How to separate fact and fiction online | Markham Nolan

マーカム・ノーラン 「オンライン上で 事実とフィクションを区別する方法」

182,762 views

2012-12-11 ・ TED


New videos

How to separate fact and fiction online | Markham Nolan

マーカム・ノーラン 「オンライン上で 事実とフィクションを区別する方法」

182,762 views ・ 2012-12-11

TED


下の英語字幕をダブルクリックすると動画を再生できます。

00:00
Translator: Joseph Geni Reviewer: Morton Bast
0
0
7000
翻訳: Kazunori Akashi 校正: Akira Kan
00:15
I've been a journalist now since I was about 17,
1
15895
2621
17才の頃から ジャーナリストをしていますが
00:18
and it's an interesting industry to be in at the moment,
2
18516
3560
この業界は今 とても面白いです
00:22
because as you all know, there's a huge amount of upheaval
3
22076
2336
ご存じの通り メディア業界では
00:24
going on in media, and most of you probably know this
4
24412
2480
ものすごい変化が 起きているからです
00:26
from the business angle, which is that the business model
5
26892
3223
ただ ほとんどの人は ビジネスモデルの崩壊や
00:30
is pretty screwed, and as my grandfather would say,
6
30115
2943
Googleの一人勝ちといった
00:33
the profits have all been gobbled up by Google.
7
33058
2714
観点から変化を捉えています
00:35
So it's a really interesting time to be a journalist,
8
35772
2344
ジャーナリストとして 本当に面白いですが
00:38
but the upheaval that I'm interested in is not on the output side.
9
38116
3084
私が興味あるのは記事自体の 変化ではありません
00:41
It's on the input side. It's concern with
10
41200
3095
書く前の段階の変化 つまり情報入手や ―
00:44
how we get information and how we gather the news.
11
44295
2498
取材方法に関心があります
00:46
And that's changed, because we've had a huge shift
12
46793
3071
力関係は新聞社から読者へと
00:49
in the balance of power from
13
49864
2238
大きくシフトし
00:52
the news organizations to the audience.
14
52102
2017
取材が様変わりしたからです
00:54
And the audience for such a long time was in a position
15
54119
2215
読み手はこれまで ニュースに
00:56
where they didn't have any way of affecting news
16
56334
2690
影響も変化も与えられませんでした
00:59
or making any change. They couldn't really connect.
17
59024
2267
接点がなかったのです
01:01
And that's changed irrevocably.
18
61291
1476
でも状況は変わりました
01:02
My first connection with the news media was
19
62767
2889
私が初めてメディアに関心をもったのは
01:05
in 1984, the BBC had a one-day strike.
20
65656
3811
1984年 BBCがストを実施したときです
01:09
I wasn't happy. I was angry. I couldn't see my cartoons.
21
69467
3288
マンガまで休みになり 怒っていたのです
01:12
So I wrote a letter.
22
72755
2547
だから手紙を書きました
01:15
And it's a very effective way of ending your hate mail:
23
75302
2849
嫌がらせの手紙に 最高の結びは こうです
01:18
"Love Markham, Aged 4." Still works.
24
78151
3087
「愛を込めて マーカム 4才」 これは今でも通用します
01:21
I'm not sure if I had any impact on the one-day strike,
25
81238
3011
ストに与えた インパクトは不明です
01:24
but what I do know is that it took them three weeks to get back to me.
26
84249
2682
ただ わかったのは 返事に3週間もかかったこと
01:26
And that was the round journey. It took that long for anyone
27
86931
2160
行動を起こして 結果を知りたくても
01:29
to have any impact and get some feedback.
28
89091
2193
そんなに時間がかかったのです
01:31
And that's changed now because, as journalists,
29
91284
2482
それもすっかり変わりました
01:33
we interact in real time. We're not in a position
30
93766
3166
誰もが瞬時にやり取りします
01:36
where the audience is reacting to news.
31
96932
2334
読者が記事に反応した時代は終わり
01:39
We're reacting to the audience, and we're actually relying on them.
