百分百肯定後才出手的人。
02:42
and what would make you
good a certain job.
68
162021
2016
又或許你在綠色圈出現
就拍手,違反了規則。
02:44
We found that if you clap late on red
and you never clap on the green,
69
164061
3736
最棒的一點在於這個測驗
和一般的測試不同,
02:47
you might be high in attentiveness
and high in restraint.
70
167821
3176
一般測試會區分某些人適合
這工作,而某些人不是。
但多元測試卻是去辨別
你的特質適合什麼,
02:51
People in that quadrant tend to be
great students, great test-takers,
71
171021
3576
以及你能勝任某項工作的特長為何。
02:54
great at project management or accounting.
72
174621
2136
研究顯示如果你在出現紅圈時拍手,
而從沒在綠圈時誤拍,
02:56
But if you clap immediately on red
and sometimes clap on green,
73
176781
3336
03:00
that might mean that
you're more impulsive and creative,
74
180141
2656
那麼你有著相當高的
專注力及自制力,
03:02
and we've found that top-performing
salespeople often embody these traits.
75
182821
3875
這類的人通常會是好學生,
測試也能得到好成績,
03:06
The way we actually use this in hiring
76
186721
2016
適合當專案管理者或從事會計工作。
03:08
is we have top performers in a role
go through neuroscience exercises
77
188761
3696
如果你在紅圈圈出現時立即拍手,
偶爾在綠色出現時也不小心拍手,
03:12
like this one.
78
192481
1216
表示你有可能比較
隨興而為,也較有創意,
03:13
Then we develop an algorithm
79
193721
1376
03:15
that understands what makes
those top performers unique.
80
195121
2656
我們發現頂尖業務
通常具有這些特徵。
03:17
And then when people apply to the job,
81
197801
1936
03:19
we're able to surface the candidates
who might be best suited for that job.
82
199761
4136
我們之所以能將
這項測試運用在聘僱上,
是因為我們讓在該領域表現傑出的人
實際做過神經科學的測驗,
03:23
So you might be thinking
there's a danger in this.
83
203921
2376
就像這個。
03:26
The work world today
is not the most diverse
84
206321
2136
根據結果,我們發展出一套演算公式
以了解是哪一項特質
讓優秀的人才脫穎而出。
03:28
and if we're building algorithms
based on current top performers,
85
208481
3096
因而人們在求職時,
03:31
how do we make sure
86
211601
1216
03:32
that we're not just perpetuating
the biases that already exist?
87
212841
2976
我們才能篩選出最適任的人。
03:35
For example, if we were building
an algorithm based on top performing CEOs
88
215841
4056
也許你在想:這樣的測試也有風險,
因為今日的職場並沒有太多元化,
03:39
and use the S&P 500 as a training set,
89
219921
3216
如果只針對現有優秀的工作者
特質來設計演算公式,
03:43
you would actually find
90
223161
1256
03:44
that you're more likely to hire
a white man named John than any woman.
91
224441
3816
那麼要如何確保
我們不會讓現有的偏差
一再地重複發生?
03:48
And that's the reality
of who's in those roles right now.
92
228281
2696
假設我們的演算法是以
頂尖執行長為設計基礎,
03:51
But technology actually poses
a really interesting opportunity.
93
231001
3376
並以標準普爾 500 家公司為訓練集,
03:54
We can create algorithms
that are more equitable
94
234401
2256
則會發現
03:56
and more fair than human beings
have ever been.
95
236681
2256
選出來的人大概都會是叫做
約翰的白人男性而少有女性,
03:58
Every algorithm that we put
into production has been pretested
96
238961
3696
那是因為在現實職場中,
擔任該職位的都是這類型的人。
04:02
to ensure that it doesn't favor
any gender or ethnicity.
97
242681
3096
在這裡科技就能提供
另一個有趣的機會,
04:05
And if there's any population
that's being overfavored,
98
245801
2736
我們可以做出一套更公正,
04:08
we can actually alter the algorithm
until that's no longer true.
99
248561
3120
而且比人類更公平的演算系統。
每套演算法在實際應用前
都需經過前置測試,
04:12
When we focus on the inherent
characteristics
100
252041
2216
04:14
that can make somebody
a good fit for a job,
101
254281
2096
以確保不會偏好某性別或種族。
04:16
we can transcend racism,
classism, sexism, ageism --
102
256401
3576
如果系統真有偏重某些族群,
04:20
even good schoolism.
103
260001
1416
那麼我們可以改變演算方法,
直到情況改善。
04:21
Our best technology and algorithms
shouldn't just be used
104
261441
2896
04:24
for helping us find our next movie binge
or new favorite Justin Bieber song.
105
264361
3736
當我們著重在發掘某人與生俱來、
使他在職場上適任的人格特質,
04:28
Imagine if we could harness
the power of technology
106
268121
2656
我們就能夠超越種族、
階級、性別、年齡,
04:30
to get real guidance
on what we should be doing
107
270801
2296
甚至名校的偏見。
04:33
based on who we are at a deeper level.
108
273121
1936
我們這樣棒的科技
和演算法不應該只用在
追電影或尋找小賈斯汀的新歌上面。
而是應該要駕馭科技,
並根據我們的內在潛質
來引導我們要追求的目標。
New videos
Original video on YouTube.com
關於本網站
本網站將向您介紹對學習英語有用的 YouTube 視頻。 您將看到來自世界各地的一流教師教授的英語課程。 雙擊每個視頻頁面上顯示的英文字幕,從那裡播放視頻。 字幕與視頻播放同步滾動。 如果您有任何意見或要求,請使用此聯繫表與我們聯繫。