How to make applying for jobs less painful | The Way We Work, a TED series

161,760 views ・ 2019-02-09

TED


请双击下面的英文字幕来播放视频。

00:00
Applying for jobs online
0
141
1416
翻译人员: duan JiGang 校对人员: jacks peng
00:01
is one of the worst digital experiences of our time.
1
1581
2616
00:04
And applying for jobs in person really isn't much better.
2
4221
2696
00:06
[The Way We Work]
3
6942
1720
00:11
Hiring as we know it is broken on many fronts.
4
11181
2456
在线申请工作
00:13
It's a terrible experience for people.
5
13661
1856
是我们这个时代最糟糕的 数字化体验之一。
00:15
About 75 percent of people
6
15541
1816
面对面交谈也没好到哪儿去。
00:17
who applied to jobs using various methods in the past year
7
17381
2856
【我们的工作方式】
00:20
said they never heard anything back from the employer.
8
20261
2656
00:22
And at the company level it's not much better.
9
22941
2176
众所周知,招聘方式 在很多方面一团糟。
00:25
46 percent of people get fired or quit
10
25141
2776
对人们来说这是一个糟糕的经历。
00:27
within the first year of starting their jobs.
11
27941
2176
在过去一年
使用多种方式申请工作时的 群体中,大约有75%的人
00:30
It's pretty mind-blowing.
12
30141
1216
00:31
It's also bad for the economy.
13
31381
1456
00:32
For the first time in history,
14
32861
1456
说他们从未收到雇主的任何反馈。
00:34
we have more open jobs than we have unemployed people,
15
34341
2856
对公司来说,这不是一件好事情。
00:37
and to me that screams that we have a problem.
16
37221
2176
在开始工作的不到一年时间里,
00:39
I believe that at the crux of all of this is a single piece of paper: the résumé.
17
39421
3976
46%的人被解雇或者主动离职。
这一点很令人震惊。
00:43
A résumé definitely has some useful pieces in it:
18
43421
2336
这种现象对经济也产生了负面影响。
00:45
what roles people have had, computer skills,
19
45781
2096
在历史上第一次,
招聘岗位超过了无业人员的人数,
00:47
what languages they speak,
20
47901
1256
00:49
but what it misses is what they have the potential to do
21
49181
3056
对我而言,这意味着出问题了。
我认为这一切的关键在于一张纸: 简历。
00:52
that they might not have had the opportunity to do in the past.
22
52261
2976
00:55
And with such a quickly changing economy where jobs are coming online
23
55261
3256
毫无疑问,简历中包含着一些 有用的信息:
00:58
that might require skills that nobody has,
24
58541
2056
人们扮演过哪些角色, 有哪些计算机技能,
01:00
if we only look at what someone has done in the past,
25
60621
2776
精通什么语言,
但并未提及他们有哪方面的潜力,
01:03
we're not going to be able to match people to the jobs of the future.
26
63421
3256
这些事情他们在过去可能没机会去做。
01:06
So this is where I think technology can be really helpful.
27
66701
2736
在变化如此迅速的经济环境中, 在线发布的工作机会
01:09
You've probably seen that algorithms have gotten pretty good
28
69461
2856
可能要求的都是没人掌握的技术,
01:12
at matching people to things,
29
72341
1536
如果我们只看一个人过去做了什么,
01:13
but what if we could use that same technology
30
73901
2256
就不能把这个人和 未来的工作匹配起来。
01:16
to actually help us find jobs that we're really well-suited for?
31
76181
3096
所以我认为这是技术真正有用的地方。
01:19
But I know what you're thinking.
32
79301
1576
01:20
Algorithms picking your next job sounds a little bit scary,
33
80901
2776
您可能已经看到了算法如何很好的
01:23
but there is one thing that has been shown
34
83701
2056
把人和事物匹配起来,
01:25
to be really predictive of someone's future success in a job,
35
85781
2896
但是如果我们把同样的技术用于
01:28
and that's what's called a multimeasure test.
36
88701
2136
真正帮助找到那些为 我们量身打造的工作昵?
01:30
Multimeasure tests really aren't anything new,