32
99266
3757
今ではジャーナリストが 読者に頼っているのです
01:43
They're helping us find the news. They're helping us
33
103023
2386
読者がニュースを探してくれます
01:45
figure out what is the best angle to take and what is the stuff that they want to hear.
34
105409
4770
取材の切り口も 皆が知りたい事も 読者が教えてくれます
01:50
So it's a real-time thing. It's much quicker. It's happening
35
110179
3904
全部リアルタイムで あっという間です
01:54
on a constant basis, and the journalist is always playing catch up.
36
114083
5917
いつもこんな状態で 追いつくのに必死です
02:00
To give an example of how we rely on the audience,
37
120000
2633
どのくらい読者に頼っているか ―
02:02
on the 5th of September in Costa Rica, an earthquake hit.
38
122633
4537
9月5日 コスタリカの 地震を例に 見てみましょう
02:07
It was a 7.6 magnitude. It was fairly big.
39
127170
2326
M7.6の大地震でした
02:09
And 60 seconds is the amount of time it took
40
129496
2880
地震が起きて60秒後 ―
02:12
for it to travel 250 kilometers to Managua.
41
132376
2565
250km先のマナグアが揺れました
02:14
So the ground shook in Managua 60 seconds after it hit the epicenter.
42
134941
4145
マナグアが揺れるまでに 60秒かかっているのです
02:19
Thirty seconds later, the first message went onto Twitter,
43
139086
2656
その30秒後 第一報がツイートされます
02:21
and this was someone saying "temblor," which means earthquake.
44
141742
2861
"temblor" 地震というつぶやきでした
02:24
So 60 seconds was how long it took
45
144603
2337
地震が到達するのに
02:26
for the physical earthquake to travel.
46
146940
1906
60秒かかりました
02:28
Thirty seconds later news of that earthquake had traveled
47
148846
2560
その30秒後には 地震のニュースが
02:31
all around the world, instantly. Everyone in the world,
48
151406
2974
瞬時に世界中を駆け巡ります
02:34
hypothetically, had the potential to know that an earthquake
49
154380
3197
世界中の誰もが マナグアの地震を
02:37
was happening in Managua.
50
157577
2414
知り得たのです
02:39
And that happened because this one person had
51
159991
2351
きっかけは最初の1人が
02:42
a documentary instinct, which was to post a status update,
52
162342
3949
状況を伝えたいと思い 投稿したことです
02:46
which is what we all do now, so if something happens,
53
166291
2532
いまは誰もが投稿します
02:48
we put our status update, or we post a photo,
54
168823
2082
最新情報や写真やビデオは
02:50
we post a video, and it all goes up into the cloud in a constant stream.
55
170905
3778
絶え間なくクラウドに 流れ込んでいきます
02:54
And what that means is just constant,
56
174683
2761
常に膨大なデータが
02:57
huge volumes of data going up.
57
177444
2406
アップロードされています
02:59
It's actually staggering. When you look at the numbers,
58
179850
2281
データによれば
03:02
every minute there are 72 more hours
59
182131
2991
YouTubeでは毎分72時間以上の ビデオが投稿されます
03:05
of video on YouTube.
60
185122
1382
YouTubeでは毎分72時間以上の ビデオが投稿されます
03:06
So that's, every second, more than an hour of video gets uploaded.
61
186504
3282
1秒間に1時間分を超える 投稿があるのです
03:09
And in photos, Instagram, 58 photos are uploaded to Instagram a second.
62
189786
4256
Instagramでは1秒に58枚の写真 ―
03:14
More than three and a half thousand photos go up onto Facebook.
63
194042
3756
Facebookでは 3,500枚以上の 写真が投稿されます
03:17
So by the time I'm finished talking here, there'll be 864
64
197798
3708
だから 私がこの話を終える頃には
03:21
more hours of video on Youtube than there were when I started,
65
201506
3618
YouTubeには864時間分のビデオ ―
03:25
and two and a half million more photos on Facebook and Instagram than when I started.
66
205124
3863
FacebookとInstagramには 250万枚の写真が投稿されています
03:28
So it's an interesting position to be in as a journalist,
67
208987
3932
あらゆる情報が入手可能な立場は
03:32
because we should have access to everything.
68
212919
2416
ジャーナリストにとって面白い状況です
03:35
Any event that happens anywhere in the world, I should be able to know about it
69
215335
2898
世界中の出来事を
03:38
pretty much instantaneously, as it happens, for free.
70
218233
3931
ほぼ同時に しかもタダで 知ることができます
03:42
And that goes for every single person in this room.
71
222164
3165
この状況は 誰にとっても同じです
03:45
The only problem is, when you have that much information,
72
225329
2610
ただ問題があって 情報が大量になると
03:47
you have to find the good stuff, and that can be
73
227939
2287
価値があるものを見つけるのが
03:50
incredibly difficult when you're dealing with those volumes.
74
230226
1988
難しくなります
03:52
And nowhere was this brought home more than during
75
232214
2319
これを痛切に感じたのが
03:54
Hurricane Sandy. So what you had in Hurricane Sandy was
76
234533
2904
ハリケーン・サンディのときです
03:57
a superstorm, the likes of which we hadn't seen for a long time,
77
237437
3027
長らく経験していなかった 巨大ハリケーンが
04:00
hitting the iPhone capital of the universe -- (Laughter) --
78
240464
3143
iPhoneの総本山を襲ったのです (笑)
04:03
and you got volumes of media like we'd never seen before.
79
243607
4215
さらに多種多様なメディアを みんなが持っています
04:07
And that meant that journalists had to deal with fakes,
80
247822
2744
だからニセモノや
04:10
so we had to deal with old photos that were being reposted.
81
250566
2916
再投稿された古い写真 ―
04:13
We had to deal with composite images
82
253482
2248
過去の写真を使った合成写真を
04:15
that were merging photos from previous storms.
83
255730
3183
ジャーナリストは 見分ける必要があります
04:18
We had to deal with images from films like "The Day After Tomorrow." (Laughter)
84
258913
5234
映画『デイ・アフター・トゥモロー』の 写真まで混じっています (笑)
04:24
And we had to deal with images that were so realistic
85
264147
2834
中には リアルすぎて
04:26
it was nearly difficult to tell if they were real at all.
86
266981
2370
本物かどうかわからないものも
04:29
(Laughter)
87
269351
4313
(笑)
04:33
But joking aside, there were images like this one from Instagram
88
273664
3724
冗談はさておき Instagramからの この写真では
04:37
which was subjected to a grilling by journalists.
89
277388
2276
徹底した検証が必要でした
04:39
They weren't really sure. It was filtered in Instagram.
90
279664
2233
Instagramでフィルタが かけられています
04:41
The lighting was questioned. Everything was questioned about it.
91
281897
2523
光の当たり方が疑わしく見えました
04:44
And it turned out to be true. It was from Avenue C
92
284420
2293
でも これは本物でした
04:46
in downtown Manhattan, which was flooded.
93
286713
2160
水没したマンハッタン アベニューCです
04:48
And the reason that they could tell that it was real
94
288873
2100
本物と判明したのは
04:50
was because they could get to the source, and in this case,
95
290973
2089
情報源が特定できたからです
04:53
these guys were New York food bloggers.
96
293062
2107
NYのフード・ブロガーで
04:55
They were well respected. They were known.
97
295169
2030
よく知られ 尊敬されていました
04:57
So this one wasn't a debunk, it was actually something that they could prove.
98
297199
3092
この場合は本物だと証明できました
05:00
And that was the job of the journalist. It was filtering all this stuff.
99
300291
2918
これがジャーナリストの仕事 情報の確認です
05:03
And you were, instead of going and finding the information
100
303209
2711
外に出て情報を集め
05:05
and bringing it back to the reader, you were holding back
101
305920
2567
それを読者に見せる代わりに
05:08
the stuff that was potentially damaging.
102
308487
2060
問題になりそうな情報を止めます
05:10
And finding the source becomes more and more important --
103
310547
2958
信頼できる情報源の 発見が重要になるため
05:13
finding the good source -- and Twitter is where most journalists now go.