37
90861
2176
我知道你在想什么。
让算法为你挑拣下一份工作 听起来有点离谱,
01:33
but they used to be really expensive
38
93061
1736
01:34
and required a PhD sitting across from you
39
94821
2016
但有个东西已经被证明
01:36
and answering lots of questions and writing reports.
40
96861
2456
能够成功预测某人 是否能胜任未来的工作,
01:39
Multimeasure tests are a way
41
99341
1696
这就是所谓的多评估测试。
01:41
to understand someone's inherent traits --
42
101061
2456
多评估测试并不是什么新概念,
01:43
your memory, your attentiveness.
43
103541
1776
但是它们曾经价格不菲,
01:46
What if we could take multimeasure tests
44
106255
1942
并且需要一个博士坐在你对面,
01:48
and make them scalable and accessible,
45
108221
2536
回答一堆问题并且整理成报告。
01:50
and provide data to employers about really what the traits are
46
110781
3376
多评估测试是一种用来
理解某人内在特质的方法——
01:54
of someone who can make them a good fit for a job?
47
114181
2896
你的记忆力,你的专注力。
01:57
This all sounds abstract.
48
117101
1296
01:58
Let's try one of the games together.
49
118421
1735
如果我们能够做多评估测试,
02:00
You're about to see a flashing circle,
50
120180
1857
让公众都可以参与,
02:02
and your job is going to be to clap when the circle is red
51
122061
2960
并且把相关数据提供给雇主, 比如某个人的某些特质
02:05
and do nothing when it's green.
52
125878
1496
使其真的很适合这个工作,会怎样?
02:07
[Ready?]
53
127399
1376
02:08
[Begin!]
54
128800
1360
这些听起来很抽象。
让我们一起试试其中一个游戏。
02:11
[Green circle]
55
131301
1000
你将要看到一个闪烁的圆,
02:13
[Green circle]
56
133301
1040
你的任务就是当圆是红色时鼓掌,
02:15
[Red circle]
57
135301
1000
02:17
[Green circle]
58
137301
1080
当圆是绿色时什么也不做。
02:19
[Red circle]
59
139301
1000
【准备好了?】
02:21
Maybe you're the type of person
60
141521
1596
【开始】
02:23
who claps the millisecond after a red circle appears.
61
143141
2496
【绿色圆】
02:25
Or maybe you're the type of person
62
145661
1656
【绿色圆】
02:27
who takes just a little bit longer to be 100 percent sure.
63
147341
2735
【红色圆】
【绿色圆】
02:30
Or maybe you clap on green even though you're not supposed to.
64
150101
2936
【红色圆】
02:33
The cool thing here is that this isn't like a standardized test
65
153061
2976
或许你是那种
在红色圆出现后毫秒内鼓掌的人。
02:36
where some people are employable and some people aren't.
66
156061
2656
或者你是另外一种人,
02:38
Instead it's about understanding the fit between your characteristics
67
158741
3256
那种需要多花点时间, 等到100%确认才行动的人。
02:42
and what would make you good a certain job.
68
162021
2016
或者你在还不确定时 就为绿色圆鼓掌。
02:44
We found that if you clap late on red and you never clap on the green,
69
164061
3736
很酷的一点是这并不 像是个标准的测试,
02:47
you might be high in attentiveness and high in restraint.
70
167821
3176
那种决定能被雇佣与否的测试。
相反,这是个理解你的特性和
02:51
People in that quadrant tend to be great students, great test-takers,
71
171021
3576
适合你的工作之间的匹配度测试。
02:54
great at project management or accounting.
72
174621
2136
02:56
But if you clap immediately on red and sometimes clap on green,
73
176781
3336
我们发现如果你在红色时鼓掌晚, 而在绿色时从不鼓掌,
03:00
that might mean that you're more impulsive and creative,
74
180141
2656
你可能具备高度专注力, 能够很好的自我约束。
03:02
and we've found that top-performing salespeople often embody these traits.
75
182821
3875
在那个象限的人们 往往擅长学习和考试,
03:06
The way we actually use this in hiring
76
186721
2016
精于项目管理和财会。
03:08
is we have top performers in a role go through neuroscience exercises
77
188761
3696
如果你在红色时立刻鼓掌, 并且有时在绿色鼓掌,
03:12