104
313505
3734
ジャーナリストは Twitterを頻繁に利用します
05:17
It's like the de facto real-time newswire,
105
317239
3153
大量の情報が集まるので 使い方がわかれば
05:20
if you know how to use it, because there is so much on Twitter.
106
320392
2967
まるで記事配信サービスのように 利用できます
05:23
And a good example of how useful it can be
107
323359
2385
役に立つ反面 難しい面もあることが
05:25
but also how difficult was the Egyptian revolution in 2011.
108
325744
3533
2011年のエジプト革命でわかりました
05:29
As a non-Arabic speaker, as someone who was looking
109
329277
2646
アラビア語が話せず エジプトではなく
05:31
from the outside, from Dublin,
110
331923
2301
ダブリンにいる私にとっては
05:34
Twitter lists, and lists of good sources,
111
334224
1792
Twitterリストや
05:36
people we could establish were credible, were really important.
112
336016
3622
質の高い情報源のリストや 信頼できる人が 重要でした
05:39
And how do you build a list like that from scratch?
113
339638
2509
そんなリストを 一から作るには どうしたらよいか?
05:42
Well, it can be quite difficult, but you have to know what to look for.
114
342147
2430
何を探すべきか知らないと とても大変です
05:44
This visualization was done by an Italian academic.
115
344577
2858
これはイタリアの学者 アンドレ・パニソンが
05:47
He's called André Pannison, and he basically
116
347435
3394
タハリール広場での Twitter上のやり取りを
05:50
took the Twitter conversation in Tahrir Square
117
350829
2175
視覚化したものです
05:53
on the day that Hosni Mubarak would eventually resign,
118
353004
3454
ムバラク大統領が 辞任した その日です
05:56
and the dots you can see are retweets, so when someone
119
356458
2632
点はリツイートで 誰かがメッセージを
05:59
retweets a message, a connection is made between two dots,
120
359090
2779
リツイートすると 2点がつながります
06:01
and the more times that message is retweeted by other people,
121
361869
2610
回数が多い程 ―
06:04
the more you get to see these nodes, these connections being made.
122
364479
3206
つながりが増えていきます
06:07
And it's an amazing way of visualizing the conversation,
123
367685
1922
すごい方法で会話を視覚化しています
06:09
but what you get is hints at who is more interesting
124
369607
2711
ただ ここから得られるのは 誰に関心をもち
06:12
and who is worth investigating.
125
372318
2681
誰を調べるべきかを 知る手がかりだけです
06:14
And as the conversation grew and grew, it became
126
374999
2879
会話が展開すると どんどん活発になり
06:17
more and more lively, and eventually you were left
127
377878
2284
最終的に 会話は
06:20
with this huge, big, rhythmic pointer of this conversation.
128
380162
4781
巨大な リズムを刻む点の塊になります
06:24
You could find the nodes, though, and then you went,
129
384943
1809
つながりを見て こう思うかも
06:26
and you go, "Right, I've got to investigate these people.
130
386752
2294
「彼らについて調べよう
06:29
These are the ones that are obviously making sense.
131
389046
1714
何か知ってるかもしれない
06:30
Let's see who they are."
132
390760
2309
どんな人間か 調べてみよう」
06:33
Now in the deluge of information, this is where
133
393069
2690
私たちジャーナリストは 情報があふれる今 ―
06:35
the real-time web gets really interesting for a journalist like myself,
134
395759
3207
ウェブの同時性に とても興味を覚えます
06:38
because we have more tools than ever
135
398966
1974
この種の調査に使えるツールが
06:40
to do that kind of investigation.
136
400940
2757
今はたくさんあるからです
06:43
And when you start digging into the sources, you can go
137
403697
3009
以前よりも とても詳しく
06:46
further and further than you ever could before.
138
406706
2299
情報源を調べることができます
06:49
Sometimes you come across a piece of content that
139
409005
3352
よさそうなネタを見つけたと思っても
06:52
is so compelling, you want to use it, you're dying to use it,
140
412357
3460
本当に使えるかどうか ―
06:55
but you're not 100 percent sure if you can because
141
415817
2675
確信がもてない場合があります
06:58
you don't know if the source is credible.
142
418492
1207
信頼できる情報源か ―
06:59
You don't know if it's a scrape. You don't know if it's a re-upload.
143
419699
2182
合成か 再投稿か わからないからです
07:01
And you have to do that investigative work.
144
421881
1709
調べる必要があります
07:03
And this video, which I'm going to let run through,
145
423590
2344
ご覧頂いているビデオは
07:05
was one we discovered a couple of weeks ago.
146
425934
2989
2週間前に見つけました
07:08
Video: Getting real windy in just a second.
147
428923
2199
ビデオ 「風が強くなってきたわ」
07:11
(Rain and wind sounds)
148
431122
4888
(風雨の音)
07:16
(Explosion) Oh, shit!
149
436010
3167
(爆発音)「大変!」
07:19
Markham Nolan: Okay, so now if you're a news producer, this is something
150
439177
2937
プロデューサーなら 放送したくなるはずです
07:22
you'd love to run with, because obviously, this is gold.
151
442114
2552
すごい掘り出し物ですから
07:24
You know? This is a fantastic reaction from someone,
152
444666
2263
生々しい反応です
07:26
very genuine video that they've shot in their back garden.
153
446929
2570
裏庭で撮影されました
07:29
But how do you find if this person, if it's true, if it's faked,
154
449499
3494
でも 本物か ニセモノか 古いものか
07:32
or if it's something that's old and that's been reposted?
155
452993
2658
再投稿かを知る方法は?
07:35
So we set about going to work on this video, and
156
455651
2226
ビデオを調べて わかったのは
07:37
the only thing that we had to go on was the username on the YouTube account.
157
457877
2860
YouTubeのユーザー名だけでした
07:40
There was only one video posted to that account,
158
460737
2351
このアカウントの投稿は 1件だけ
07:43
and the username was Rita Krill.
159
463088
1488
ユーザー名は "Rita Krill"
07:44
And we didn't know if Rita existed or if it was a fake name.
160
464576
3292
本名か 偽名かはわかりません
07:47
But we started looking, and we used free Internet tools to do so.
161
467868
2913
そこで ネット上の 無料ツールで調べ始めました
07:50
The first one was called Spokeo, which allowed us to look for Rita Krills.
162
470781
3308
まずSpokeoで名前を探しました
07:54
So we looked all over the U.S. We found them in New York,
163
474089
2382
全米を調べ NY ペンシルベニア ―
07:56
we found them in Pennsylvania, Nevada and Florida.
164
476471
2762
ネバダ フロリダで この名を見つけました
07:59
So we went and we looked for a second free Internet tool
165
479233
2649
次にWolfram Alphaを使って
08:01
called Wolfram Alpha, and we checked the weather reports
166
481882
2467
ビデオが投稿された日の
08:04
for the day in which this video had been uploaded,
167
484349
2497
気象情報をチェックしました
08:06
and when we went through all those various cities,
168
486846
1883
名前が挙がった場所の内 ―
08:08
we found that in Florida, there were thunderstorms and rain on the day.
169
488729
3496
その日 フロリダが雷雨でした
08:12
So we went to the white pages, and we found,
170
492225
2645
だからWhitePagesの
08:14
we looked through the Rita Krills in the phonebook,
171
494870
2924
電話帳でRita Krillをいくつか見つけ
08:17
and we looked through a couple of different addresses,
172
497794
1572
住所を洗ったところ ―
08:19
and that took us to Google Maps, where we found a house.
173
499366
3316
Google Mapsで 家を見つけました
08:22
And we found a house with a swimming pool that looked
174
502682
1915
ビデオと よく似た ―
08:24
remarkably like Rita's. So we went back to the video,
175
504597
2918
プールがある家です 再びビデオを見て
08:27
and we had to look for clues that we could cross-reference.