like this one.
78
192481
1216
那意味着你可能易冲动 并且具备创造性,
03:13
Then we develop an algorithm
79
193721
1376
03:15
that understands what makes those top performers unique.
80
195121
2656
我们发现顶级的商人 经常会表现出这些特质。
03:17
And then when people apply to the job,
81
197801
1936
03:19
we're able to surface the candidates who might be best suited for that job.
82
199761
4136
我们在招聘中使用它的方式是
我们让角色中表现出色的人参与
03:23
So you might be thinking there's a danger in this.
83
203921
2376
类似的神经科学训练。
然后我们开发了一个算法
03:26
The work world today is not the most diverse
84
206321
2136
来理解是什么让这些 表现出众者脱颖而出。
03:28
and if we're building algorithms based on current top performers,
85
208481
3096
然后当人们申请工作的时候,
03:31
how do we make sure
86
211601
1216
03:32
that we're not just perpetuating the biases that already exist?
87
212841
2976
我们就会优先列出 最适合那项工作的候选人。
03:35
For example, if we were building an algorithm based on top performing CEOs
88
215841
4056
你可能在思考其中存在的风险。
当今的职场多样性仍有待提高,
03:39
and use the S&P 500 as a training set,
89
219921
3216
如果我们基于当下的 出众员工构建算法,
03:43
you would actually find
90
223161
1256
要怎样确保
03:44
that you're more likely to hire a white man named John than any woman.
91
224441
3816
我们不是在固守既有的偏见呢?
例如,如果我们基于顶尖表现的 CEO构建一个算法
03:48
And that's the reality of who's in those roles right now.
92
228281
2696
03:51
But technology actually poses a really interesting opportunity.
93
231001
3376
并且使用S&P500作为一个训练集,
03:54
We can create algorithms that are more equitable
94
234401
2256
你将会发现
03:56
and more fair than human beings have ever been.
95
236681
2256
更可能雇佣一个叫约翰的 白人男子而非任何女性。
03:58
Every algorithm that we put into production has been pretested
96
238961
3696
这是目前谁正处在这个角色的现实。
04:02
to ensure that it doesn't favor any gender or ethnicity.
97
242681
3096
但是技术实际上给出了 一个真正有趣的机会。
04:05
And if there's any population that's being overfavored,
98
245801
2736
我们可以创造一些比人类 任何时候都更平等
04:08
we can actually alter the algorithm until that's no longer true.
99
248561
3120
和更公正的算法。
每一个我们投入生产的 算法都会被预先进行测试
04:12
When we focus on the inherent characteristics
100
252041
2216
04:14
that can make somebody a good fit for a job,
101
254281
2096
以确保它不会偏爱任何性别 或者种族。
04:16
we can transcend racism, classism, sexism, ageism --
102
256401
3576
如果有任何人群正在被过度偏爱,
04:20
even good schoolism.
103
260001
1416
我们可以调整算法直到该现象消失。
04:21
Our best technology and algorithms shouldn't just be used
104
261441
2896
04:24
for helping us find our next movie binge or new favorite Justin Bieber song.
105
264361
3736
当我们关注在那些让一个人
非常适合一个工作的内在特质时,
04:28
Imagine if we could harness the power of technology
106
268121
2656
我们可以超越种族,阶级, 性别和老龄化主义——
04:30
to get real guidance on what we should be doing
107
270801
2296
甚至是名校背景。
04:33
based on who we are at a deeper level.
108
273121
1936
我们最好的技术和算法不应该只用于
帮助寻找我们的下一个卖座电影 或者贾斯汀·比伯的新歌。
想象一下如果我们能够利用技术的 力量,
在更深层次上理解我们是谁, 并得到一个
我们应该做什么的真正指引会怎样。
关于本网站

这个网站将向你介绍对学习英语有用的YouTube视频。你将看到来自世界各地的一流教师教授的英语课程。双击每个视频页面上显示的英文字幕,即可从那里播放视频。字幕会随着视频的播放而同步滚动。如果你有任何意见或要求,请使用此联系表与我们联系。

https://forms.gle/WvT1wiN1qDtmnspy7


This website was created in October 2020 and last updated on June 12, 2025.

It is now archived and preserved as an English learning resource.

Some information may be out of date.

隐私政策

eng.lish.video

Developer's Blog