176
507515
2971
ヒントを探しました
08:30
So if you look in the video, there's the big umbrella,
177
510486
3215
ビデオをよく見ると 大きなパラソルと
08:33
there's a white lilo in the pool,
178
513701
1845
白いエアマットがあり
08:35
there are some unusually rounded edges in the swimming pool,
179
515546
2440
プールの角は曲線を描いています
08:37
and there's two trees in the background.
180
517986
2054
背景には木が2本
08:40
And we went back to Google Maps, and we looked a little bit closer,
181
520040
2427
Google Mapsに戻り よく見ると
08:42
and sure enough, there's the white lilo,
182
522467
2671
エアマットも
08:45
there are the two trees,
183
525138
2994
2本の木も パラソルもあります
08:48
there's the umbrella. It's actually folded in this photo.
184
528132
1986
写真では閉じています
08:50
Little bit of trickery. And there are the rounded edges on the swimming pool.
185
530118
3778
少し工夫すると プールの角が丸いこともわかります
08:53
So we were able to call Rita, clear the video,
186
533896
3150
調査をもとにリタに電話をかけ
08:57
make sure that it had been shot, and then our clients
187
537046
2086
自分で撮ったものだと確認しました
08:59
were delighted because they were able to run it without being worried.
188
539132
3194
クライアントは安心して放映できました
09:02
Sometimes the search for truth, though,
189
542326
1775
一方 真実を知ることが
09:04
is a little bit less flippant, and it has much greater consequences.
190
544101
4409
重大な結果をともなう場合があります
09:08
Syria has been really interesting for us, because obviously
191
548510
2983
私達がシリアに注目するのは
09:11
a lot of the time you're trying to debunk stuff that can be
192
551493
2681
戦争犯罪の証拠となりうる情報の
09:14
potentially war crime evidence, so this is where YouTube
193
554174
3799
真偽を判断することが 当然 多くなるからです
09:17
actually becomes the most important repository
194
557973
2357
この場合 YouTubeが
09:20
of information about what's going on in the world.
195
560330
4150
世界情勢を知るために 重要な情報源です
09:24
So this video, I'm not going to show you the whole thing,
196
564480
2754
このビデオは かなり残酷なので
09:27
because it's quite gruesome, but you'll hear some of the sounds.
197
567234
2721
音声の一部を お聞きください
09:29
This is from Hama.
198
569955
2328
出所はシリアのハマーです
09:32
Video: (Shouting)
199
572283
2970
(叫び声)
09:35
And what this video shows, when you watch the whole thing through,
200
575253
3904
映像は血だらけの死体が
09:39
is bloody bodies being taken out of a pickup truck
201
579157
2761
ピックアップトラックから降ろされて
09:41
and thrown off a bridge.
202
581918
2605
橋から投げ落とされる場面です
09:44
The allegations were that these guys were Muslim Brotherhood
203
584523
2781
ムスリム同胞団のメンバーが
09:47
and they were throwing Syrian Army officers' bodies
204
587304
2875
シリア軍兵士の死体を 捨てる所とされています
09:50
off the bridge, and they were cursing and using blasphemous language,
205
590179
2934
でも男達は 呪いや 冒涜の言葉を言っており
09:53
and there were lots of counterclaims about who they were,
206
593113
2382
本当は何者なのか
09:55
and whether or not they were what the video said it was.
207
595495
2242
ビデオの説明通りなのかは 意見が分かれます
09:57
So we talked to some sources in Hama who we had been
208
597737
3266
そこでTwitterでやり取りしていた ―
10:01
back and forth with on Twitter, and we asked them about this,
209
601003
2333
ハマーにいる人達に この件を尋ねました
10:03
and the bridge was interesting to us because it was something we could identify.
210
603336
3814
注目したのは橋です 特定できるかも知れません
10:07
Three different sources said three different things about the bridge.
211
607150
2914
3つの情報源の 証言はバラバラでした
10:10
They said, one, the bridge doesn't exist.
212
610064
2262
ある協力者は「橋はない」
10:12
Another one said the bridge does exist, but it's not in Hama. It's somewhere else.
213
612326
3524
別の協力者は「橋はあるが ハマーではない」
10:15
And the third one said, "I think the bridge does exist,
214
615850
2562
3人目は「橋はあると思う
10:18
but the dam upstream of the bridge was closed,
215
618412
3364
でも上流のダムが閉鎖しており
10:21
so the river should actually have been dry, so this doesn't make sense."
216
621776
3397
川に水がないはずで 映像と一致しない」
10:25
So that was the only one that gave us a clue.
217
625173
2612
最後の証言がヒントになりました
10:27
We looked through the video for other clues.
218
627785
1225
手がかりを探して
10:29
We saw the distinctive railings, which we could use.
219
629010
3089
ビデオを見ると 特徴のある 手すりに気づきました
10:32
We looked at the curbs. The curbs were throwing shadows south,
220
632099
3744
歩道上の影が 南へ伸びているので
10:35
so we could tell the bridge was running east-west across the river.
221
635843
2317
橋は東西方向にかかっています
10:38
It had black-and-white curbs.
222
638160
1956
歩道は白と黒に塗られています
10:40
As we looked at the river itself, you could see there's
223
640116
1986
川面を見ると
10:42
a concrete stone on the west side. There's a cloud of blood.
224
642102
2954
西側にコンクリート護岸 血の流れが見えます
10:45
That's blood in the river. So the river is flowing
225
645056
1734
つまり川が南から北へ
10:46
south to north. That's what that tells me.
226
646790
1697
流れているのです
10:48
And also, as you look away from the bridge,
227
648487
2349
橋から向こうを見ると
10:50
there's a divot on the left-hand side of the bank,
228
650836
1649
土手に削られた部分があり
10:52
and the river narrows.
229
652485
2430
川幅が狭まっています
10:54
So onto Google Maps we go, and we start
230
654915
2579
次にGoogle Mapsで
10:57
looking through literally every single bridge.
231
657494
2058
橋を全部見ていきました
10:59
We go to the dam that we talked about, we start just
232
659552
3480
先ほどのダムから下流に向かって
11:03
literally going through every time that road crosses the river,
233
663032
3610
橋がある場所を すべて確認し
11:06
crossing off the bridges that don't match.
234
666642
1738
該当しないものを外しました
11:08
We're looking for one that crosses east-west.
235
668380
1763
探すのは東西にかかる橋です
11:10
And we get to Hama. We get all the way from the dam
236
670143
1952
でもダムからハマーまで見ましたが
11:12
to Hama and there's no bridge.
237
672095
2003
橋がありません
11:14
So we go a bit further. We switch to the satellite view,
238
674098
2484
でも航空写真に切り替えると
11:16
and we find another bridge, and everything starts to line up.
239
676582
2920
橋がひとつあったのです 証拠がまとまり始めます
11:19
The bridge looks like it's crossing the river east to west.
240
679502
3038
この橋は東西にかかっているようです
11:22
So this could be our bridge. And we zoom right in.
241
682540
3161
この橋でしょうか ズームしてみましょう
11:25
We start to see that it's got a median, so it's a two-lane bridge.
242
685701
2902
橋の中央に線があり 2車線だとわかります
11:28
And it's got the black-and-white curbs that we saw in the video,
243
688603
3646
白と黒に塗られた歩道もあります
11:32
and as we click through it, you can see someone's
244
692249
2312
さらにクリックすると
11:34
uploaded photos to go with the map, which is very handy,
245
694561
2954
アップロードされた写真が マップ上に現れます
11:37
so we click into the photos. And the photos start showing us
246
697515
2687
写真をクリックすると
11:40
more detail that we can cross-reference with the video.
247
700202
2622
細部を見て ビデオと照合できます
11:42
The first thing that we see is we see black-and-white curbing,
248
702824
3723
最初に気づくのは 白と黒の縁石です
11:46
which is handy because we've seen that before.
249
706547
2105
手がかりになりそうです
11:48
We see the distinctive railing that we saw the guys
250
708652
3499
特徴のある手すりも見えます ここから男達が
11:52
throwing the bodies over.
251
712151
2351
死体を投げ捨てていました
11:54
And we keep going through it until we're certain that this is our bridge.
252
714502
2655
これが探していた橋だと 確信するまで検証を続けました
11:57
So what does that tell me? I've got to go back now
253
717157
1524
ここから何がわかるでしょう?
11:58
to my three sources and look at what they told me:
254
718681
2313
思い出してほしいのは3人の情報 ―
12:00
the one who said the bridge didn't exist,
255
720994
1725
「橋がない」という情報と
12:02
the one who said the bridge wasn't in Hama,
256
722719
1859
「ハマーではない」という情報 ―
12:04
and the one guy who said, "Yes, the bridge does exist, but I'm not sure about the water levels."
257
724578
3953
そして「橋はあるが 水位がおかしい」という情報です
12:08
Number three is looking like the most truthful all of a sudden,
258
728531
3331
3人目の情報が急に 信頼できるものに見えて来ました
12:11
and we've been able to find that out using some free Internet tools
259
731862
2981
私達はそれを無料ツールで 確認する事ができました
12:14
sitting in a cubicle in an office in Dublin
260
734843
2520
ダブリンのオフィスにいながら
12:17
in the space of 20 minutes.
261
737363
1487
たった20分で です
12:18
And that's part of the joy of this. Although the web
262
738850
2439
これが作業の醍醐味です
12:21
is running like a torrent, there's so much information there
263
741289
3265
ネット上には大量の情報が 行き交っているので
12:24
that it's incredibly hard to sift and getting harder every day,
264
744554
3187
選別はとても大変ですし 日々 難しくなります
12:27
if you use them intelligently, you can find out incredible information.
265
747741
3327
でも情報を適切に使えば 素晴らしい情報が手に入ります
12:31
Given a couple of clues, I could probably find out
266
751068
2395
手がかりさえあれば
12:33
a lot of things about most of you in the audience that you might not like me finding out.
267
753463
3534
皆さんが知られたくない 情報だって探り出せるでしょう
12:36
But what it tells me is that, at a time when
268
756997
3005
今は これまでにない程 ―
12:40
there's more -- there's a greater abundance of information than there ever has been,
269
760002
4029
大量の情報があり 選別も難しいですが
12:44
it's harder to filter, we have greater tools.
270
764031
2633
強力なツールがあります
12:46
We have free Internet tools that allow us,
271
766664
1863
無料のツールで
12:48
help us do this kind of investigation.
272
768527
2226
お話ししたような調査が可能です
12:50
We have algorithms that are smarter than ever before,
273
770753
1823
洗練されたアルゴリズムや
12:52
and computers that are quicker than ever before.
274
772576
2421
高速なコンピュータもあります
12:54
But here's the thing. Algorithms are rules. They're binary.
275
774997
3427
でもアルゴリズムは 規則の集まりに過ぎず
12:58
They're yes or no, they're black or white.
276
778424
1785
YesかNo 白か黒なのです
13:00
Truth is never binary. Truth is a value.
277
780209
3554
真実はそうではありません 真実には価値があります
13:03
Truth is emotional, it's fluid, and above all, it's human.
278
783763
4664
真実は感情に訴え 流動的で 何より人間的なものです
13:08
No matter how quick we get with computers, no matter
279
788427
2107
コンピュータが どれほど速くなろうと
13:10
how much information we have, you'll never be able
280
790534
2384
情報がどれほど増えようと ―
13:12
to remove the human from the truth-seeking exercise,
281
792918
2996
真実を探すためには 人間が欠かせません
13:15
because in the end, it is a uniquely human trait.
282
795914
3658
真実の探求は 人間の特性なのですから
13:19
Thanks very much. (Applause)
283
799572
4000
ありがとうございました (拍手)
このウェブサイトについて

このサイトでは英語学習に役立つYouTube動画を紹介します。世界中の一流講師による英語レッスンを見ることができます。各ビデオのページに表示される英語字幕をダブルクリックすると、そこからビデオを再生することができます。字幕はビデオの再生と同期してスクロールします。ご意見・ご要望がございましたら、こちらのお問い合わせフォームよりご連絡ください。

https://forms.gle/WvT1wiN1qDtmnspy7